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Abstract

The generalized log-gamma (GLG) model is a very flexible family of distri-
butions to analyze datasets in many different areas of science and technology.
Estimators are proposed which are simultaneously highly robust and highly
efficient for the parameters of a GLG distribution in the presence of censoring.
Estimators with the same properties for accelerated failure time models with
censored observations and error distribution belonging to the GLG family are
also introduced. It is proven that the proposed estimators are asymptotically
fully efficient and the maximum mean square error is examined using Monte
Carlo simulations. The simulations confirm that the proposed estimators are
highly robust and highly efficient for a finite sample size. Finally, the benefits
of the proposed estimators in applications are illustrated with the help two
real datasets.

Keywords: Censored data, Quantile distance estimates, τ estimators,
Truncated maximum likelihood estimators, Weighted likelihood estimators

1. Introduction

Generalized log-gamma (GLG) regression with censored observations is a
large class of Accelerated Failure Time (AFT) models introduced by Lawless
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(1980). Many models broadly used in the lifetime data analysis – including
log-normal, log-gamma, and log-Weibull regression – are specific cases of
GLG regression. GLG regression has been widely applied in various areas
of survival analysis (e.g. Kim et al., 1993; Sun et al., 1999; Abadi et al.,
2012). Procedures to fit the GLG regression model have been added to the
capabilities of leading statistical software such as SAS and STATA.

Usually, the parameters are estimated by means of the maximum likeli-
hood (ML) principle, which provides fully efficient estimators when the ob-
servations follow the model. Unfortunately, the ML estimator is extremely
sensitive to the presence of outliers in the sample.

There are two basic strategies to detect outliers in regression models. The
first one makes use of diagnostic tools based on ML residuals. Specific pro-
posals for GLG regression are given in Ortega et al. (2003, 2008) and Silva
et al. (2010). However, this strategy may fail because the ML estimators
could be largely distorted by the outliers. As a result, the corresponding
residuals are not necessarily large and, therefore, may not be visible. An im-
provement of this strategy is the “leave one approach”, where the ML residual
of one observation is computed without that observation. This strategy may
cope with isolated outliers. However, in the case that the sample contains a
group of similar outliers, a “masking effect” can occur, that is, the remaining
outliers of the group may cause the residual of the observation under study
to be small and this observation remains “hidden”.

A better strategy, which avoids this shortcoming, is the use of a robust
estimator, that is an estimator which is not very sensitive to the presence of
outliers. Two families of robust estimators of models with three parameters
(location, scale, and shape), including GLG, without censored observations
and without covariate information have been introduced by Agostinelli et al.
(2014). These families of estimators are: the (weighted) quantile τ (Qτ)
estimators and the one-step weighted likelihood (1SWL) estimators. A Qτ
estimator minimizes a τ scale (Yohai and Zamar, 1988) of the differences
between empirical and theoretical quantiles. It is n1/2 consistent but not
asymptotically normal. However, it is a convenient starting point to define
the 1SWL-estimator.

In this paper, we extend the Qτ estimator proposed in Agostinelli et al.
(2014) to GLG regression with right censoring by introducing the trimmed
Qτ -estimator (TQτ -estimator); we also extend the truncated maximum like-
lihood (TML) estimator proposed in Marazzi and Yohai (2004) to GLG re-
gression. To improve the robustness of this estimator without modifying its
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asymptotic efficiency we also define a one-step version of the TML estimator
(1TML-estimator). For the sake of completeness, we also define an extension
of the 1SWL estimator which is fully described in the Supplementary Mate-
rial. However a Monte Carlo study shows that this estimator is much less
robust than the TQτ - and 1TML- estimators.

The procedures introduced here for the GLG family can be applied to
other location-scale-shape models, such as the three-parameter log-Weibull
family.

Section 2 defines the Qτ - and TQτ -estimators for censored observations in
the absence of covariables. Section 3 describes the TML estimators. Section
4 extends the estimators to the regression case. Section 5 shows the results of
a Monte Carlo study comparing the performance of the proposed methods for
finite sample sizes. Section 6 discusses two examples with real data. Section
7 provides concluding remarks. Proofs and complementary technical details
can be found in the Supplementary Material.

2. The Qτ - and TQτ -estimators for censored observations without
covariables

2.1. The generalized gamma and log-gamma distribution models

According Cox et al. (2007), a positive random survival time T has a
generalized gamma distribution GG(µ, σ, λ) with parameters µ, σ, and λ (µ ∈
R, σ > 0, λ ∈ R), if the cdf of T is

Gµ,σ,λ(t) =

{
Gλ−2

[
λ−2(e−µt)λ/σ

]
if λ > 0,

1−Gλ−2

[
λ−2(e−µt)λ/σ

]
if λ < 0.

(1)

Here, Gγ(t) =
∫ t

0
xγ−1e−xdx/Γ(γ) is the cumulative distribution function

(cdf) of the gamma distribution with mean and variance equal to γ > 0 and
Γ denotes the Gamma function. The density of T is given by

gµ,σ,λ(t) =
|λ|

σtΓ (λ−2)

[
λ−2(e−µt)λ/σ

]λ−2

exp
[
−λ−2(e−µt)λ/σ

]
. (2)

We refer to GG(0, 1, λ) as the standard case with µ = 0, σ = 1. If S ∼
GG(0, 1, λ) , then eµSσ ∼ GG(µ, σ, λ). The generalized gamma family of
distributions includes - as special cases - many common survival models (e.g.
Lawless, 2003) such as the two-parameter gamma distribution (λ = σ) with
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mean eµ and variance σ2e2µ, the Weibull distribution (λ = 1), the exponen-
tial distribution (λ = σ = 1). The limiting case λ = 0 is the lognormal
distribution.

In order to describe our proposed methods, we will use logarithmic sur-
vival times. Thus, we consider the random variable Y = log(T ) and say
that Y follows a generalized log-gamma distribution GLG(µ, σ, λ). It can be
shown that Y follows a location-scale model such that

Y = µ+ σU, (3)

where U has density

fλ(t) =

{
|λ|

Γ(λ−2)
(λ−2)λ

−2
exp

(
(λ−2)

(
λt− eλt

))
if λ 6= 0,

1√
2π

exp(− t2

2
) if λ = 0.

(4)

The distribution of U is a GLG(0, 1, λ), which we refer as the standard case.
The density of Y will be denoted by fµ,σ,λ and called a generalized log-gamma
density with location parameter µ, scale parameter σ, and shape parameter
λ. We will use the abbreviations θ = (µ, σ, λ) and fθ(t) = fµ,σ,λ(t). We have

fθ (t) =
1

σ
fλ

(
t− µ
σ

)
(5)

and, since T = exp(Y ) ∼ GG(µ, σ, λ), the cdf of Y is given by

Fθ(t) = Gµ,σ,λ(exp(t)). (6)

The generalized log-gamma family of distributions includes the normal model
(λ = 0), the log-Weibull model (λ = 1), the log-exponential model (λ = σ =
1) as well as the gamma GLM with logarithmic link.

Note. There are other equivalent parametrizations of the gamma and log-
gamma distributions (e.g. Johnson et al., 1994). The parametrization defined
by (1)-(2) and (3)-(4) is due to Prentice (1974). According to Cox et al.
(2007) this is a convenient parametrization to compute the ML estimator.
In addition, the location-scale property (3) is a basic requirement of the Qτ
estimator proposed below.

We will suppose that y1, . . . , yn are n i.i.d. observations of Y with cdf
Fθ0 , where θ0 = (µ0, σ0, λ0) and propose estimators of θ0 = (µ0, σ0, λ0).

4



We consider single censoring on the right, where the true values of y1, ..., yn
are not observed. Instead, the censored observations y∗i = min(yi, ci) (i =
1, ..., n) are observed, where c1, ..., cn are i.i.d. censoring “times”, which are
independent of the yi’s. Note that this type of non-informative censoring
also includes the case where censoring is partly due to the end of the study.
We define the censoring indicator δi = 1 if y∗i = yi and δi = 0 if y∗i = ci.
Let zi = (y∗i , δi) and Gn be the empirical distribution function based on
(z1, . . . ,zn).

2.2. Score functions and ML estimator

The ML estimator of the parameters of a GLG model under censoring
can be easily defined as follows. Let Sθ(t) = 1 − Fθ(t) = 1 − Fλ((t − µ)/σ)
denotes the survival function. Then, the negative log-likelihood function is

−
n∑
i=1

[δi log fθ(y∗i ) + (1− δi) logSθ(y∗i )] . (7)

In the absence of censoring, the score functions d = (d1, d2, d3)> are

d1(t,θ) = − ∂

∂µ
log fθ(t) =

1

σ
ξλ(u), (8)

d2(t,θ) = − ∂

∂σ
log fθ(t) =

1

σ
(ξλ(u)u+ 1) , (9)

d3(t,θ) = − ∂

∂λ
log fθ(t) = ψλ(u), (10)

where u = (t− µ)/σ,

ξλ(u) =
f ′λ (u)

fλ (u)
=

(1− eλu)
λ

,

ψλ(u) = − ∂

∂λ
log fλ(u) =

1

λ3
(2ζ(λ)− λ2 + λu− exp(λu)(2− λu)),

ζ(λ) = −2 log(λ)− Γ̇(λ−2) + 1, and Γ̇ denotes the digamma function. Let

s1(t,θ) = − ∂

∂µ
logSθ(t) = − 1

σ

fλ(u)

Sλ(u)
, (11)

s2(t,θ) = − ∂

∂σ
logSθ(t) = − 1

σ

fλ(u)u

Sλ(u)
, (12)

s3(t,θ) = − ∂

∂λ
logSθ(t) =

Ḟλ(u)

Sλ(u)
, (13)
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where Ḟλ(u) = dFλ(u)/dλ. Then, the score functions for the case with cen-
sored observations are

vk(t, δ,θ) = δdk(t,θ) + (1− δ)sk(t,θ), k = 1, 2, 3. (14)

The ML estimator of θ is given by the following system of equations

EGn(v(y, δ,θ)) =
1

n

n∑
i=1

v(y∗i , δi,θ) = 0, (15)

where v = (v1, v2, v3)> is the score function vector. It is easy to show that

−∇θ logSθ(y∗i ) = Eθ(d(y,θ)|y > y∗i ),

where ∇θ indicates differentiation w.r.t. θ. Hence, an alternative expression
for the likelihood equations is

1

n

n∑
i=1

δid(y∗i ,θ) + (1− δi)Eθ(d(y,θ)|y > y∗i ) = 0.

Following Locatelli et al. (2010), we define the semiempirical cdf of y for
a given θ as

Hn,θ(t) =
1

n

n∑
i=1

Eθ [I (y ≤ t)| y∗i , δi]

or equivalently,

Hn,θ (t) =
1

n

n∑
i=1

δiI (yi ≤ t) +
1

n

n∑
i=1

(1− δi)
[Fθ (t)− Fθ(y∗i )]

+

1− Fθ(y∗i )
. (16)

Thus, when there is no censoring, Hn,θ(t) coincides with the usual empirical
cdf. If θ̃ is a consistent estimator of θ0, then Hn,θ̃(t) is a consistent estimator
of Fθ0(t) and, for any measurable function h(t), we have limn→∞En,θ̃ [h (y)] =
Eθ0 [h (y)] a.s., where En,θ denotes expectation under Hn,θ. Finally, another
expression of the likelihood equations is

En,θ(d(y,θ)) = 0. (17)

Let M (θ) = E
(
v(y, δ,θ)v(y, δ,θ)>

)
and G(θ) = E (∇θv(y, δ,θ)) then,

the asymptotic covariance matrix of the ML estimator is

Σ(θ0) = G(θ0)−1M (θ0)G(θ0)−>.
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2.3. The trimmed Qτ estimator

Agostinelli et al. (2014) define the quantile τ (Qτ) estimator and the
weighted Qτ (WQτ) estimator for non-censored i.i.d. observations as fol-
lows. For 0 < u < 1, let Q(u,θ) denote the u-quantile of Fθ. Then,
Q(u,θ) = σQ∗(u, λ) + µ, where Q∗(u, λ) = Q(u, (0, 1, λ)). Given a sam-
ple y1, . . . , yn, let Fn denote the empirical cdf of Y . Then, y(1), . . . , y(n), the
ordered observations, are the quantiles un,j = (j−0.5)/n of Fn and should be
close to σ0Q

∗(un,j, λ0)+µ0 for j = 1, . . . , n. Consider the differences between
the empirical and the theoretical quantiles

rn,j(θ) = y(j) − µ− σQ∗(un,j, λ), j = 1, . . . , n.

The Qτ estimator is defined by

θ̃n = arg min
θ
τ(rn,1(θ), . . . , rn,n(θ)),

where τ denotes the τ scale.
The τ scale was introduced by Yohai and Zamar (1988) to define estima-

tors which combine high finite sample breakdown point with high efficiency
in the linear model with normal errors. Given a sample u = (u1, . . . , un), a
function s(u) is called a scale if: (i) s(u) ≥ 0; (ii) for any scalar γ, s(γu) =
|γ|s(u); (iii) s(u1, . . . , un) = s(|u1|, . . . , |un|); (iv) if |ui| ≤ |vi|, 1 ≤ i ≤ n,
then s(u1, . . . , un) ≤ s(v1, . . . , vn). It follows that (v) s(0, . . . , 0) = 0 and
that, (vi) given ε > 0, there exists δ such that |ui| ≤ δ for 1 ≤ i ≤ n
imply s(u1, . . . , un) < ε. Properties (i)-(vi) clearly show that s(u) can be
used as a measure of the absolute largeness of the elements of u. The most
common scale is the one based on the quadratic function and is given by

s1(u) = (
∑n

i=1 u
2
i /n)

1/2
. This scale is clearly non robust. Huber (1981) de-

fines a general class of robust scales, called M scales, as follows. Let ρ be a
function satisfying the following properties:

A1 : (i) ρ(0) = 0; (ii) ρ is even; (iii) if |t1| < |t2|, then ρ(t1) ≤ ρ(t2); (iv) ρ
is bounded; (v) ρ is continuous.

Then, an M scale s2(u) based on ρ is defined by the value s satisfying

1

n

n∑
i=1

ρ
(ui
s

)
= b, (18)
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where b is a given scalar and 0 < b < a = sup ρ. Yohai and Zamar (1988)
introduce the family of τ scales. A τ scale is based on two functions ρ1 and
ρ2 satisfying conditions A1 and such that ρ2 ≤ ρ1. One considers an M scale
s2(u) defined by (18) with ρ1 in place of ρ; then, the τ scale is given by

τ 2(u) = s2
2(u)

1

n

n∑
i=1

ρ2

(
ui

s2(u)

)
. (19)

Usually, ρ, ρ1 and ρ2 are selected in the Tukey’s bi-weight family given by

ρTc (t) = 1−max

(1−
(
t

c

)2
)3

, 1

 (20)

for convenient values of c and b (see Section 5).
The Qτ estimator in the case of randomly censored observations is ob-

tained by replacing the quantiles of the empirical distribution by the quantiles
of the Kaplan-Meier (KM) distribution corresponding to the non censored
observations. More precisely, let F̃n denote the KM estimator (Kaplan and
Meier, 1958) of Fθ0 and z(1), . . . , z(m) the ordered non censored observations.

Then, z(1), . . . , z(m) are the quantiles ũn,i = F̃n(z(i))− 0.5/n. The residuals

r̃n,i(θ) = z(i) − µ− σQ∗(ũn,i, λ), i = 1, . . . ,m

are then used to define the Qτ estimator for censored observations by

θ̃n = arg min
θ
τ(r̃n,1(θ), . . . , r̃n,m(θ)). (21)

It is known that the KM estimator distributes the mass of the censored
observations among all the observations that are on their right. Some of
these observations may be outliers and, therefore, the mass assigned to the
outliers by KM may be inflated by the observations on their left. To reduce
the influence of outliers we propose a trimmed version of the Qτ estimator
as follows. Let 0 < α < 1 be the fraction of trimming and let kα = max{h :
F̃n(z(h)) ≤ 1− α} then, the α-trimmed Qτ (α-TQτ) estimator is defined by

θ̃n = arg min
θ
τ(r̃n,1(θ), . . . , r̃n,kα(θ)). (22)

Since in all the simulations and examples reported below we will use α = 0.1,
to simplify the notation in the remaining of the paper, we will write TQτ
instead of α-TQτ .
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Finally, note that the residuals r̃n,i(θ) are heteroskedastic and, according
to Serfling (1980), their variance can be approximated by

σ̂2
i = v∗2ũn,i/f

2
λ̃
(Q∗(ũn,i, λ̃)), (23)

where v∗2ũn,i is Greenwood’s variance estimator of F̃n(z(i)) (Greenwood, 1926).
Then, as in Agostinelli et al. (2014), we might consider the weighted TQτ
(WTQτ) estimator

θ̃
w

n = arg min
θ
τ

(
r̃n,1(θ)

σ̂1

, . . . ,
r̃n,kα(θ)

σ̂kα

)
. (24)

However, our Monte Carlo experiments have shown that weighting does not
provide an important improvement and, for this reason, we are not going to
consider the WTQτ estimator further.

In Theorem 1 of the Supplementary Material we prove that, under general
conditions, the TQτ estimator θ̃n is n1/2-consistent, that is,

n1/2(θ̃n − θ0) = Op(1). (25)

As in the non censored case, one drawback of the Qτ estimators is that they
are not asymptotically normally distributed, making inference difficult. In
order to overcome this problem we introduce, in the next Section, the one
step and the two steps truncated ML estimators starting at TQτ . These
estimators have similar robustness properties as the TQτ estimator; in ad-
dition, they have asymptotic normal distribution with the same asymptotic
variance as the ML estimator under the model.

3. The truncated maximum likelihood estimators

In order to obtain a robust and highly efficient procedure for estimating
the unknown parameter vector we use the truncated maximum likelihood
(TML) estimator and the one-step TML (1TML) estimator. Both are based
on a weighted form of the likelihood equations. Suppose that y ∼ GLG(θ0)
and consider a sample (z1, . . . ,zn), zi = (y∗i , δi) (i = 1, . . . , n). Assume that
θ̃ = (µ̃, σ̃, λ̃) is an initial consistent estimator of θ0. A natural robustification
of the likelihood equations (17) can be obtained by weighting the equations.
More precisely, given a weight function w(t,θ), we consider the equations

En,θ[w(y, θ̃)d(y,θ)] = Eθ̃[w(y, θ̃)d(y, θ̃)]. (26)
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The right hand side mitigates the bias of the estimator and allows to proof
asymptotic normality. For increasing sample size its tends to zero. In the
next subsections we show how one can define the weight function.

3.1. The outlier rejection rule

We proceed as in Marazzi and Yohai (2004). Let r̃∗i = (y∗i − µ̃)/σ̃ de-
note the standardized residuals with respect to the initial model and let
lλ(t) = − log fλ(t) be the negative log-likelihood function. We consider the
negative log-likelihoods of the residuals l∗i = lλ̃(r̃

∗
i ) (i = 1, . . . , n). A large l∗i

corresponds to an observation with a small likelihood under the model and
suggests that yi is an outlier. Let Mλ be the cdf of lλ(y) and

Mn,λ̃(t) =
1

n

n∑
i=1

[δiI (l∗i ≤ t) + (1− δi)Pλ̃(lλ̃(y) ≤ t|y > y∗i )] ,

be the semi-empirical cdf of l∗1, . . . , l
∗
n for λ = λ̃. One can show that Mn,λ̃ is

a consistent estimator of Mλ0 . Let M
(ϕ)

n,λ̃
denote Mn,λ̃ truncated at ϕ, i.e.,

M
(ϕ)

n,λ̃
(t) =

{
Mn,λ̃(t)/Mnλ̃,(ϕ) if t ≤ ϕ,

1 otherwise.
(27)

We want to compare the right tail of the truncated empirical distribution
M

(ϕ)

n,λ̃
with the right tail of Mλ̃, which is the theoretical distribution when

λ = λ̃. To specify what we understand by the tail, we take a number ε close
to 0, for example ε = 0.01, as the probability of falling in the tail. Then, we
define the cutoff point ϕ∗ on the likelihood scale as the largest ϕ such that
M

(ϕ)

n,λ̃
(t) =Mλ̃(t) for all t ≥M−1

λ̃
(1− ε), i.e.,

ϕ∗ = sup{ϕ|M (ϕ)

n,λ̃
(t) =Mλ̃(t) for all t ≥M−1

λ̃
(1− ε)}.

Note that ϕ∗ is the minimum value ϕ such that the tails of M
(ϕ)

nλ̃,
(t) and Mλ̃(t)

are comparable. As in Gervini and Yohai (2002), one can prove that, if the
sample does not contain outliers, ϕ∗ →∞ a.s. as n→∞. Finally, since lλ̃(t)
is unimodal, there exist two solutions c̃L and c̃U of the equation lλ̃(t) = ϕ∗.
It is immediate that lλ̃(t) ≤ ϕ∗ is equivalent to c̃L ≤ t ≤ c̃U . The cutoff
points on the data scale are t̃L = µ̃+ σ̃c̃L and t̃U = µ̃+ σ̃c̃U .
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3.2. Weight functions

Let ω(z) be a function, such that

A2 (i) ω(t) is non-increasing; (ii) limz→−∞ ω(t) = 1; (iii) ω(z) = 0 for
z > 0.

For example, let c > 0 and consider the function

ω(t) = ρ(t, c) · I(t ≤ 0), (28)

where ρ(t, c) = ρT (t/c) is in the bi-weight family as defined in (20) and let
ϑ∗ = 1/ϕ∗. Then, define the weight function

w0(t, λ, ϑ∗) = ω (lλ(t)− 1/ϑ∗) (29)

and, for an observation yi,

w(yi,θ, ϑ
∗) = w0

(
yi − µ
σ

, λ, ϑ∗
)
. (30)

Note that if we use (28) and c→ 0, we have w(yi,θ, ϑ
∗) = 1 if yiε[t̃L, t̃U ] and

0 otherwise; this rule is usually called hard rejection.

3.3. The TML estimators

The TML estimator θ̂ = (µ̂, σ̂, λ̂) is the solution of the equations (26),
i.e.,

g(θ, θ̃, ϑ∗) = hλ̃, (31)

where

g(θ, θ̃, ϑ∗) = En,θ̃

[
w(y, θ̃, ϑ∗)d(y,θ)

]
, (32)

hλ̃ = (h1,λ̃, h2,λ̃, h3,λ̃)
> = Eλ̃[w0(u, λ̃, ϑ∗)d(u, (0, 1, λ̃)], (33)

and u ∼ f0,1,λ̃. Note that, when ϑ∗ → 0, we obtain the ML equations.
The 1TML estimator is obtained by applying one iteration of the Newton-

Raphson procedure to equations (31) and it turns out to be

θ̂1 = θ̂0 − J(θ̂0, ϑ
∗)−1(g(θ̂0, θ̂0, ϑ

∗)− hλ̂0), (34)
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where θ̂0 = θ̃, (λ̂0 = λ̃), J(θ̂0, ϑ
∗) = ∇θg(θ, θ̂0, ϑ

∗)|θ=θ̂0
is a Jacobian

matrix. Similarly, we can define a two-step TML (2TML) estimator θ̂2 by
replacing θ̂0, with θ̂1 in (34).

In Theorem 4 of the Supplementary Material we prove that, under general
conditions including n1/2(θ̃ − θ0) = Op(1), the 1TML estimator satisfies the
following asymptotic result:

√
n(θ̂1 − θ0)

L→ N(0,G(θ0)−1M (θ0)G(θ0)−>).

A similar result holds for the 2TML estimator. In the Monte Carlo simula-
tions reported in Section 5 we show that, for finite sample sizes, the 1TML
and the 2TML estimators have a reasonably robust behavior under outlier
contamination and are more efficient than the TQτ estimator (with 10%
trimming). Moreover, 2TML improves 1TML. Therefore we propose, as a
final procedure to estimate θ0, the 2TML estimator starting with the TQτ
estimator with 10% trimming. Numerical experiments show that further
steps do not provide any significant improvement.

4. The case with covariables

We now consider an AFT model for pairs of observations (xi, yi), 1 ≤ i ≤
n, where xi ∈ Rp and yi ∈ R satisfies

yi = µ0 + β>0 xi + σ0ui, i = 1, . . . , n. (35)

Usually, yi represents a duration on the logarithmic scale and xi the corre-
sponding covariable vector. The slopes β0 ∈ Rp, the intercept µ0, and the
scale σ0 are unknown parameters. The errors ui, 1 ≤ i ≤ n, are assumed to
be i.i.d. and independent of xi. Moreover, the distribution of the carriers
xi is unknown. We assume that the error density is f(0,1,λ0) according to
(5), where λ0 is an unknown shape parameter. We observe (y∗i ,xi, δi), where
y∗i = min(yi, ci), c1, . . . , cn are i.i.d. censoring times, which are independent
of the ui’s. We put δi = 1 if y∗i = yi and δi = 0 otherwise. We write
γ0 = (θ0,β0), where θ0 = (µ0, σ0, λ0).

Let γ = (θ,β) and u = (y−µ−β>x)/σ. Let d(x, y,γ) and s(x, y,γ) de-
note the (3+p)-component non-censored and censored regression score func-
tion vectors respectively. The first 3 components of d(x, y,γ) and s(x, y,γ)
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are given by the right-hand sides of (8)-(10) and (11)-(13) respectively. In
addition, for k = 1, . . . , p, we have

d3+k(x, y,γ) =
xk
σ
ξλ(u),

s3+k(x, y,γ) = −xk
σ

fλ(u)

Sλ(u)
.

Then, simple derivations shows that the ML estimator of γ is the solution of

1

n

n∑
j=1

v(xj, y
∗
j , δj,γ) = 0, (36)

where v(x, y, δ,γ) = δd(x, y,γ) + (1− δ)s(x, y,γ). A similar expression as
(17) can be obtained, where the semi-parametric cdf is defined by

Hn,γ(t, t) =
1

n

n∑
i=1

Eγ [I (y ≤ t)| y∗i ,xi, δi] I(xi ≤ t)

=
1

n

∑
δiI (yi ≤ t) I(xi ≤ t)

+
1

n

∑
(1− δi)

[Fγ(t)− Fγ(y∗i )]
+

1− Fγ(y∗i )
I(xi ≤ t).

We denote by En,γ the expectation with respect to Hn,γ .
In the next two subsections we define a robust and efficient procedure

for estimating γ. In a first step an initial highly robust but not necessarily
efficient estimator of γ0 is computed; the second step uses a highly robust
and asymptotically efficient estimator of γ0 based on a 1TML procedure.

4.1. The initial regression estimator

The initial estimator of γ0 is defined as follows:

1. Let µ̄ and β̄ be MM-estimators for censored data of µ0 and β0 as
proposed in Salibian-Barrera and Yohai (2008).

2. Let ωj = yj− β̄
>
xj and ω∗j = y∗j − β̄

>
xj = min(ωj, c

∗
j), where c∗j = cj−

β̄
>
xj. For large n, the distribution of the ωjs is close to Fθ0 for 1 ≤ j ≤

n. We therefore estimate θ0 using the observations (ω∗1, δ1), . . . , (ω∗n, δn)
by means of a TQτ estimator that will be denoted by θ̃ = (µ̃, σ̃, λ̃).
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3. The initial regression estimator of γ0 is γ̃ = (θ̃, β̄). It will be called
MM-TQτ estimator.

In Theorem 2 of the Supplementary Material we show that, under general
conditions, if β̄ is n1/2 consistent, that is if

n1/2(β̄ − β0) = Op(1), (37)

then θ̃ satisfies
n1/2(θ̃ − θ0) = Op(1). (38)

The result (37) remains still a conjecture, however Salibian-Barrera and
Yohai (2008) provide compelling arguments in favor of this conjecture (see
in particular their Theorem 6). Besides, their Monte Carlo study seems to
confirm this conjecture.

4.2. The final regression estimator

Let µ̃(x) = µ̃ + x>β̄. Then, the standardized residuals with respect to
the initial estimator are r̃∗i = (y∗i − µ̃(xi))/σ̃ and can be used to obtain the
cutoff point ϑ∗ and the weights

w(x, y, γ̃, ϑ) = w0

(
y − µ̃(x)

σ̃
, λ̃, ϑ

)
,

where w0 is given by (29). The TML regression estimator γ̂ is the solution
of the equations

g(γ, γ̃, ϑ∗) = hλ̃, (39)

where
g(γ, γ̃, ϑ∗) = En,γ̃ [w(x, y, γ̃, ϑ∗)d(x, y,γ)] ,

and hλ̃ = (h1,λ̃, h2,λ̃, h3,λ̃,h
>
4,λ̃

)>, where h1,λ̃, h2,λ̃, h3,λ̃ are defined in (33) and

h4,λ̃ =
1

n

n∑
i=1

Eλ̃

[
w0

(
u, λ̃, ϑ∗

)
ξλ̃(u)xi

]
.

The 1TML regression estimator is obtained by applying one Newton-Raphson
iteration to equations (39), i.e.,

γ̂1 = γ̃ − J(γ̃, ϑ∗)−1(g(γ̃, γ̃, ϑ∗)− hλ̃),
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where J(γ̃, ϑ∗) = ∇γg(γ, γ̃, ϑ∗)|γ=γ̃ is a Jacobian matrix. The 2TML re-
gression estimator is defined in the obvious way.

In Theorem 3 of the Supplementary Material we prove that, under general
conditions including n1/2(γ̃ − γ0) = Op(1), the 1TML regression estimator
satisfies the following asymptotic result:

√
n(γ̂1 − γ0)

L→ N(0,G(γ0)−1M(γ0)G(γ0)−>),

whereM(γ) = E
(
v(x, y, δ,γ)v(x, y, δ,γ)>

)
andG(γ) = E (∇γv(x, y, δ,γ)).

The same result can be obtained for the 2TML regression estimator.

5. Monte Carlo experiments

5.1. The case without covariables

A first set of experiments was run in the case without covariables. In
general, the results are similar to those described in Agostinelli et al. (2014)
for the non censored case and we report here only the most representative
cases. We compared the following estimators: ML, TQτ (with 10% trim-
ming), 1TML, 2TML, and the one step WL estimator (1SWL) as defined in
Section SM–3-1 of the Supplementary Material.

The TQτ estimator was defined using ρ1 and ρ2 in the Tukey’s bi-weight
family (20) with c equal to 1.548 and 6.08 respectively, and b = 0.5. The
values 1.548 and b = 0.5 have been chosen so that the regression estimator
based on the τ -scale has a finite sample breakdown point equal to 0.5. The
value 6.08 makes the asymptotic efficiency equal to 0.95 in the case of normal
errors. To compute the 1SWL estimator, we used a normal kernel with
bandwidth h = 0.3σ̃ in all experiments, where the scale estimator σ̃ is the
scale initial estimate.

To compare the global performances of the different estimators we use
the total variation distance (TVD)

TVD(θ) =
1

2

∫
|fθ(y)− fθ0(y)| dy

between a given density fθ and the true underlying density fθ0 . The perfor-
mance of the estimator θ̂ is measured by the mean value of TVD(θ̂):

MTVD(θ̂) = E(TVD(θ̂)).
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MTVD(θ̂) clearly measures the quality of the estimated density. It is esti-
mated, using the simulated values θ̂k (1 ≤ k ≤ N) of the estimator, by the
average TVD:

ATVD(θ̂) =
1

N

N∑
k=1

TVD(θ̂k).

5.1.1. Simulation under the nominal model

We studied the efficiency of the estimators under the nominal model for
n = 50, 100, 400, 1000 and λ0 = 1. Without loss of generality, we took µ0 = 0
and σ0 = 1. We considered two censoring proportions: 15% and 50%. Here,
we only report the results for the 15% proportion; the results for the 50%
proportion show a similar behavior an can be found in the Supplementary
Material. The number of replications was 1200. Figure 1 (top) reports the
ATVD of the robust estimators divided by the ATVD of the ML estimator
as a function of the sample size for λ0 = 1. This ratio can be interpreted as a
measure of relative efficiency that we call TVD efficiency. As expected, the
TVD efficiency of 1TML, 2TML and 1SWML is markedly larger than the
efficiency of the initial estimator as the sample size grows. Moreover, when
n increases the TVD efficiency becomes close to 1, that is, it becomes close
to the efficiency of the ML estimator. Similar patterns are observed in the
other simulated cases.

5.1.2. Simulation under point mass contamination

In a second Monte Carlo experiment, we compared TQτ , 1TML, 2TML
and 1SWL under point mass contamination for n = 50, 100, 400, 1000,
λ0 = 1, µ0 = 0, σ0 = 1, and two censoring proportions: 15% and 50%.
(Only the results for the 15% fraction are reported here.) We generated 90%
“good” observations yj according to the GLG model and 10% “outliers” at
the point y0. We then varied the value of y0 from −10 to 10 with a step of
0.5. This kind of point mass contamination is generally the least favorable
one and allows an evaluation of the maximal bias an estimator can incur.
For each value of y0, the number of replications was 1200. Figure 1 (bottom)
reports the ATVD of the estimated densities as a function of y0. The results
show that the ATVD of TQτ , 1TML and 2TML are comparable and very
stable over the whole range of y0 values, while 1SWL provides a very high
ATVD for positive values of y0. The ATVD of ML is not shown because it
becomes very high and does not fit in the frame.
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Figure 1: The case without covariables. Top: Estimated relative TVD efficiency versus
sample size. Bottom: Average TVD under 10% contamination, 15% censoring proportion,
and sample size n = 100.
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5.2. The case with covariables

A second set of experiments was run to investigate the behavior of the
MM-TQτ estimator defined in Section 4.1, the 1TML and 2TML estimators
defined in Section 4.2, and the one step weighted likelihood (1SWL) estimator
defined in Section SM–3-2 of the Supplementary Material.

In each experiment, n pairs of observations (xi, y
∗
i ) were generated ac-

cording to the regression model

yi = µ0 + β>0 xi + σ0ui, (40)

y∗i = min(yi, ci), (41)

ci = µc + ei, (42)

δi = 1 if y∗i = yi and 0 otherwise, (43)

with µ0 = 0, σ0 = 1, λ0 = 1, β>0 = (2, 3), xi = (xi1, xi2), where xi1 ∼ N(0, 1),
xi2 ∼ B(1, 0.4) with xi1 and xi2 independent and ei ∼ GLG(µc, 1, 1). The
parameter µc was chosen so that the censoring proportion was 15% and
50%. Only the results for the 15% proportion are reported here; the results
for the 50% proportion show a similar behavior and can be found in the
Supplementary Material.

To evaluate the performance of an estimator (θ̂, β̂) we defined the total
variation distance

TVD(θ̂, β̂,x) =
1

2

∫ ∣∣∣f(θ̂,β̂)(y|x)− f(θ0,β0)(y|x)
∣∣∣ dy,

where f(θ,β)(y|x) = fλ
(
(y − µ− β>x)/σ

)
. The mean value

MTVD(θ̂, β̂) = E[TVD(θ̂, β̂,x)],

was estimated using the simulated values (θ̂k, β̂k) and x∗k1, . . . ,x
∗
ki, . . . ,x

∗
kn

(1 ≤ k ≤ N) by

ATVD(θ̂, β̂) =
1

Nn

N∑
k=1

n∑
i=1

TVD(θ̂k, β̂k,x
∗
ki).

5.2.1. Simulation under the nominal model

We studied the efficiency of the estimators under the nominal model for
n = 50, 100, 400 and 1000. Figure 2 (top) shows the relative TVD efficiency
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of MM-TQτ , 1TML, 2TML and 1SWL with respect to ML for λ0 = 1 and
censoring proportion 15%.

The efficiency of 1TML, 2TML and 1SWL is clearly higher than the
efficiency of MM-TQτ . This is an expected result, since 1TML, 2TML and
1SWL are asymptotically fully efficient under the nominal model.

5.2.2. Simulation under point mass contamination

We also studied the behavior of the estimators under point mass con-
tamination for n = 50, 100, 400, 1000. The values of the parameters were
the same as in the case of no contamination. We generated n “good” ob-
servations (xi, y

∗
i ) according to (40)-(43). We then replaced 10% values y∗i

with a value y0 ranging from −10 to 20. For each value of y0 the number of
replications was 1200. Figure 2 (bottom) shows the ATVD of the estimators
as a function of y0 for sample size n = 100, contamination level 10%, and
censoring proportion 15%. We observe that MM-TQτ , 1TML, and 2TML
are very resistant under point mass contamination, while the 1SWL is highly
sensitive to outliers on the right tail of the distribution.

5.2.3. Empirical finite sample breakdown point

We were not able to obtain the theoretical breakdown point of the pro-
posed estimators. To fill this gap, we performed a Monte Carlo simulation to
explore the behavior of the maximum mean square error as a function of the
contamination level. This provides information about the highest contamina-
tion the proposed estimators can cope with and hence about the finite sample
breakdown point. We used the same setting as in the previous subsection,
n = 1000, λ0 = 1, and censoring proportion 15%. Several values of the con-
tamination level ε in the interval [0, 0.3] and several values y0 in the interval
[−100, 100] were considered. For each pair (ε, y0), we run 100 Monte Carlo
replications and computed the maximum MSE (MMSE) of the regression pa-
rameters (µ, β) – note that µ is the intercept–, the scale parameter (σ) and
the shape parameter (λ). Results for the regression parameters (slopes) are
reported in Figure 3; they show that the MMSE starts to increase rapidly
around the 20% level. This behavior is consistent with the MMSE of the
initial regression parameters provided by the MM non parametric estimator.

6. Illustrations with real data

In modern hospital management, stays are classified into “diagnosis re-
lated groups” (DRGs; Fetter et al. (1980)) which are designed to be as ho-
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mogeneous as possible with respect to diagnosis, treatment, and resource
consumption. The “mean cost of stay” of each DRGs is periodically esti-
mated with the help of administrative data on a national basis and used to
determine “standard prices” for hospital funding and reimbursement. Since
it is difficult to measure cost, “length of stay” (LOS) is often used as a proxy.
In designing and “refining” the groups, the relationship between LOS and
other variables which are usually available on administrative files has to be
assessed and taken into account. We discuss two examples in this domain.

6.1. Major cardiovascular interventions

In a first example, we consider a sample of 75 stays in a Swiss hospi-
tal and DRG “Major cardiovascular interventions”. Of these stays, 45 were
censored because the patients were transferred to a different hospital before
dismissal. The data – shown in Figure 4 and made available in Marazzi and
Muralti (2013) – were first analyzed in Locatelli et al. (2010) and Locatelli
and Marazzi (2013). These authors studied the relationship between LOS
and two covariables: Age of the patient (x1) and Admission type (x2 = 0
for planned admissions, x2 = 1 for emergency admissions) with the help of
the model y = α + β1x1 + β2x2 + γx1x2 + σu, where y = log(LOS) and u
is following a Gaussian model. They observed that two young patients had
exceptionally high non censored LOS and, as a consequence, the ML esti-
mator yielded an unexpected large estimate of the interaction γ. Therefore,
they proposed the use of a robust parametric procedure called “weighted
maximum likelihood” (WML/G) based on the Gaussian error model (that
performed better than log-Weibull). They compared WML/G with other
published robust procedures an found that the robust estimates of γ were
close to zero.

Here, we assume a GLG error model and consider the ML, 1TML, 2TML,
1SWL and 2SWL regression estimates reported in Table 1. The ML estimates
based on GLG were obtained with the help of the R function mle (ML/mle)
and the procedure LIFEREG of SAS (ML/LR). However, these data caused
problems to these programs: a warning message of LIFEREG put in doubt
the convergence of the algorithm and the results are unreliable; mle could
not compute three standard errors (error messages were given). For compar-
ison, Table 1 also reports the ML estimate (ML/G) and the WML estimate
(WML/G) based on the Gaussian error model given in Locatelli et al. (2010).
Some of the regression lines are reported in Figure 4.
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Table 1: Estimates of the regression model for length of stay of “Major cardiovascular
interventions”

µ 10β1 10β2 10γ σ λ
1TML 2.16 (0.11) -1.84 (8.73) 0.08 (0.02) 0.09 (0.12) 0.45 (0.08) -1.82 (0.14)
2TML 2.16 (0.11) -1.84 (8.71) 0.08 (0.02) 0.09 (0.12) 0.45 (0.08) -1.82 (0.14)
1SWL 2.16 (0.16) -1.84 (8.10) 0.08 (0.03) 0.09 (0.12) 0.45 (0.07) -1.82 (0.43)
2SWL 2.16 (0.16) -1.84 (8.12) 0.08 (0.03) 0.09 (0.12) 0.45 (0.07) -1.82 (0.43)
ML/mle 2.05 (0.16) 22.03 (2.37) 0.07 (0.03) -0.27 (—) 0.45 (—) -3.34 (—)
ML/LR 1.95 (1.10) -4.92 (9.15) 0.05 (0.02) 0.13 (0.14) 0.30 (0.08) -3.33 (1.05)
ML/G 2.93 23.42 0.11 -0.30 — —
WML/G 2.44 10.57 0.11 -0.10 — —

We first notice the good agreement among the robust estimates based on
GLG. Not surprisingly, the main differences between the robust procedures
based on GLG and those based on the Gaussian model concern the intercept
terms (µ and β1). However, the robust prediction lines based on GLG (Figure
4) seem to provide a better fit to the bulk of the data. This observation is
supported by the plots in Figure 5, where three types of distributions of the
standardized residuals are displayed: non-parametric KM, semi-parametric
(normal and GLG), and parametric (normal and GLG). Note the very large
steps of the KM functions corresponding to the two extreme non censored
observations. The reason is that KM puts the mass of several censored
residuals on these two points. The ML/G survival functions in Figure 4a
of Locatelli et al. (2010) (not reported in Figure 5) were strongly affected
by these two points. Both the WML/G and 2TML semi-parametric survival
functions behave much better: with two exceptions, the robust residuals
follow the models very well. However 2TML is better than WML/G in the
left tail. Finally, we note that the use of GLG provides a reasonable fit
for the two young patients with high non censored LOS: these observations
were outliers for the Gaussian model but not for the GLG model. The
censored observations corresponding to emergency admissions in the right
bottom corner of Figure 4 are considered outliers.

6.2. Minor bladder interventions

In a second example, we consider a sample of 48 stays for DRG “Minor
bladder interventions”. The data are shown in Figure 6. Six patients were
transferred to a different hospital before dismissal. Four young patients have
surprisingly large values of LOS. We study the relationship between LOS and
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Table 2: Estimated regression models for LOS of “Minor bladder interventions”

Method µ 10β σ λ
1TML 0.992 (0.365) 0.127 (0.056) 0.480 (0.050) 0.489 (0.170)
2TML 0.992 (0.365) 0.127 (0.056) 0.482 (0.047) 0.489 (0.172)
1SWL 0.992 (0.600) 0.130 (0.080) 0.481 (0.063) 0.490 (0.120)
2SWL 0.992 (0.606) 0.131 (0.081) 0.484 (0.064) 0.489 (0.120)
ML/mle 1.597 (0.565) -0.001 (0.070) 0.677 (0.099) -1.005 (0.483)
ML/LR 1.566 (0.556) 0.003 (0.071) 0.675 (0.097) -1.019 (0.444)
ML*/mle 0.530 (0.437) 0.168 (0.063) 0.525 (0.061) -0.081 (0.422)
ML*/LR 0.528 (0.438) 0.169 (0.063) 0.525 (0.061) -0.81 (0.420)

Age considering the model y = µ+βx+σu, where x =Age and y = log(LOS).
As in the first example, ML was computed with the help of the R function
mle and the SAS procedure LIFEREG. The ML/mle, ML/LR, 1TML, 2TML,
1SWL, and 2SWL estimates and the estimated standard errors are reported
in Table 2. For this dataset, ML/mle and ML/LR coincide. Some of the
prediction lines are drawn in Figure 6.

According to ML, log(LOS) does not seem to depend on Age (the p-value
is 0.04) and the inverse log-Weibull distribution (λ = −1) is the adequate
error model. The robust estimates are as alike as four peas in a pod and
provide a much larger slope (p-value = 0.02). Moreover – as it is expected
from these data – they suggest a positive linear relationship and a positively
asymmetric error model (the p-value for λ is 0.0024). Clearly, the outliers
(those with weights equal to zero in 2TML are marked with crosses in Figure
6) have an important leverage effect on the ML coefficients and shape param-
eter. Removing the outliers, the ML coefficients (ML*/mle and ML*/LR in
Table 2) become similar to the robust ones. In practice, this simple analysis
suggests that the possibility of splitting this particular DRG into two groups
should be further investigated.

7. Discussion

As mentioned in the introduction, the GLG model is a very flexible family
of distributions which is used to describe asymmetrically distributed data in
many real applications. In this paper, we considered estimators which are
simultaneously robust and efficient for AFT models, when the errors follow
a GLG distribution and the data may contain censored observations. The
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Figure 6: Estimated regression models for LOS of “Minor bladder interventions”. 2TML
is black and solid; 2SWL is black and dashed; ML is grey and solid; ML without outliers
is gray and dashed. Filled marks represent complete observation; empty marks represent
censored observation. Outliers according to 2TML are marked with crosses.
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estimation procedures have three main components: an initial highly robust
but not necessarily efficient estimator; the identification and removal of the
outliers (according to an adaptive procedure proposed in Marazzi and Yohai
(2004) ); a final efficient estimator based on the inliers.

We first considered the case, where no covariables are present and, in this
case, we proposed an initial estimator, called TQτ estimator, that minimizes
a τ scale of the differences between theoretical an empirical quantiles of
order smaller than (1 − α), where 0 < α < 1 is a trimming fraction. The
final estimator is a one step weighted likelihood estimator, where the weights
penalizing the outliers are derived from the initial estimator.

For the case, where covariables are present, the proposed estimators were
derived as follows. In the first step we used a regression MM-estimator as
proposed in Salibian-Barrera and Yohai (2008) to obtain initial slope esti-
mates and to compute the corresponding residuals. We then computed an
initial estimator of the GLG parameters by applying the procedure for the
no covariables case to these residuals. For the final estimator of all the pa-
rameters we used a one step truncated ML which removes the outliers and
starts with the initial estimator.

We provided asymptotic results and extensive Monte Carlo results show-
ing that the final estimators are highly efficient and maintain the same ro-
bustness level as the initial ones.

A possible extension of the proposed methods concerns the case where
the sample contains interval censored data, that is, when for some observa-
tions yi, it is only known that ai ≤ yi ≤ bi. In the absence of covariables, the
TQτ estimator can be extended by replacing the Kaplan-Meier estimator by
another estimator, which is consistent for the interval censoring case. An ex-
ample is the estimator proposed by Turnbull (1976). For the regression case,
the following changes in the definition of the initial MM-estimator would be
required: (i) replace the Kaplan-Meier estimator of the residual distribution
by another estimator which is consistent for the case of interval censoring;
(ii) compute the conditional expected values of the censored observations un-
der the condition that they belong to the censored intervals. Once the MM
residuals are computed, the error distribution should also be estimated using
a consistent estimator for interval censoring. Double censoring can also be
accommodated in a similar way by replacing Kaplan Meier with the double
censored version of Turnbull (1974).

A different problem is the case where there is a given cut point for the
response. Tobin (1958) introduced a class of regression models where errors
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have normal distribution and the responses are left censored by 0. Several
authors extended this model using different error distributions. For example
Mart́ınez-Flórez et al. (2013) replace the normal distribution by an alpha-
power family of distributions with density function φF (z, α) = αf(z)F (z)α−1,
where α > 0 and F (z) is a known distribution function with density f(z).
It seems difficult to extend the TQτ estimator to these models. The reason
is that there is not, in this case, a non-parametric procedure to estimate the
error distribution. However, robust estimators can be defined using a totally
parametric approach as in Locatelli et al. (2010).

Completing the details of these extensions requires however much further
work and may be matter of future research.

8. Supplementary Material

Supplementary Material is available. Section SM–1 provides proofs for
consistency and n1/2-consistency of the TQτ estimator; Section SM–2 pro-
vides a proof of the asymptotic normality of the 1TML estimator; Section
SM–3 extends the one step Weighted Likelihood estimator of Agostinelli et al.
(2014) to the regression case with censored observations; Section SM–4 re-
ports results of supplementary Monte Carlo experiments.

The procedures proposed in this paper are implemented in the R (R Core
Team, 2015) package robustloggamma (Agostinelli et al., 2016), version 0.5
or higher, available at CRAN.
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