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a b s t r a c t

Human behavior and physiology exhibit diurnal fluctuations. These rhythms are entrained by light and
social cues, with vast individual differences in the phase of entrainment - referred as an individual’s
chronotype - ranging in a continuum between early larks and late owls. Understanding whether
decision-making in real-life situations depends on the relation between time of the day and an
individual’s diurnal preferences has both practical and theoretical implications. However, answering this
question has remained elusive because of the difficulty of measuring precisely the quality of a decision in
real-life scenarios. Here we investigate diurnal variations in decision-making as a function of an
individual’s chronotype capitalizing on a vast repository of human decisions: online chess servers. In a
chess game, every player has to make around 40 decisions using a finite time budget and both the time
and quality of each decision can be accurately determined. We found reliable diurnal rhythms in activity
and decision-making policy. During the morning, players adopt a prevention focus policy (slower and
more accurate decisions) which is later modified to a promotion focus (faster but less accurate decisions),
without daily changes in performance.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Living organisms exhibit diurnal fluctuations driven by internal
circadian clocks, which persist (with a close to 24 h period) in the
absence of external cues (Panda, Hogenesch, & Kay, 2002). As in
other species, human circadian rhythms are synchronized by light
cycles and social cues (Roenneberg, Kumar, & Merrow, 2007;
Wittmann, Dinich, Merrow, & Roenneberg, 2006). Individual differ-
ences in entrainment phases (which are defined as the difference
between the subject’s internal phase and the external time cues),
known as ‘‘chronotypes”, determine the existence of late owls
(subjects with Late preferences), early larks (subjects with Early
preferences) and intermediate types. Chronotypes can be assessed
using standard questionnaires regarding diurnal preferences (MEQ,
Morningness–Eveningness Questionnaire (Horne & Ostberg,
1976)), or sleep habits on working and free days (MCTQ, Munich
Chronotype Questionnaire (Roenneberg, Wirz-Justice, & Merrow,
2003)). Both scores are highly correlated and also correlate tightly
with physiological phase markers (Baehr, Revelle, & Eastman,
2000; Horne & Ostberg, 1976; Kudielka, Federenko, Hellhammer,
& Wust, 2006; Zavada, Gordijn, Beersma, Daan, & Roenneberg,
2005).

Circadian variations in physiological and cognitive functions
have been demonstrated using constant routine or forced-
desynchrony protocols (Schmidt, Collette, Cajochen, & Peigneux,
2007; Wyatt, Ritz-De Cecco, Czeisler, & Dijk, 1999). However, there
is a paucity of data on how cognitive function in real life scenarios
varies throughout the day and whether this varies according to
chronotype. Theories of circadian function postulate that cognitive
performance is modulated by both circadian and homeostatic pro-
cesses (which also control the wake-sleep cycle) (Borbely, 1982;
Daan, Beersma, & Borbely, 1984; Goel, Basner, Rao, & Dinges,
2013). One factor that has been postulated to influence cognitive
function is sleep pressure. This homeostatic component accumu-
lates sleep drive constantly throughout the wake periods. It then
results in a monotonic degradation of cognitive function as a func-
tion of the progressive accumulation of time without sleep
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(Schmidt et al., 2007). However, empirical studies find that fluctu-
ations in behavior do not simply change monotonically throughout
the day. This is because sleep pressure interacts with the circadian
drive; a periodical fluctuation of physiological variables which
among other things regulate the threshold needed to trigger sleep,
but also might be able to counteract the effects of sleep pressure in
cognitive functioning (Goel et al., 2013; Schmidt et al., 2007). These
variables interact in a complex way, in fact the phase of circadian
performance (the moment of the day in which one achieves max-
imal performance) varies with the nature and complexity of cogni-
tive tasks (Goel et al., 2013). In simple tasks, performance is
normally associated with body temperature rhythms (better per-
formance when temperature is high –during the day-, worse per-
formance when temperature is low –during the night-) reflecting
an effect of a daily rhythm in arousal. Instead, higher order cogni-
tive processes exhibit daily modulations but do not systematically
reflect arousal rhythms or changes in physiological parameters
(Horne, 2012; Schmidt et al., 2007). There are several intrinsic dif-
ficulties in these studies. One is that these tasks tend to showmore
learning modulations than simple tasks. Hence, the non-stationary
nature of the task repetitions (in different days and moments of the
day) can become problematic. To overcome these difficulties, per-
formance in complex cognitive tasks is normally evaluated using
between-subject designs or is assessed only in two times of the
day in each subject, usually testing at optimal and non-optimal
time of the day (inferred by subjects’ chronotypes), showing that
participants perform better when tested at their preferred time
(synchrony effect) (Hidalgo et al., 2004; May, 1999). In laboratory
settings, the influence of sleep pressure and circadian rhythms
can be controlled independently. Instead, when cognitive function
is measured in real-life conditions, these factors are very difficult
to parse out because circadian rhythms and sleep pressure tend
to be correlated. For instance, late chronotypes tend to wake up
later and hence at night there is a difference both in that it is their
preferred time, but also that they have less sleep pressure. In addi-
tion, there are several variables such as meal times, the amount of
physical activity which interact with the circadian clock and which
vary widely and are hard to control in real life settings (Schmidt
et al., 2007).

In summary, there is substantial evidence and theoretical sup-
port for daily variations in several aspects of human performance
including very low-level tasks (such as psychomotor vigilance
task), memory tasks, complex tasks, sports (Blatter, Opwis,
Munch, Wirz-Justice, & Cajochen, 2005; Facer-Childs &
Brandstaetter, 2015; Johnson et al., 1992; May & Hasher, 1998;
Wright, Hull, & Czeisler, 2002). These changes result from a com-
plex interaction between two governing factors: sleep pressure
and circadian rhythms. However, one aspect which remains
unknown is whether decision-making changes throughout the
day. One exception is a study of judges showing that the percent-
age of favorable rulings abruptly change along the day in relation
to food breaks (Danziger, Levav, & Avnaim-Pesso, 2011).

Here we set out to investigate diurnal fluctuations in human
decision-making, capitalizing on online rapid chess servers. Indeed,
these public repositories offer a huge amount of data of human
decision-making in natural conditions and without the problems
associated to the repeated testing (a main problem when evaluat-
ing diurnal profiles in higher order functioning).

Chess has been widely used in psychology and cognitive neuro-
science as a model for studying complex human thinking and
decision-making in a controlled but natural way (Charness, 1992;
Connors, Burns, & Campitelli, 2011; de Groot, 1978; F. Gobet & H.
A. Simon, 1996; Leone, Petroni, Fernandez Slezak, & Sigman,
2012; Sigman, Etchemendy, Slezak, & Cecchi, 2010; Slezak &
Sigman, 2012). Chess is a voluntary activity, players choose when
to play and when to stop, and they have to make around 40 moves
or decisions by game on a finite time budget. One of the main
advantages of chess, compared to other decision-making domains,
is that the quality of a player can be accurately determined through
a rating system (Elo, 1978). Finally, a fundamental advantage of
this setup is that a measure of the outcome of each decision can
be determined accurately (Sigman et al., 2010).

Hence, analyses of chess playing allow us to precisely deter-
mine diurnal fluctuations not only in activity but also in the speed
and accuracy of the decision-making process and how these fluctu-
ations interact with individual chronotypes.

Based on previous evidence about diurnal fluctuations which
we described above, we expect that individual diurnal preferences
or chronotypes determine the daily changes in chess playing, with
individuals being more active and effective in their optimal time
(when time of day is in synchrony with their preferred time). In
particular, we hypothesized that players would exhibit circadian
fluctuations in speed and accuracy of the decisions revealing diur-
nal variations which depend on specific chronotypes. These may
lead to two alternative hypotheses which here we seek to investi-
gate: (H1) the entire efficiency of the decision-making system,
revealed in more accurate and faster decisions varies with time
of day according to chronotypes, or (H2) alternatively, circadian
fluctuations affect regulatory aspects of decision-making such as
the speed/accuracy trade-off (SAT). Hypothesis 1 seems plausible
from current knowledge of circadian modulations of behavior
reviewed above, revealing changes in performance. Instead, from
a neurophysiological perspective, it is more natural to postulate
that circadian modulation should affect and govern the SAT. This
is because changing the SAT simply requires to change baseline
neural activity in decision-related areas, with higher baseline
responses when speed is given precedence over accuracy
(Forstmann et al., 2008; Ivanoff, Branning, & Marois, 2008;
Shadlen & Newsome, 2001). Circadian rhythms regulate the con-
centration of several hormones, including steroids and other mole-
cules which in turn control basal levels of neural activity.
Specifically, the decision threshold is mainly set by a circuit in
the basal ganglia (Lo &Wang, 2006) and the basal ganglia is a brain
region whose activity is modulated by circadian rhythms (Bussi,
Levin, Golombek, & Agostino, 2014; Mendoza & Challet, 2014).
Moreover, the SAT is related to stress (Rastegary & Landy, 1993)
and the concentration of cortisol (which is a hormone which
indexes stress) varies with a circadian rhythm (Krieger, Allen,
Rizzo, & Krieger, 1971).

In addition, as described above, homeostatic daily fluctuations
interact with circadian rhythms which are idiosyncratic for each
individual. Hence, we expect that daily fluctuations should interact
with an individual’s diurnal preference. As described above this
interaction is highly complex but overall we expect (based on
the studies reviewed here) that the efficacy of decision-making
should increase during the preferred time. Last, reflecting the inter-
action between homeostatic sleep pressure and circadian rhythms,
the differences in phase between chronotypes should be smaller
when testing time is referred relative to the phase of individuals’
wake-sleep cycle.

We tested these hypotheses with international open-access
databases of chess players playing games of different time budgets,
which allowed us to evaluate the robustness of diurnal variations
in rapid and slow decision-making scenarios.
2. Methods

2.1. Data acquisition

All games were downloaded from FICS (Free Internet Chess Ser-
ver, http://www.freechess.org/), a free ICS-compatible server for
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playing Internet chess games, with more than 400.000 registered
users. This constitutes a quite unique experimental setup provid-
ing data from thousands of millions of decisions. Registered users
may be human or computers and all have a rating (Glicko rating,
http://www.glicko.net/glicko.html) that indicates the chess skill
strength of the player, represented by a number ranging typically
between 1000 and 3000 points. User ratings are updated depend-
ing on the result of every game played: when users win a game,
their rating increases accordingly to the ratio between their oppo-
nent’s rating and their own rating (i.e., if a player wins a game
against a player ranked higher, his/her rating will increase more
as compared to beating a player with a similar or lower rating).

Chess games could be played using different time controls and
long thinking times are generally associated with a higher quality
of play (A. Gobet & H. A. Simon, 1996; Chabris & Hearst, 2003;
Jeremic, Vukmirovic, & Radojicic, 2010). In this work, we used
games from three different time budgets: 180 s, 300 s, 900 s. On
each time budget, each player has a total time to be used in the
whole game. We performed global analyses using games from
180 s, 300 s and 900 s time budgets. As in our previous work
(Leone, Fernandez Slezak, Cecchi, & Sigman, 2014; Sigman et al.,
2010), we focused our discussion in 180 s games because: 1-
rapid processes (related with pattern recognition) are good indica-
tors of chess expertise (Burns, 2004), and 2-the FICS database for
180 s games has more games than for longer time budgets.

One concern with rapid chess is that it can lead to situations of
extreme time pressure where a player has to make many moves in
a few seconds. To avoid this very particular situation, for all anal-
yses, we only considered moves where the available time was
higher than 60 s. We also excluded the first 30 s of the game, in
the opening stage, where many players play from memory.

We contacted FICS players with more than 2000 games with a
total time budget of 180 s per game, played from November
2008 to June 2015. We asked them their Time Zone and their
age, and to fill the Morningness-Eveningness Questionnaire
(MEQ) (Horne & Ostberg, 1976) using a website (http://chess-time-
zone.dc.uba.ar/timezone/). We only asked for the FICS username,
which hides the real name. Absolute confidentiality and anonymity
were strictly ensured. For 180 s, our sample included 94 subjects
(with more than 2500 games) (age: 19–66 yr, only one player did
not share his/her age), who completed both their Time Zone infor-
mation and their MEQ questionnaire. 30% of the players live/play
within GMT +1 (Central European Time Zone). The Time Zone
information was necessary to correct the FICS time-stamp (Pacific
Time, GMT �8) to the real time of each subject. If the total number
of games of a player was higher than 20,000, we randomly selected
20,000 games (this was the case for 40 of the players). We also
obtained a sample of players of 300 s games (n = 55, where 50 were
members of the 180 s sample) with more than 500 and a maximum
of 10,000 games (if players had more than 10,000, we randomly
selected 10,000) and sample of players of 900 s games (n = 35,
where all were members of 300 s sample) with more than 300
games (and a maximum of 10,000). 24 players were members of
the three samples (some players only play a single kind of total
time budget games). The number of games per player for each time
budget and the number of subjects reflected the fact that FICS users
play many more games of short time budgets (180 s).

Computers were excluded from all analyses, with the only
exception of a specific control where we analyzed the 180 s games
of 14 computers who play regularly in FICS, since computers are
not expected to have diurnal fluctuations in the decision process.

We asked players to complete a short questionnaire about diur-
nal routines, including questions about sleep and meal habits in
both working and weekend days, including the wake up times. A
subset of the player sample (n = 30) completed the questionnaire
and using this information we obtained a Mean Wake up time
for each player ((5 ⁄Wake up time in working days + 2 ⁄Wake
up time in free days)/7). Then, we represented variations relative
to Time since awakening, considering the time of day where each
player wakes up (on average, as we explained in the previous para-
graph) as time zero.

2.2. MEQ questionnaire distribution

The Morningness-Eveningness questionnaire (MEQ) is com-
posed of 19 questions and results in a score (MEQ score) of 16–
86 points: low scores indicate evening or late preferences, and high
scores indicate morning or early preferences. According to Horne
and Ostberg, late types are those subjects with a MEQ score lower
than 42 and early types, those with MEQ score higher than 58
(Horne & Ostberg, 1976). Using these limits, our sample included
33.3% of late types, 9.1% of early types and 57.6% of intermediate
chronotypes. However, these limits were established for a young
American sample and there are evidences showing than the limits
should be established depending on culture (Caci et al., 2005) and
age range (Adan, Caci, & Prat, 2005). In order to avoid the effect of
cultural differences and age range, and comparing three groups
with a similar number of subjects on each subsample (180 s,
300 s, 900 s), we split the distribution of MEQ scores into tertiles.
For our 180 s sample, the MEQ score limits of each tertile were
41 and 51.54: the late group has a mean MEQ score of 33.59
(n = 32), the intermediate 46.1 (n = 30) and the early group 58
(n = 32).

2.3. Activity daily patterns

Every human player voluntarily chooses when to play chess
online. FICS database is public: everyone has access to all these
time-stamped public games. All games were first associated to an
hour (i.e., divided into 1 h bins) and to a day of the week. Then,
we converted GMT �8 daytimes to each user real time, using indi-
viduals’ Time Zones. For each subject, the daily activity fraction
was calculated on each time bin (1 h) dividing the number of
games within the window by the total number of games. The num-
ber of games played on every hour of the day (after Time Zone cor-
rection and referred to total number of games) defines the activity
pattern of each subject. To compare activity levels in different Day
shifts (8–13 h, 15–20 h and 22–3 h), we added the corresponding
activity fractions.

2.4. Decision variables

The degree of proficiency of a FICS chess player is documented
in the website and changes according to game results. Each regis-
tered user has an associated rating that indicates their chess level,
represented by a number between 1000 and 3000 points (calcu-
lated using Glicko rating system (Glickman, 1999)). Individual rat-
ing is updated after each game and depends on the game result, the
opponent’s strength and the rating deviations of both competitors
(which indicate how frequently each player competes, http://
www.glicko.net/glicko/glicko.pdf). In our case, users play fre-
quently (2500–20,000 games for 180 s time budget) and they
should have a low and stable rating deviation. The rating of a
player shows fluctuations and one of our main aims was to identify
whether these fluctuations were locked to circadian rhythmicity.
To this aim, the rating mean was calculated on each 1-h bin for
each subject and then normalized to their daily mean.

Another possibility to investigate quality in single moves is to
determine the change in the value (dValue) of the position (see
(Sigman et al., 2010). Briefly, we analyzed the moves and calcu-
lated the score of each position using Stockfish, an open source
chess engine with a predefined depth of 12 plies (each ply is a
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movement from one player). Using these scores, we obtained a
dValue for each movement (Sigman et al., 2010), which is calcu-
lated subtracting the values of successive position scores. In bad
moves (errors or blunders), the score of the positions decreases
substantially and hence the dValue is indicative of the magnitude
of errors (when a player lose a Bishop, the dValue is smaller than
it the player lose a Rook). dValue has in general negative values,
but we multiplied the original values by –1 and then higher posi-
tive values indicate worse errors. Moreover, we replaced dValues
higher than 10 by dValue = 10 (because when a player missed a
check mate, dValue is 999, and 9 represented the lost of a Queen).
However, this measure is extremely variable and shows very weak
effect sizes even when integrated across the entire day activity
(Slezak & Sigman, 2012). This broad variability is due to the fact
that a very simple and naive error such as blundering a piece
directly, or a very sophisticated error due maybe to missing a com-
plex variation which ends in losing a piece after 6 movements, is
equally weighted by this measure. Then, we defined errors or blun-
ders as those moves with a dValue higher than 1 (which is equiv-
alent to the loss of a pawn). This threshold (dValue = 1) could
appear strict but after this type of error a chess engine and a Grand
Master of chess will qualified the position as clear advantage for
the opponent.

Each chess movement is associated with a Move Decision time,
which is the time elapsed between the last opponent movement
and the player’s own move. We use the more succinct term ‘‘Deci-
sion Time” from now on to refer to ‘‘Move Decision Time”. Base 10
logarithm of mean Decision time (log(Decision time)) was calcu-
lated on each game and then these values were averaged on 1-h
bins for each subject and then normalized to the subject’s daily
mean. Decision time Variability (standard deviation of the decision
times) was computed on each game; these values were averaged
on 1-h bins for each subject and then normalized to the subject’s
daily mean.

Rating is a measure of performance which integrates the win-
ning rate over a series of games; although it is affected by the
use of the time (a player could lose a game not only because of
playing bad, but also because of a bad time usage).

For all analyses, we only used the fraction of each game where
players are not guided by opening theory and they are not highly
affected by time pressure. For 180 s games, we averaged previously
described decision-associated variables over the part of the game
where players had more than 60 s and less than 150 s of remaining
time (usually the middle game). For 300 s games, we did the same
with those moves made with more than 90 s and less than 255 s.
For 900 s games, we selected moves made between 120 s and
780 s.

2.5. Time and weekdays intervals

To calculate correlations between daytime/nighttime activity
differences and MEQ score, we considered daytime, from 8 to
13 h and from 15 to 20 h, and nighttime from 22 to 8 h. For each
player, we added the corresponding 1-h bin values on each Day
shift, and then we calculated the difference (daytime – nighttime).
To show daily variations in activity along the day, we used three
time shifts: Morning (8–13 h), Afternoon (15–20 h) and Night
(22–3 h).

Monday to Friday were considered ‘‘working days” and Satur-
day and Sunday, ‘‘weekend days”. Working days/weekend days
activity differences were calculated for three different shifts (see
above). We normalized the data of each subject dividing each 1-h
time bin activity on the average working or weekend day by the
average total activity (i.e., total activity divided by 7), obtaining a
fraction of activity which allowed us to compare activity levels
between working and weekend days. To compare activity levels
during daytime and nighttime, we added the activity fractions of
the respective time bins.

For other variables, we used only two Day shifts: Morning (8–
13 h) and evening (17–22 h), where there was no main effect of
time in activity, and we averaged the corresponding 1-h bin values
on each Day shift.
2.6. Statistics

We investigated changes in decision variables and activity as a
function of MEQ score using two different procedures: (a) Group
analysis where we divided our sample in three groups using
MEQ score tertiles (see above). Since the MEQ score distribution
did not show modes and was close to Gaussian, we followed this
analysis with a continuous linear regression where we accounted
for the full variability of MEQ score.

Global analyses were conducted using Repeated Measures ANO-
VAs with Age as a covariate; Time Budget (180 s, 300 s, 900 s) and
MEQ score group (or Chronotype: Late, Intermediate and Early) as
between subjects factors; and Day Shift (Morning, Afternoon and
Night –for Activity- or 8–13 h–17–22 h, for other variables) as
the within-subjects factor.

MEQ score and daily differences associations were tested using
Pearson correlation analysis (for all variables). A 2 � 2 Repeated
measures Two Way ANOVA was used to test the effect of the main
factors ‘‘Working hours/Night” and ‘‘Working/Weekend days”, for
activity. All data is represented as mean ± SEM.

All analyses were made with normalized data (using the total
activity of each subject to calculate activity fractions and the daily
mean of each subject for the other variables). This is important to
state because it eliminated main differences between Time bud-
gets and possible Age differences. For example: Decision time is
longer in 900 s games compared with 180 s games, but we elimi-
nated these differences with our normalizations to study diurnal
fluctuations and their interactions with other factors. Power anal-
yses of Observed and simulated data are included in Supplemen-
tary Table 1.
3. Results

Here we studied diurnal changes in activity, performance and
decision-making properties from online chess games. All partici-
pants stated their Time Zone and completed the Chronotype ques-
tionnaire (Horne & Ostberg, 1976), which allow us to obtain their
Morningness-Eveningness Questionnaire (MEQ) score. Demo-
graphic data is presented in Supplementary Fig. 1. As it was previ-
ously reported, MEQ score increases significantly with age
(Pearson correlation, r(98) = 0.3294, p = 0.0009) (Supplementary
Fig. 1D) (Iwasaki et al., 2013; Paine, Gander, & Travier, 2006;
Taillard, Philip, & Bioulac, 1999).
3.1. Activity daily pattern

First, we determined whether chess-playing activity oscillates
along the day and if the distribution of activity depends on the
players’ diurnal preferences.

We analyzed the Activity levels changes as a function of Day
shift (within factor, with three levels: 8–13 h, 15–20 h and 22–
3 h), MEQ group (between factor, with three levels: Late, Interme-
diate, Early), Time budget (between factor, three levels: 180 s,
300 s and 900 s) and Age (covariate). We found a significant inter-
action of Day shift with MEQ score (Repeated Measures ANOVA, F
(4,346) = 18.50, p < 0.0001). However, interactions of Day shift
with Age and Time budget were not significant. Power analyses
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for Activity and other variables are included in Supplementary
Table 1.

These results indicate that the interaction between Day shift
and MEQ group (chronotypes) modulates Activity changes. Then,
we studied the nature of the interaction between Day shift and
MEQ group in 180 s games1.

The global pattern of Activity exhibited diurnal fluctuations,
with high levels during the afternoon and low levels at night
(Fig. 1A). However, some players experienced their peak of Activity
at night and others during the morning hours. Day-night Activity
difference significantly correlated with MEQ score (r(94) = 0.54,
p < 0.0001). This indicates that Early types had more daytime
Activity and, conversely, Late types more nocturnal Activity
(Fig. 1B). In addition, Activity bursts start earlier according to the
MEQ score: Late types exhibited a delayed onset as compared to
the Early types (Fig. 1E). Daily patterns of Activity for different
MEQ groups showed the same result (Fig. 1C). Post hoc Sidak’s
multiple comparisons test showed that all players are significantly
more active in the afternoon than during the morning. However,
Late players are significantly more active during the night than
during the afternoon (significantly higher than night Activity of
Early types (Fig. 1D)). We observed similar differences in Activity
daily patterns in longer games (300 s and 900 s), showing that
players do not choose their playing Time budget in a different
way along the day (Supplementary Fig. 2).

3.2. Activity in working and weekend days

Previous studies have shown that most people sleep more hours
and sleep later at the weekend (Roenneberg, Allebrandt, Merrow, &
Vetter, 2012; Roenneberg et al., 2004). We reasoned that the
amount of play may also show variations during the week, reveal-
ing that this spontaneous leisure activity is limited by work sched-
ule. Specifically, we hypothesized that (1) people will distribute
their activity differently along the week: they will play much more
during the daytime (working hours) at the weekend than during
the working days, and (2) the time of playing at the weekend will
be more determined by an individual’s chronotype than during the
week.

Diurnal patterns of 180 s games Activity (Fig. 2A) revealed dif-
ferences in the number of games: people play more games during
daytime, independently of the day of week (Repeated Measures
Two Way ANOVA with Working/Weekend days and Daytime/
Nighttime as main factors yielded only a significant main effect
of Day shift (F(1,93) = 5.93, p = 0.017) (Fig. 2A, inset)). These
results indicate that people play more games during daytime, inde-
pendently of the Day of the week. Then, and opposite to our first
hypothesis, we found no differences on the levels of daytime Activ-
ity between weekend and working days.

To test hypothesis 2, we analyzed the association between the
MEQ score (index of Eveningness or Morningness) and the differ-
ence between working-weekend day Activity in three day shifts:
morning (from 8:00 to 13:00 h), afternoon (15:00–20:00 h) and
night (22:00–03:00 h). We found a significant association between
morning Activity (Fig. 2B) during the weekend and MEQ score:
high morning Activity during the weekend is associated with high
MEQ scores (Early type) (r(94) = �0.28, p = 0.0066). Weekend
afternoon Activity was higher for low MEQ scores (Late type), but
the correlation did not reach significance level (r(94) = 0.18,
p = 0.082). At night, we found no association between working-
weekend Activity differences and MEQ scores (r(94) = �0.057,
1 We selected 180 s games to represent the global results and to study the
interaction between Day shift and MEQ score. 180 s games were chosen because the
number of subjects (and games per subject) is higher than in other Time budgets. This
occurred for all variables.
p = 0.59). Taken together, these results indicate that players play
more games during what would be normal working hours or day-
time, independently of the day of the week. At the weekend, Early
types are more active in the morning and Late types in the after-
noon. The frequency of night playing was not affected, which could
be expected since the majority of players can play during the eve-
ning even during the working days.

3.3. Diurnal oscillations in decision-making policies: Decision time

First, we investigated whether decision time changes during the
day and according to chronotypes. Here we concentrate on two
estimators of time usage: logarithm of Decision time (log(Decision
time)) and Decision time Variability (standard deviation). The first
one provides an estimate of the center which may be more ade-
quate than the mean given the non-Gaussian and long right-tail
distribution of the data (Fig. 3A and B). However, in chess games,
some decisions are made very rapidly and others require long
deliberation. Hence, Decision time Variability may provide an even
more sensitive estimator of changes in time policy. As both vari-
ables were highly correlated (Fig. 3C), we continued the analyses
for log(Decision time).

We globally tested the effect of Age (covariate), MEQ group
(Late, Intermediate, Early) and Time budget (180 s, 300 s and
900 s) on the log(Decision time) daily changes (8–13 h and 17–
22 h). This analysis yielded a main effect of Day shift (Repeated
Measures ANOVA, F(1,170) = 7.73, p = 0.006) and a significant
interaction between Day shift and MEQ group (Repeated Measures
ANOVA, F(2,170) = 4.91, p = 0.0085). Neither Age or Time budget
affected daily fluctuations on log(Decision time). These results
show that Decision time changes with time of the day and that
Chronotype modulates these diurnal fluctuations. Then, we studied
the nature of the interaction between Day shift and MEQ group in
180 s games.

Decision time is longer during 8–13 h shift for all MEQ score
groups (Fig. 3D) and MEQ score modulates differences between
Day shifts (Fig. 3E). Fig. 3F shows that Decision time is longer dur-
ing the morning for all chronotypes (compared to the evening), and
Chronotype modulates the amplitude of daily differences. Similar
results were observed for Decision time Variability (Supplemen-
tary Fig. 3) and in other Time budgets (Supplementary Fig. 4).

As we were specifically interested in diurnal changes (within
subjects) and not in the magnitude of Decision time, our data
was mean-normalized before the analyses. Hence, our analyses
could inform whether Age had an effect on diurnal differences,
but not whether Age affected the overall decision time. However,
non-normalized data exhibited significant and negative correla-
tions between Age and Decision time for the three Time budgets
(180 s games: r = �0.28, p = 0.0066; 300 s: r = �0.34, p = 0.012;
900 s: r = �0.30, p = 0.08), i.e. older participants played faster.

As conclusion, we observed a consistent diurnal fluctuation in
Decision time which is modulated by chronotypes. The pattern
observed is that players use more time (with higher variability)
during the morning, and less time (and lower variability) during
the evening. This effect has higher amplitude in Early types than
in Late types.

3.4. Diurnal oscillations in decision-making policies: Accuracy

Next, we investigated circadian variations in accuracy. To this
aim, we concentrated on two variables: dValue and Error rate.
The first one is a continuous measure (between 0 and 10) of the
quality of decisions: higher dValue indicates lower accuracy. Error
rate represents the blunder rate, with a threshold previously
defined where a decision is considered to be an error if dValue is
higher than 1 (which is equivalent to the lost of a pawn). Because



Fig. 1. Chess activity oscillates along the day. (A) Activity fluctuates with time. After Time Zone correction, Activity was normalized for each subject (total daily activity = 1).
Between-subjects mean (±SEM) shows diurnal variations in the number of games played along the day (Time budget = 180 s, n = 94). Light gray lines show diurnal oscillations
of individual subjects. The horizontal line indicates the 2% Activity threshold. (B) Day-night Activity differences significantly correlate with MEQ score: Late types (low MEQ
score) show more negative values than Early types (i.e., daytime activity is lower than nighttime activity for Late types). (C) Daily patterns of Activity. Early types start to be
active consistently earlier than Late types. (D) Activity depends on the interaction between Day shift and Chronotypes (MEQ score groups). Horizontal lines show significant
(p < 0.05) differences between groups. (E) Grayscale-coded normalized Activity is plotted along the day for each subject (sorted by their MEQ scores, y-axis). Subjects with
low MEQ scores (Late types) exhibited higher nocturnal Activity than subjects with high MEQ scores (Early types). Activity fractions were calculated on each subject based on
the total number of games (M = 13300, SD = 6112, range 2500–20,000).
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dValue and Error rate are highly correlated (r = 0.8, p < 0.0001), we
analyzed only Error rate as our measure of accuracy2.

We tested the effect of Age (covariate), MEQ group (Late, Inter-
mediate, Early) and Time budget (180 s, 300 s and 900 s) on the
Error rate daily changes (8–13 h and 17–22 h). This global analysis
yielded a main effect of Day shift (Repeated Measures, ANOVA, F
2 We chose Error rate because dValue indexes the magnitude of errors and it has a
long tail distribution (losing a small piece, a Rook or the Queen have very differen
dValues -approximately 3, 5 and 9, respectively-, but all these moves are errors tha
give decisive advantage to the opponent).
t
t

(1,170) = 4.94, p = 0.028), without significant interactions with any
factor. These results showed that Accuracy was affected by Day
shift without modulation of MEQ score groups, Age or Time bud-
get. Fig. 4 shows the results for 180 s games.

Error rate is higher during 8–13 h shift, without MEQ score
modulations (Fig. 4A–C). Similar results were obtained for other
Time budgets (Supplementary Fig. 5).

As we were specifically interested in diurnal changes (within
subjects) and not in the magnitude of Error rate, our data was
mean-normalized before the analyses. Hence, our analyses indicate
whether Age had an effect on diurnal differences, but not if Age



Fig. 2. Chess playing activity exhibits differences between working and weekend days. (A) Working days and weekend Activity patterns reveal similar average patterns with
slight differences (Time budget = 180 s). Inset: daytime Activity is significantly higher for both working and weekend days, without differences between them. (B and C)
During the weekend, subjects play more according to their chronotype. In the morning (8–13 h), we found an inverse correlation between Activity difference (working –
weekend days) and MEQ score (r(94) = �0.28, p = 0.0066) (B), showing that the Activity for those player with high MEQ score (Early chronotypes) is higher in the 8–13 h shift
of weekend than in working days. During the afternoon (15–20 h), we found a tendency towards a direct correlation between Activity difference and MEQ score (r(94) = 0.18,
p = 0.082), with subjects with low MEQ score playing more games during this Day shift in weekend days than in working days (C). During the night (22–3 h), the correlation
was non-significant (r(94) = �0.057, p = 0.59).
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affected the overall Error rate. However, non-normalized data
showed a significant correlation between Age and Error rate for
the three Time budgets (180 s games: r = 0.34, p = 0.0007; 300 s:
r = 0.50, p = 0.0001; 900 s: r = 0.48, p = 0.0032), i.e. older partici-
pant played less accurately.

Accuracy results showed that people make fewer errors during
the morning, and they make more errors during the evening. Daily
changes in accuracy did not depend on circadian preferences.

3.5. Diurnal oscillations in performance

To investigate if performance oscillates along the day, we ana-
lyzed fluctuations in players’ rating.

We evaluated the effects of Age (covariate), MEQ group (Late,
Intermediate, Early) and Time budget (180 s, 300 s and 900 s) on
Performance daily changes (8–13 h and 17–22 h). This global anal-
ysis (Repeated Measures ANOVA) did not reveal any significant
effect, suggesting that performance does not change with Day shift
neither with its interaction with MEQ score.

In addition, we performed two controls to assure that the daily
fluctuations we found in Accuracy and Decision time are indeed
related to changes in individuals’ decision-making properties and
not in other factors. First, we evaluated whether the pool of players
was the same at different hours, because it is possible that the rat-
ings at different times of the day are not calibrated. To test this, we
measured the daily fluctuations of rating in computers playing on
the server. Computers play with a fixed algorithm and hence their
rating is not supposed to show daily fluctuations, unless the aver-
age strength of (human) opponents systematically vary across the
day. For instance, a computer would have a higher rating if there is
a moment of the day in which the average quality of players is
worse, because computers will win more often (on average). Our
analysis showed no fluctuations in rating along the day on the
computers group (One Way ANOVA yielded a non-significant main
effect for Day shifts), thus discarding this possibility.

A second confound could be that players choose their oppo-
nents differently at different moments of the day, which could also
explain daily differences in decision-making processes. However,
MEQ score did not correlate with the Opponent Rating difference
between 8–13 h and 17–22 h (r(94) = �0.068, p = 0.52) and a
Repeated Measures Two Way ANOVA discarded this possibility.
Thus, opponent rating is the same throughout the day and it is
independent of the MEQ score (Repeated Measures Two Way
ANOVA, non-significant main effects for Daytime, F(1,88) = 0.64,
MEQ score group F(2,88) = 0.08; no significant interaction F(2,
88) = 1.22).

In summary, neither performance (as determined by rating) nor
the choice/the distribution of opponents change along the day. A
related but different concern could be diurnal preferences of oppo-
nents: if they are in their best time of day or if they are not. Our
data does not allow us to study this possibility and then we could
neither affirm nor discard that Early/Late types are playing only
with Early/Late types, respectively (we did not have enough games
played between two chronotyped users). However, since FICS users
are not in the same Time Zone, opponents do not necessarily tend
to have the same chronotype.



Fig. 4. Error rate oscillates along the day, without effect of chronotype. (A) Error rate fluctuates along the day for all chronotypes for 180 s games. (B) Error rate difference
between 8–13 h and 17–22 h shifts does not correlate with MEQ score in 180 s games. (C) Error rate is lower during the 8–13 h shift, without a significant interaction with
Chronotypes. The highest amplitude and significant difference in Error rate was obtained for Early types. All data are mean normalized (non-normalized Error rate:
M = 0.2133, SD = 0.038).

Fig. 3. Decision time exhibits daily fluctuations which are modulated by chronotypes. (A) The time used to make a movement (Decision time) on each Time budget (180 s,
300 s, 900 s) exhibits a non-Gaussian and long-right tail distribution. (B) Log(Decision time) transformation was calculated to obtain a better center-measure of Decision time.
(C) Decision time and Decision time Variability highly correlated. (D) Log(Decision time) fluctuates along the day for all chronotypes in 180 s games. (E) Log(Decision time)
differences between 8 and 13 h and 17–22 h shifts do not significantly correlate with MEQ score in 180 s games. (F) Log(Decision time) of 180 s games is significantly higher
during the 8–13 h shift for all MEQ score groups and the amplitude of the difference is modulated by chronotypes. All data are mean-normalized.
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3.6. Influences of sleep phase and/or Sleep pressure in our daily
fluctuations

We previously evaluated Activity, Decision time, Accuracy and
Performance as a function of time of the day. These diurnal fluctu-
ations might be explained by the interaction between sleep pres-
sure and circadian rhythms. In this case, our results are not
compatible with an effect only determined by sleep pressure, since
this should reflect a monotonically changing signal with different
starting points for each chronotype (because they presumably have
a different wake-up time). However, these results cannot factor out
the effects of homeostatic sleep pressure and circadian rhythms
and their interaction.
Circadian preferences and sleep pressure are naturally corre-
lated since Late types wake up later and hence in the evening they
are at their preferred time but also have accumulated less sleep
pressure. The relation between these two variables is set by the
wake-sleep cycle. Our observation that Activity and Decision time
robustly depended on chronotype preferences may result as a con-
sequence of circadian synchrony, sleep pressure, or both. It is diffi-
cult to disentangle these contributions in real-life measures
because they are intrinsically correlated, in fact, in our sample
wake-up time correlated with MEQ score (Supplementary
Fig. 6A) and is significantly affected by MEQ score groups (Supple-
mentary Fig. 6B). Nevertheless, we sought to determine which of
these variables plays a greater role. To this aim, we measured



Fig. 5. Activity is modulated by both ‘‘Time since awakening” and its interaction with chronotype. (A) Activity changes with Time since awakening: all players increase their
Activity according to the increase on Time since awakening, but chronotype modulates the amount of hours needed to reach the peak of Activity. (B) Activity levels
significantly change according to ‘‘Time since awakening” and MEQ score group modulates the amplitude of the differences between 0–5 h and 13–18 h (Time since
awakening) (Repeated Measures Two Way ANOVA, main effect of time F(1,26) = 18.91, p = 0.0002), interaction between Time and MEQ score group F(2,26) = 4.39, p = 0.023).
All data is mean-normalized.

Fig. 6. Decision time is modulated by Time since awakening, without effects of chronotypes. (A) Log(Decision time) decreases with Time since awakening, without effects of
chronotypes. (B) Decision time is longer during the first hours (Repeated Measures Two Way ANOVA, main effect of Time F(1,26) = 16.28, p = 0.0005). All data is mean-
normalized.
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Activity and Decision time as a function of ‘‘Time since awakening”.
If the MEQ score modulation we found previously on diurnal vari-
ations were due only to wake-up time differences between chrono-
types, now we would find a main effect of Time since awakening,
without MEQ score group modulation. However, if other intrinsic
factors which characterized chronotypes were involved, chrono-
type modulation would be maintained.

Our results showed that Activity depended on Time since awak-
ening, with Chronotypes modulating the phase of Activity changes
(Fig. 5). Instead, modulations in Log(Decision time) (and also Deci-
sion time Variability) by chronotype preferences were fully
accounted by wake-up time. Decision time is longer (Fig. 6) and
more variable (Supplementary Fig. 7) during the first hours since
time of waking up, and chronotypes do not affect these differences.
4. Discussion

Our results show that chess playing activity exhibited robust
diurnal rhythms which interact with Chronotype (Early, Late) such
that larks play more games in the morning and owls in the evening.
There are mixed effects of diurnal rhythms on decision-making
properties and there are not diurnal fluctuations in performance.
Decision time varied robustly during the day, with subjects taking
more time for each decision during the morning. In addition, there
is an interaction with diurnal preference that accentuates this dif-
ference throughout the wake-sleep cycle: Early types have a
greater difference in Decision time between day and night. Accu-
racy is high in the morning and decreases in the evening, without
chronotype modulation. Performance did not show daily fluctua-
tions or interactions with MEQ score. Then, our data discards the
hypothesis that there is a time of the day when players play more
efficiently, i.e. faster and more accurately. Our data reject this
hypothesis showing instead that there is a change in decision-
making policy: in the morning, players adopt a policy where deci-
sions are slower and more accurate than in the evening, when deci-
sions became faster but less accurate.

There are a handful of studies investigating temporal aspects of
human behavior in natural conditions. School performance
(grades) had been shown to depend on the interaction between
time and chronotypes, but with testing times only in the morning
and early afternoon (van der Vinne et al., 2015). Golder and Macy
showed diurnal fluctuations on Twitter activity and mood (based
on text analysis), which depended on the day of the week
(Golder & Macy, 2011). Additionally, Yasseri and collaborators
found diurnal variations in Wikipedia editorial activity across the
world (Yasseri, Sumi, & Kertesz, 2012). Our study combined mas-
sive data analyses from a large corpus with a measure of circadian
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preferences. This allowed us to demonstrate that participants are
more active during their preferred moment of the day. This
expected finding shows that each subject chooses when to be
active consistently with his/her preferred time, indicating that
the phase of diurnal cognitive activity is not only controlled by
external and fixed everyday duties (family, work, etc.).

Above and beyond the capacity to combine a large corpus of
activity data with preferred chronotypes, our main aim was to
investigate how decision-making changes throughout the day.
We found that players changed their decision-making policy
throughout the day: players decide faster and less accurately as
the day progresses, reaching a plateau early in the afternoon. This
effect was observed for all players regardless of their chronotype,
indicating that changes in Decision time are mainly determined
by the time of the day. However, Decision time (and not Accuracy)
is also modulated by the relative synchrony to the individual circa-
dian phase: both Decision time and its Variability are higher during
the evening for all chronotypes, but for Early types the morning-
evening amplitude is higher. Higher Decision time Variability could
be indexing a better use of time, as players might be recognizing
the movements where they should use more time.

Hence, players change their decision-making policy during the
day, and not simply a better or worst decision-making policy
(which should be more accurate and faster moves, or less accurate
and slower moves, respectively). More specifically, our results
show that the increase in speed throughout the day has costs in
accuracy, as it was observed in classical speed-accuracy tradeoffs
in a broad class of problems in decision-making (Bogacz, Hu,
Holmes, & Cohen, 2010; Gold & Shadlen, 2002; Wickelgren,
1977). These results could be related with the Regulatory focus
theory (Higgins, 2002), which postulates that the decision frame
is affected by the regulatory focus: the specific way in which some-
one approaches pleasure and avoids pain. Regulatory focus theory
differentiates between two focuses: a prevention-focus based on
safety (trying to avoid losing) and a promotion-focus based on
hopes and accomplishments (seeking to win).

Our results show that players play more accurately and slower
in the morning, which could be interpreted as a strategy based on
safety (prevention focus), and they play faster and less accurately
in the evening, which could be a more risky way of playing (pro-
motion focus). This association was previously reported to be
related with the level of the opponent: players adopted a preven-
tion policy (slow and more accurate moves) when they play with
opponents which are higher rated than him/her (Slezak &
Sigman, 2012). However, our results show no daily differences in
opponent levels. Indeed, during the morning players adopt a pre-
vention policy, playing slower and more accurately (as if they were
playing with higher level opponents) and, during the evening, they
adopt a more risky (promotion) policy where decisions are faster
but less accurate.

The data is not powerful enough to assess second degree inter-
actions of these variables in order to reach conclusions on how
they interact to yield changes in performance (i.e. whether the
improvement in quality compensates the excess in time used).
However, our analysis of performance suggests that all these
effects are close to compensate each other, i.e. there is not a main
effect of day time on rating.

Previous results suggested that ‘‘time since entrained awaken-
ing” is a better predictor than time of the day for sport perfor-
mance, which could reflect the influence of both sleep pressure
and chronotype (Facer-Childs & Brandstaetter, 2015). In-line with
this general conclusion, when we evaluated our data as a function
of ‘‘Time since awakening” we found that chronotype modulation
of Decision time was fully accounted by Time since awakening.
However, Activity was still modulated by chronotypes, with Late
subjects being more active many hours later than Early types.
These results suggest that either Sleep pressure is an important
factor determining performance levels and/or that daily changes
in decision-making policies depend on the phase of wake-sleep
cycles, without intrinsic differences between chronotypes.

As it was previously stated, decision-making policies could be
changing as the day progresses because the accumulation of sleep
pressure makes it difficult to make the right decisions at night.
However, this could also favor fast decisions, which of course gives
an advantage when playing with a finite time budget. Alterna-
tively, a circadian component, which is slightly out of phase
between chronotypes, could be compensating the effect of sleep
pressure. This effect could be based upon different mechanisms
depending on chronotypes, and could improve the decision time-
accuracy trade-off through a better use of time or by increasing
accuracy when time of the day is in synchrony with diurnal prefer-
ences. For Early types the improvement should be in the morning
and could occur throughout the modulation of Decision time
(because Accuracy is high and Decision time is slow in the morn-
ing). In Late types, the advantage should be in the evening and
could depend on modulation of Accuracy (since Accuracy is slow
and Decision time is fast in the evening).

We also explored the effects of Age in activity, decision-making
policies and performance. Age is a factor that correlates with circa-
dian preferences and the amplitude of circadian rhythms is
reduced with aging (May, Hasher, & Foong, 2005; Monk, 2005).
Moreover, chess performance also decreases with Age
(Jastrzembski, Charness, & Vasyukova, 2006; Moxley & Charness,
2013). We found that Age directly correlates with Rating and Error
rate (younger players are higher rated and make less errors than
older ones), and negatively correlated with Decision time (older
players used less time than younger ones). This last result is oppo-
site to previous findings where chess decisions were made faster
by younger participants or where no significant age-differences
were found (Charness, 1981; Jastrzembski et al., 2006). However,
our result could be a consequence of players adopting a strategy
of time usage with a finite time budget, as we measured Decision
time only in the middle of the game where it had been reported
that higher rated players allocated more time, compared to lower
rated players (Sigman et al., 2010). Thus, the magnitude of the time
allocated to a decision could be a consequence of players’ level:
older players both have lower ratings and play faster during the
middle game. Indeed, how exactly Age affects decision times may
vary widely depending on task constraints. However, all these
main effects of Age were deleted with our normalizations and
our results showed that Age has no effect on diurnal variations of
Activity, Decision time or Accuracy.

Future experiments will be necessary to uncover the
underlying mechanisms of temporal modulation and, specifically,
sleep pressure effects on chess decision-making according to
chronotype.

Our results provide an innovative approach to explore diurnal
variations in natural conditions, combining a quantitative control
of decision variables typical of laboratory experiments and a more
realistic setting to study and apply circadian variation in behavior
and performance.
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