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a b s t r a c t

Penalized regression estimators are popular tools for the analysis of sparse and high-
dimensional models. However, penalized regression estimators defined using an un-
bounded loss function can be very sensitive to the presence of outlying observations,
especially to high leverage outliers. The robust and asymptotic properties of ℓ1-penalized
MM-estimators and MM-estimators with an adaptive ℓ1 penalty are studied. For the case
of a fixed number of covariates, the asymptotic distribution of the estimators is derived and
it is proven that for the case of an adaptive ℓ1 penalty, the resulting estimator can have the
oracle property. The advantages of the proposed estimators are demonstrated through an
extensive simulation study and the analysis of real data sets. The proofs of the theoretical
results are available in the Supplementary material to this article (see Appendix A).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the problem of robust and sparse estimation for linear regression models. In modern
regression analysis, sparse and high-dimensional estimation scenarios where the ratio of the number of predictor variables
to the number of observations, say p/n, is high, but the number of actually relevant predictor variables to the number of
observations, say s/n, is low, have become increasingly common in areas such as bioinformatics and chemometrics. Outlier
identification and robustness issues are difficult even when p is of moderate size. Traditional robust regression estimators
do not produce sparse models and can have a bad behaviour with regard to robustness and efficiency when p/n is high,
see Maronna and Yohai (2015) and Smucler and Yohai (2015). Moreover, they cannot be calculated for p > n. Thus, robust
regression methods for high-dimensional data are in need.

Modern approaches to estimation in sparse and high-dimensional linear regression models include penalized least
squares (LS) estimators, e.g. the LS-Bridge estimator of Frank and Friedman (1993) and the LS-SCAD estimator of Fan and
Li (2001). LS-Bridge estimators are penalized least squares estimators in which the penalization function is proportional
to the qth power of the ℓq norm with q > 0. They include as special cases the LS-Lasso of Tibshirani (1996) (q = 1) and
the LS-Ridge of Hoerl and Kennard (1970) (q = 2). The LS-SCAD estimator is a penalized least squares estimator in which
the penalization function, the smoothly clipped absolute deviation (SCAD), is a function with several interesting theoretical
properties.

The theoretical properties of penalized least squares estimators have been extensively studied in the past years. Of special
note is the so called oracle property defined in Fan and Li (2001): An estimator is said to have the oracle property if the
estimated coefficients corresponding to zero coefficients of the true regression parameters are set to zero with probability
tending to one, while at the same time the coefficients corresponding to non-zero coefficients of the true regression
parameter are estimated with the same asymptotic efficiency we would have if we knew the correct model in advance.
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Knight and Fu (2000) derive the asymptotic distribution of LS-Bridge estimators in the classical regression scenario of
fixed p. The LS-Lasso estimator is not variable selection consistent unless rather stringent conditions are imposed on the
design matrix, and thus in general does not possess the oracle property; see Zou (2006) and Bühlmann and van de Geer
(2011) for details. Moreover, the LS-Lasso estimator has a bias problem: it can excessively shrink large coefficients. To
remedy this issue, Zou (2006) introduced the adaptive LS-Lasso, in which adaptive weights are used for penalizing different
coefficients and showed that the adaptive Lasso can have the oracle property. As Zou (2006) points out, adaptive LS-Lasso
estimators can be computed using any of the algorithms available to compute LS-Lasso estimators.

Penalized least squares estimators are not robust and may be highly inefficient under heavy tailed errors. In an attempt
to remedy this issue, penalized M-estimators defined using a convex loss function have been proposed. For example, in
Wang et al. (2007) the authors propose to take the absolute value loss and a Lasso type penalty, they call the resulting
estimator LAD-Lasso. See also Li et al. (2011) and Lambert-Lacroix and Zwald (2011). Estimators based on ranks have also
been proposed, see for example Johnson and Peng (2008) and Leng (2010). Zou and Yuan (2008) proposed the adaptive
Lasso Penalized Composite Quantile Regression estimator. All of the aforementioned estimators aim at robustness towards
outliers in the response variable and/orwhenheavy-tailed errors are present. Unfortunately, they are not robustwith respect
to contamination in the predictor variables.

Khan et al. (2007) proposed a robust version of the LARS procedure, see Efron et al. (2004), and called it RLARS. However,
since the RLARS procedure is not based on the minimization of a clearly defined objective function, a theoretical analysis
of its properties is difficult. In Wang and Li (2009) the authors proposed a weighted Wilcoxon-type smoothly clipped
absolute deviation (WW-SCAD) estimator. Maronna (2011) introduced S-Ridge and MM-Ridge estimators: ℓ2-penalized
S- and MM-estimators. However, ℓ2-penalized regression estimators do not produce sparse models. Alfons et al. (2013)
proposed the Sparse-LTS estimator, a least trimmed squares estimator with an ℓ1 penalization. See also Öllerer et al. (2016),
Alfons et al. (2016) and Öllerer et al. (2015). Wang et al. (2013) proposed a penalized regression estimator based on an
exponential squared loss function (ESL-Lasso). Gijbels and Vrinssen (2015) proposed nonnegative garrote versions of several
robust regression estimators, including MM and S-estimators. In Loh (2015), the author studied the theoretical properties
of penalized regression M-estimators in the p ≫ n regime. Unfortunately, these results are not directly applicable to the
estimators we study in this paper.

In this paper, we study the robust and asymptotic properties of MM-Lasso and adaptive MM-Lasso estimators: ℓ1-
penalized MM-estimators and MM-estimators with an adaptive ℓ1 penalty. We obtain lower bounds on their breakdown
points. We derive the asymptotic distribution of the estimators and prove that adaptive MM-Lasso estimators can have the
oracle property. Even thoughwe derive our asymptotic results for fixed p, MM-Lasso and adaptiveMM-Lasso estimators can
be computed for p > n. In extensive simulations, we compare the performance of the MM-Lasso and adaptive MM-Lasso
estimators with that of several competitors. In all the scenarios considered our proposed estimators compare favourably to
the competitors. Finally, we apply our proposed estimators to two real data sets.

The rest of this paper is organized as follows. In Section 2 we review the definition and some of the most important
properties of MM and S-estimators. In Section 3 we define MM-Lasso and adaptive MM-Lasso estimators, we study their
robust and asymptotic theoretical properties and we describe an algorithm to compute them. In Section 4 we conduct an
extensive simulation. In Section 5 we apply the aforementioned estimators to two real data sets. Conclusions are provided
in Section 6. Finally, the proofs of all our results are given in the Supplementary material to this article (see Appendix A).

2. MM and S-estimators

We consider a linear regression model with random carriers: we observe (xTi , yi) i = 1, . . . , n, i.i.d. (p + 1)-dimensional
vectors, where yi is the response variable and xi ∈ Rp is a vector of random carriers, satisfying

yi = xTi β0 + ui for i = 1, . . . , n, (1)

where β0 ∈ Rp is to be estimated and ui is independent of xi. For β ∈ Rp let r(β) = (r1(β), . . . , rn(β)), where
ri(β) = yi − xTi β. Some of the coefficients of β0 may be zero, and thus the corresponding carriers do not provide relevant
information to predict y. We do not know in advance the set of indices corresponding to coefficients that are zero, and it
may be of interest to estimate it. For simplicity, we will assume β0 = (β0,I ,β0,II), where β0,I ∈ Rs, β0,II ∈ Rp−s, all the
coordinates of β0,I ∈ Rs are non-zero and all the coordinates of β0,II ∈ Rp−s are zero.

Let F0 be the distribution of the errors ui, G0 the distribution of the carriers xi and H0 the distribution of (xTi , yi). Then H0
satisfies

H0(x, y) = G0(x)F0(y − xTβ0). (2)

Let xI stand for the first s coordinates of x and let G0,I be its distribution. For b ∈ Rp and q > 0 we note

∥b∥q =


p

j=1

|bj|q
1/q

and ∥b∥ = ∥b∥2. Throughout this paper, a ρ-function will refer to a bounded ρ-function, in the sense of Maronna et al.
(2006). That is, we will say that ρ is a ρ-function if: (i) ρ is even, continuous and bounded, (ii) ρ(x) is a nondecreasing
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function of |x|, (iii) ρ(0) = 0, (iv) limx→∞ ρ(x) = 1 and (v) If ρ(v) < 1 and 0 ≤ u < v then ρ(u) < ρ(v). A popular choice
of ρ-functions is Tukey’s Bisquare family of functions given by

ρB
c (u) = 1 −


1 −

u
c

23

I(|u| ≤ c), (3)

where c > 0 is a tuning constant. If ρ is a differentiable ρ-function we will let ψ = ρ ′.
Given a sample u = (u1, . . . , un) from some distribution F and 0 < b < 1 the corresponding M-estimate of scale sn(u)

is defined by

sn(u) = inf


s > 0 :

1
n

n
i=1

ρ
ui

s


≤ b


.

It is easy to prove that sn(u) > 0 if and only if #{i : ui = 0} < (1 − b)n, and in this case

1
n

n
i=1

ρ


ui

sn(u)


= b.

A quantitative measure of an estimator’s robustness, introduced by Donoho and Huber (1983), is the finite-sample
replacement breakdown point. Loosely speaking, the finite-sample replacement breakdown point of an estimator is the
maximum fraction of outliers that the estimator may tolerate without losing all meaning. For a regression estimator, this
measure is defined as follows. Given a sample zi = (xTi , yi), i = 1, . . . , n, let Z = {z1, . . . , zn} and let β̂(Z) be a regression
estimator. The finite-sample replacement breakdown point of β̂ is then defined as FBP(β̂) = m∗/n, where

m∗
= max


m ≥ 0 : β̂(Zm) is bounded for all Zm ∈ Zm


,

and Zm is the set of all data sets with at least n − m elements in common with Z.
Given a sample (xTi , yi), i = 1, . . . , n from the model given in (1), Rousseeuw and Yohai (1984) define the S-estimator as

β̂S = arg min
β∈Rp

sn(r(β)),

where sn is a M-estimate of scale. Fasano et al. (2012) derive the asymptotic distribution of S-estimators under very
general conditions. S-estimators can always be tuned so as to attain the maximum possible finite-sample replacement
breakdown point for regression equivariant estimators. However, S-estimators cannot combine high breakdown point with
high efficiency at the normal distribution, see Hossjer (1992).

Let (xTi , yi), i = 1, . . . , n, be a sample satisfying (1), and ρ0 and ρ1 be two ρ-functions satisfying ρ1 ≤ ρ0. Then Yohai
(1987) defines the MM-estimator as

β̂MM = arg min
β∈Rp

n
i=1

ρ1


ri(β)

sn(r(β̂1))


,

where β̂1 is a consistent and high breakdown point estimator of β0 and sn(r(β̂1)) is the M-estimate of scale of the residuals
of β̂1, defined using ρ0 and b.

Yohai (1987) proves that under general conditions MM-estimators are strongly consistent for β0 and furthermore

√
n(β̂MM − β0)

d
→Np


0, s(β0)

2 a(ψ1, F0)
b(ψ1, F0)2

V−1
x


, (4)

where Vx = EG0(xx
T), ψ1 = ρ ′

1, s(β0) is defined by

EH0ρ0


y − xTβ0

s(β0)


= b, a(ψ, F0) = EF0ψ

2


u
s(β0)


and

b(ψ, F0) = EF0ψ
′


u

s(β0)


.

Besides, he shows that ρ1 can be chosen so that the resulting MM-estimator simultaneously has a normal asymptotic
efficiency as close to one as desired and a breakdown point greater than or equal to that of the initial estimator.
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3. MM-Lasso and adaptive MM-Lasso estimators

Given a sample (xTi , yi), i = 1, . . . , n, γn ≥ 0, a ρ-function ρ0 and 0 < b < 1, the S-Ridge estimator is defined as
(see Maronna, 2011)

β̂PS = arg min
β∈Rp

s2n(r(β))+
γn

n
∥β∥,

where sn(r(β)) is the residual scale estimate defined using ρ0 and b. If the model contains an intercept, then it is not
penalized.

It is easy to see that

∥β̂PS∥ ≤ ∥β̂S∥, (5)

where β̂S is the S-estimator defined using ρ0 and b.
Given another ρ-function ρ1 that satisfies ρ1 ≤ ρ0 and λn ≥ 0 we define the MM-Lasso estimator as

β̂B = arg min
β∈Rp

n
i=1

ρ1


ri(β)

sn(r(β̂1))


+ λn∥β∥1 (6)

where β̂1 is a strongly consistent initial estimator of β0. Clearly, the robustness of the MM-Lasso estimator will depend
heavily on the robustness of the initial estimator. If the model contains an intercept, then it is not penalized.

Note that, for any fixed λn > 0, by definition of β̂B we have that

λn∥β̂B∥1 ≤

n
i=1

ρ1


ri(β̂B)

sn(r(β̂1))


+ λn∥β̂B∥1

≤

n
i=1

ρ1


ri(0p)

sn(r(β̂1))


+ λn∥0p∥1

≤ n, (7)

since ρ1 ≤ 1. Hence, ∥β̂B∥1 ≤ n/λn. This immediately implies that for any fixed λn > 0, the breakdown point of β̂B is equal
to 1.

Given ς > 0 and ιn ≥ 0 we define the adaptive MM-Lasso estimator as

β̂A = arg min
β∈Rp

n
i=1

ρ1


ri(β)

sn(r(β̂1))


+ ιn

p
j=1

|βj|

|β̂2,j|
ς
, (8)

where β̂2 is a strongly consistent initial estimator of β0. Clearly if β̂2,j = 0 for some j, then β̂A,j = 0. If the model contains an
intercept, then it is not penalized. Note that for coefficients corresponding to large coefficients of β̂2, the adaptiveMM-Lasso
employs a small penalty; this ameliorates the bias issues associated with the ℓ1 penalty.

Wang et al. (2013) prove that their estimator can have the highest possible breakdown point among regression
equivariant estimators, but it must be noted that their estimator is not regression equivariant. Alfons et al. (2013) show
that the breakdown point of the Sparse-LTS estimator is (n − h)/n, where n − h is the number of trimmed observations,
and prove that the breakdown point of any ℓ1-penalizedM-estimator defined using a convex loss function is 0. In particular,
the breakdown points of the LS-Lasso and the LAD-Lasso are 0. Note that it follows immediately from (5) that for any γn,
the finite-sample breakdown point of β̂PS is at least as high as that of β̂S . It follows from (7) that the breakdown point of
β̂B is 1. We believe that this result hints at the possibility that the breakdown point may not be an adequate measure of
robustness for penalized estimators. More generally, one could argue that the breakdown point is not an adequate measure
of robustness for estimators that are not regression equivariant. See Davies and Gather (2005) for a discussion of this point.
Nonetheless, in Theorem 1 we prove that for any fixed ιn > 0, the breakdown point of β̂A is greater than or equal to the
breakdown point of β̂2.

Theorem 1. If ιn > 0 is fixed, then FBP(β̂A) ≥ FBP(β̂2).

Note that if β̂2 = β̂B, then FBP(β̂A) = 1wheneverλn, ιn > 0. In practice, γn,λn and ιn maybe chosen via somedata-driven
procedure such as cross-validation. In this case, the breakdown points of the resulting MM-Lasso and adaptive MM-Lasso
estimators may be lower. The robustness of the resulting estimators will depend sorely on the robustness of the cross-
validation scheme, and hence the use of robust residual scales as objective functions, instead of the classical root mean
squared error, is crucial.
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3.1. Asymptotics

Wenowdescribe the set-up to study the asymptotic properties of S-Ridge,MM-Lasso and adaptiveMM-Lasso estimators.
We will assume that

B1. (a) ρ0 and ρ1 are twice continuously differentiable and eventually constant.
(b) Let ψ1 = ρ ′

1. Then EF0ψ
′

1


u/s(β0)


> 0.

B2. P

xTβ = 0


< 1 − b for all non-zero β ∈ Rp.

B3. F0 has an even density, f0, that is a monotone decreasing function of |u| and a strictly decreasing function of |u| in a
neighbourhood of 0.

B4. G0 has finite second moments and Vx = EG0xx
T is non-singular.

A family of ρ-functions that satisfies [B1] (a) is Tukey’s Bisquare family of functions, given in (3). Condition [B2] is needed
in the proof of the consistency of the estimators. Note that condition [B3] does not require finite moments from F0. Thus,
extremely heavy tailed error distributions, such as Cauchy’s distribution, can be easily seen to satisfy [B3]. However, [B3]
does impose a rather stringent symmetry assumption on the error distribution. This requirement greatly simplifies the
asymptotic treatment of the estimators and is usual in robust statistics. [B4] is a moment condition that is usual in the
literature.

Propositions 1 and 2, which can be found in the Supplementarymaterial to this article (see Appendix A), prove the strong
consistency of S-Ridge, MM-Lasso and adaptive MM-Lasso estimators and the

√
n-consistency of MM-Lasso and adaptive

MM-Lasso estimators.
In practice, we will use the S-Ridge estimator of Maronna (2011) as the initial estimate β̂1 in (6) and (8). Note that

according to Proposition 1 and the remarks above Theorem 1, the S-Ridge is a high breakdown point and consistent estimate
of β0, as long as the penalization parameter satisfies γn = o(n).

Remark 1. From now on, we will assume that the initial estimator used to define the penalty weights for the adaptive
MM-Lasso estimator, β̂2, is

√
n-consistent. For example, according to Proposition 2, we could take β̂2 to be some MM-Lasso

estimator calculated with λn = O(
√
n).

Let β̂A,I stand for the first s coordinates of β̂A and β̂A,II for the remaining p− s. The following theorem shows that, as long
as ς > 0 adaptive MM-Lasso estimators can be variable selection consistent.

Theorem 2. Let (xTi , yi), i = 1, . . . , n, be i.i.d. observations with distribution H0, which satisfies (2). Assume [B1]–[B4] hold.
Then if ιn = O(

√
n) and ιnn(ς−1)/2

→ ∞,

P

β̂A,II = 0p−s


→ 1.

Next we derive the asymptotic distribution of β̂A,I .

Theorem 3. Let (xTi , yi), i = 1, . . . , n, be i.i.d. observations with distribution H0, which satisfies (2). Assume [B1]–[B4] hold.
Then if ιn/

√
n → 0 and ιnn(ς−1)/2

→ ∞

√
n(β̂A,I − β0,I)

d
→Ns


0, s(β0)

2 a(ψ1, F0)
b(ψ1, F0)2

V−1
xI


.

Here s(β0), a(ψ, F0) and b(ψ, F0) are as in (4) and VxI = EG0xIx
T
I .

Theorem 2 together with Theorem 3 proves that β̂A can have the oracle property as long as ς > 0. That is: the estimated
coefficients corresponding to null coordinates of the true regression parameters are set to zerowith probability tending to 1,
while at the same time the coefficients corresponding to non-null coordinates of the true regression parameter are estimated
with the same asymptotic efficiencywewould have if we had applied a non penalizedMM-estimator to the relevant carriers
only.

In Theorem 4 we derive the asymptotic distribution of β̂B. Similar results can be obtained for ℓq-penalized
MM-estimators.

Theorem 4. Let (xTi , yi), i = 1, . . . , n, be i.i.d. observations with distribution H0, which satisfies (2). Assume [B1]–[B4] hold and
λn/

√
n → λ0. Then
√
n(β̂B − β0)

d
→ argmin(R),
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where

R(z) = −zTW +
1

2s(β0)
2
b(ψ1, F0)zTVxz + λ0

p
j=1

(zjsgn(β0,j)I(β0,j ≠ 0)+ |zj|I(β0,j = 0)),

and W ∼ Np

0, (a(ψ1, F0)/s(β0)

2)Vx

. Here s(β0), a(ψ, F0) and b(ψ, F0) are as in (4).

Note that ifλ0 = 0, β̂B has the same asymptotic distribution as the corresponding nonpenalizedMM-estimator. Ifλ0 > 0,
the asymptotic distributions of the coordinates of β̂B corresponding to null coefficients of β0 put positive probability at zero,
the proof is essentially the same as the one that appears in pages 1361–1362 of Knight and Fu (2000). However, one can
show that

lim sup P

β̂B,II = 0p−s


≤ c < 1,

for some c. The proof is essentially the same as the proof of Proposition 1 of Zou (2006).

3.2. Computation

In this section, we describe an algorithm to obtain approximate solutions of (6), i.e. MM-Lasso estimators. Throughout
this section we will assume that our model, (1), contains an intercept, and that the first coordinate of each xi equals 1. Let X
be the matrix with xi as rows.

Prior to any calculations, all the columns of X, except the first one, are centred and scaled using the median and the
normalized median absolute deviation respectively. The response vector y is centred using the median. At the end, the final
estimates are expressed in the original coordinates.

We take the S-Ridge estimator of Maronna (2011), which we note β̂PS , as the initial estimate in (6). The penalization
parameter for the S-Ridge estimator, γn, is chosen via robust 5-fold cross-validation, as described in Maronna (2011). Let
sn = sn(r(β̂PS)).

Letw(u) = ψ1(u)/u, where ψ1 is the derivative of ρ1. For a given β, let ωi = w(ri(β)/sn). Suppose λn is given and letW
be the diagonal matrix formed by

√
ω1, . . . ,

√
ωn. Let y∗

= Wy and X∗
= WX. Let β̂B be the MM-Lasso estimator. It is easy

to show that β̂B satisfies

X∗T (y∗
− X∗β)− λns2n


0

sign(β2)
...

sign(βp+1)

 s
= 0p+1,

where s
= 0p+1 stands for a change of sign. Note that the first column of X∗ equals k∗

= (
√
ω1, . . . ,

√
ωn). For each

j = 2, . . . , p + 1 let x∗(j) be the jth column of X∗ and let

ηj =
k∗Tx∗(j)

∥k∗∥2
.

Then x∗(j) can be decomposed as the sum of two vectors: ηjk∗, in the direction of k∗, and x∗⊥(j)
= x∗(j)

− ηjk∗, orthogonal to
k∗. Let X∗⊥ be the matrix with columns x∗⊥(2), . . . , x∗⊥(p+1). It is easy to show that β̂B satisfies

k∗y∗
− ∥k∗

∥
2(β1 + η2β2 + · · · + ηp+1βp+1) = 0 (9)

X∗⊥T (y∗
− X∗⊥β)− λns2n

 sign(β2)
...

sign(βp+1)

 s
= 0p. (10)

We note that if k∗, y∗ and X∗⊥T were known, β̂B,2,. . . , β̂B,p+1 could be estimated by solving Eq. (10) using some algorithm
to solve Lasso-type problems, e.g. the LARS procedure or Coordinate Descent Optimization, without including an intercept.
Then β̂B,1 could be solved easily from (9).

The fact that k∗, y∗ and X∗⊥T depend on β̂B suggests an iterative procedure, as is usual in robust statistics. Starting from
β̂PS we iteratively solve Eq. (10) using the LARS algorithmwithout including an intercept and then solve for the intercept in
(9). Call β(i) the estimate at the ith iteration. Convergence is declared when

∥β(i+1)
− β(i)∥

∥β(i)∥
≤ δ,

where δ is some fixed tolerance parameter. In our simulations we took δ = 10−4.
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Regarding the computation of adaptive MM-Lasso estimators, we note that solving (8) is equivalent to solving

β̂ = arg min
β∈Rp+1

n
i=1

ρ1


yi − x̂Ti β

sn


+ ιn

p+1
j=2

|βj|,

where x̂i,1 = 1, x̂i,j = xi,j|β̂2,j|
ς for j = 2, . . . , p + 1 and taking β̂A,1 = β̂1 and β̂A,j = β̂j|β̂2,j|

ς for j = 2, . . . , p + 1. Hence,
our procedure to compute MM-Lasso estimators can be used to compute adaptive MM-Lasso estimators, simply applying
the routine to the data with weighed carriers. To calculate our proposed adaptive MM-Lasso estimator, we take β̂1 = β̂PS ,
β̂2 = β̂B and ς = 1.

In practice, we chose the ρ-functions used to calculate the initial S-Ridge estimator, the MM-Lasso estimator and the
adaptive MM-Lasso estimator of the form ρ0 = ρB

c0 and ρ1 = ρB
c1 where c1 ≥ c0 and ρB

c is as in (3). The tuning constants c0
and c1 are chosen as in Maronna (2011).

The penalization parameter for β̂B, λn, is chosen over a set of candidates via robust 5-fold cross validation, using a τ -scale
of the residuals as the objective function. The τ -scale was introduced by Yohai and Zamar (1988) to measure in a robust
and efficient way the largeness of the residuals in a regression model. The set of candidate lambdas is taken as 30 equally
spaced points between 0 and λmax, where λmax is approximately the minimum λ such that all the coefficients of β̂B except
the intercept are zero. To estimate λmax we first robustly estimate the maximal correlation between y and the columns of X
using bivariate winsorization as advocated by Khan et al. (2007). We use this estimate as an initial guess for λmax and then
improve it using a binary search. If p > n, then 0 is excluded from the candidate set. The penalization parameter for β̂A, ιn,
is chosen using the same scheme used to choose λn.

The initial S-Ridge estimate is calculated using our own adaption of Maronna’s MATLAB code to C++. To solve Eq. (10) we
use the FastLasso() function from therobustHD Rpackage.Weuse theforeach Rpackage for parallel computationswhen
it comes to finding optimal penalization parameters via cross-validation. This provided a significant reduction in computing
times in computers with several cores. Extensive parts of our computer code are written in C++ and interfaced with R using
the RcppArmadillo package. An R package that includes the functions to calculate the estimators we propose is available
at http://esmucler.github.io/mmlasso/.

4. Simulations

In this section, we compare the performance with regard to prediction accuracy and variable selection properties of

• The MM-Lasso estimator described in the previous section.
• The adaptive MM-Lasso (adaMM-Lasso) estimator described in the previous section.
• The MM Nonnegative Garrote (MM-NNG) estimator of Gijbels and Vrinssen (2015). The estimator was calculated using
R code provided by the authors.

• The ESL-Lasso estimator. The estimator was calculated using MATLAB code provided by the authors.
• The Sparse-LTS. The penalization parameter for this estimator was chosen using a BIC-type criterion as advocated by the

authors. The estimator was calculated using the sparseLTS() function from the robustHD R package.
• The Wilcoxon-SCAD estimator (WW-SCAD). The estimator was calculated using R code provided by the authors.
• The LAD-Lasso estimator. The penalization parameter was chosen using 5-fold cross validation using the median of the

absolute value of the residuals as the objective function. We implemented this estimator in R.
• The LS-Lasso estimator (Lasso). The penalization parameter for this estimator was chosen using 5-fold cross validation

using the sum of the squared residuals as the objective function. The estimator was calculated using the lars() function
from the lars R package.

• The adaptive LS-Lasso estimator (adaLasso). We used as an initial estimator an LS-Lasso estimator, calculated as above.
Both the initial and the final penalization parameters were chosen using 5-fold cross validation using the sum of the
squared residuals as the objective function. The estimator was calculated using the lars() function from the lars R
package.

• The Maximum Likelihood Oracle estimator (Oracle), that is, the Maximum Likelihood estimator applied to the relevant
carriers only. When the errors follow a normal distribution, this is the Least Squares estimators applied to the relevant
carriers only. Note that in any case, this is not a feasible estimator, and is included for benchmarking purposes only.

• For the contaminated scenarios, wewill also include the OracleMMestimator: anMM-estimator, calculatedwith Tukey’s
Bisquare function and tuned to have 85% normal efficiency, applied to the relevant carriers only. The estimator was
calculated using the lmRob() function from the robust R package. Once again, note that this is not a feasible estimator,
and is included for benchmarking purposes only.

4.1. Scenarios

To evaluate the estimators we generate two independent samples of size n of the model y = xTβ0 + u, plus an intercept
that is equal to zero. The first sample, called the training sample, is used to fit the estimates and the second sample, called

http://esmucler.github.io/mmlasso/
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the testing sample, is used to evaluate the prediction accuracy of the estimates. We considered three possible distributions
for the errors: a zero mean normal distribution, Student’s t-distribution with three degrees of freedom (t(3)) and Student’s
t-distribution with one degree of freedom (t(1)). The first case corresponds to the classical scenario of normal errors, the
second case has heavy-tailed errors and the third case has extremely heavy-tailed errors. For the first two cases we use the
prediction root mean squared error (RMSE) to evaluate the prediction accuracy of the estimates. For the third case, since
Student’s t-distribution with one degree of freedom does not have a finite first moment, we use the median of the absolute
value (MAD) of the prediction residuals as a measure of the estimators prediction accuracy. We also evaluate the variable
selection performance of the estimators by calculating the false negative ratio (FNR), that is, the fraction of coefficients
erroneously set to zero, and the false positive ratio (FPR), the fraction of coefficients erroneously not set to zero.

We consider the following seven scenarios for the sample size, the number of covariates, β0 and the distribution of the
carriers.

1. We take p = 8, n = 40 and β0 given by: component 1 is 3, component 2 is 1.5, component 6 is 2 and the rest of the
coordinates are set to zero. We take x v Np(0,6) with Σi,j = ρ|i−j| with ρ = 0.5. For the case of normally distributed
errors, we take the standard deviation of the errors to be σ = 3.

2. We take p = 30, n = 100 and β0 given by: components 1–5 are 2.5, components 6–10 are 1.5, components 11–15 are
0.5 and the rest are zero. We take x v Np(0,6) with Σi,j = ρ|i−j| with ρ = 0.95. For the case of normally distributed
errors, we take the standard deviation of the errors to be σ = 1.5.

3. We take p = 200, n = 100 and β0 given by: components 1–5 are 2.5, components 6–10 are 1.5, components 11–15
are 0.5 and the rest are zero. The first 15 covariates (x1, . . . , x15) and the remaining 185 covariates (x16, . . . , x200) are
independent. The first 15 covariates have a zeromeanmultivariate normal distribution. The pairwise correlation between
the ith and jth components of (x1, . . . , x15) is ρ|i−j| with ρ = 0.95 for i, j = 1, . . . , 15. The final 185 covariates have a zero
mean multivariate normal distribution. The pairwise correlation between the ith and jth components of (x16, . . . , x200)
is ρ|i−j| with ρ = 0.95 for i, j = 16, . . . , 200. For the case of normally distributed errors, we take the standard deviation
of the errors to be σ = 1.5.

4. We take p = 250, n = 50 and β0 given by: component 1 is 3, component 2 is 1.5, component 6 is 2 and the rest of the
coordinates are set to zero. We take x v Np(0,6) with Σi,j = ρ|i−j| and ρ = 0.5. For the case of normally distributed
errors, we take the standard deviation of the errors to be σ = 3.

5. This scenario is just like Scenario 1, but with the first coordinate of β0 equal to 3, and the rest equal to 0.
6. This scenario is just like Scenario 3, but with coordinates 1–5 of β0 equal to 2.5, coordinates 7–8 equal to 1.5, and the rest

equal to 0.
7. We take p = 50, n = 100 and β0 with all its components equal to 0.1. We take x v Np(0,6) with Σi,j = ρ|i−j| and
ρ = 0.8. For the case of normally distributed errors, we take the standard deviation of the errors to be σ = 1.

In Scenario 1 we have a moderately high p/n ratio. In Scenario 2 we have p < n and high p/n ratio and in Scenarios 3 and
4 we have p > n. Scenario 1 was analysed by Tibshirani (1996) and Fan and Li (2001). Scenarios 2 and 3 were analysed in
Huang et al. (2008). Scenarios 5 and 6 are the same as Scenarios 1 and 3, but with half the number of non-zeros coordinates.
In Scenario 7, we have a very high p/n ratio and a non-sparse real regression parameter; in this case we do not include
‘Oracle’ estimators or compute FPRs.

Since the MM-NNG, the ESL-Lasso and the WW-SCAD can only be computed for p < n, we only compute them for
Scenarios 1, 2, 5 and 7. TheMM-NNG estimator could not be computed for Scenarios 1, 5 and 7 because the program crashed.
The ESL-Lasso could not be computed for Scenario 7, because the program crashed.

To evaluate the robustness of the estimators for the case of high-leverage outliers, we introduce contamination in all
seven scenarios, for the case of normal errors. Note thatwe only contaminate the training sample and not the testing sample.
We take m = [0.1n] and for i = 1, ..,m we set yi = 5y0 and xi = (5, 0, . . . , 0). We moved y0 in a uniformly spaced grid
between 0 and 3 with step 0.1 and then between 3 and 10 with step 1. To summarize the results for the contaminated
scenarios we report for each estimator the maximum RMSE, FNR and FPR over all outlier sizes y0.

The number of Monte Carlo replications for the uncontaminated scenarios was M = 500. The number of Monte Carlo
replications for contaminated scenarios was reduced toM = 100, to keep computation times reasonably low.

4.2. Results

We now present the results of our simulation study. All results are rounded to two decimal places. Tables 1–4 show the
results for Scenarios 1 through 7, without contamination. In Tables 5–8 we show the results for Scenarios 1 through 7 under
high-leverage contamination.

The results may be summarized as follows.

• The MM-Lasso and the adaptive MM-Lasso estimators show a good behaviour for all three error distributions, with
prediction errors generally close to those of the Oracle. Moreover, they show the best overall behaviour in the presence
of high leverage outliers. As expected, the adaptive MM-Lasso has a lower FPR than the MM-Lasso, but a higher FNR.

• The ESL-Lasso estimator has an acceptable performance in Scenario 1 and a good performance in Scenario 5, but the
worst performance of all the estimators for Scenario 2.
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Table 1
Results for normal, t(3) and t(1) distributed errors for Scenarios 1 and 2. RMSE, MAD, FNR and
FPR, averaged over 500 replications are reported for each estimator.

Scenario Normal t(3) t(1)
RMSE FNR FPR RMSE FNR FPR MAD FNR FPR

1

MM-Lasso 3.42 0.04 0.52 1.77 0 0.52 1.36 0.01 0.50
adaMM-Lasso 3.43 0.09 0.27 1.75 0 0.20 1.32 0.02 0.21
ESL-Lasso 4.09 0.41 0.06 1.94 0.04 0.04 1.58 0.10 0.02
Sparse-LTS 3.92 0.03 0.82 1.91 0 0.85 1.44 0 0.69
WW-SCAD 3.46 0.25 0.10 1.75 0 0.11 1.97 0.37 0.04
LAD-Lasso 3.51 0.05 0.54 1.82 0 0.57 1.40 0 0.56
Lasso 3.33 0.02 0.43 1.84 0 0.46 9.9 0.38 0.28
adaLasso 3.28 0.06 0.26 1.82 0.01 0.29 10 0.46 0.19
Oracle 3.15 0 0 1.69 0 0 1.16 0 0

2

MM-Lasso 1.69 0.13 0.21 1.75 0.10 0.27 1.28 0.15 0.17
adaMM-Lasso 1.77 0.26 0.09 1.80 0.21 0.09 1.39 0.29 0.06
MM-NNG 1.97 0.40 0.09 1.95 0.35 0.09 1.58 0.46 0.08
ESL-Lasso 9.73 0.71 0.14 9.97 0.68 0.15 6.92 0.71 0.12
Sparse-LTS 2.25 0 1 2.14 0 1 1.78 0.01 0.97
WW-SCAD 1.83 0.41 0.08 1.89 0.37 0.08 1.95 0.61 0.08
LAD-Lasso 1.73 0.13 0.25 1.78 0.10 0.23 1.32 0.15 0.23
Lasso 1.74 0.11 0.22 1.90 0.12 0.27 10.7 0.55 0.21
adaLasso 1.74 0.21 0.13 1.94 0.22 0.14 10.7 0.72 0.09
Oracle 1.63 0 0 1.73 0 0 1.27 0 0

Table 2
Results for normal, t(3) and t(1) distributed errors for Scenarios 3 and 4. RMSE, MAD, FNR and
FPR, averaged over 500 replications are reported for each estimator.

Scenario Normal t(3) t(1)
RMSE FNR FPR RMSE FNR FPR MAD FNR FPR

3

MM-Lasso 1.92 0.16 0.08 1.89 0.11 0.06 1.42 0.16 0.05
adaMM-Lasso 1.94 0.29 0.03 1.89 0.22 0.02 1.47 0.31 0.01
Sparse-LTS 1.89 0.13 0 1.98 0.11 0 1.47 0.15 0
LAD-Lasso 1.81 0.14 0.07 1.86 0.11 0.06 1.41 0.16 0.05
Lasso 1.88 0.11 0.21 2.12 0.12 0.22 6.33 0.57 0.10
adaLasso 2.06 0.18 0.13 2.29 0.19 0.14 6.75 0.70 0.10
Oracle 1.64 0 0 1.77 0 0 1.29 0 0

4

MM-Lasso 4.05 0.12 0.07 1.99 0 0.06 2.05 0.08 0.05
adaMM-Lasso 3.99 0.18 0.03 1.80 0.01 0.01 1.79 0.12 0.02
Sparse-LTS 4.72 0.26 0.12 2.60 0.04 0.09 2.22 0.07 0.11
LAD-Lasso 4.02 0.09 0.10 2.03 0 0.10 1.96 0.06 0.08
Lasso 3.67 0.05 0.07 2.04 0.01 0.07 30.5 0.62 0.03
adaLasso 3.97 0.06 0.06 2.26 0.01 0.06 31.3 0.64 0.02
Oracle 3.13 0 0 1.67 0 0 1.12 0 0

• The MM-NNG estimator works well in Scenario 2, with or without outliers.
• The Sparse-LTS estimator shows the best overall behaviour for Scenarios 3 and 6. However, it is very much affected by

high leverage outliers in Scenarios 2 and 7. Note also that its FPR is rather high in Scenarios 1 and 2.
• The WW-SCAD estimator works well in Scenarios 1, 2, and 5 with normal or t(3) errors. However, its prediction error is

somewhat higher than those of the other robust estimators for t(1) errors. Moreover, its performance can be significantly
worse than those of the MM-Lasso and adaptive MM-Lasso when there are high leverage outliers.

• The LAD-Lasso estimator shows a good behaviour in all scenarios when there are no added outliers, but its performance
can be significantly worse than those of the MM-Lasso and adaptive MM-Lasso when there are high leverage outliers in
the data. See the results in Table 5 for Scenario 2, for example.

• The Lasso and the adaptive Lasso show the best overall behaviour for the case of normal errors and a good behaviour
for the case of t(3) errors, in both cases with prediction errors close to the Oracle. However they are heavily affected by
outliers or extremely heavy tailed errors such as t(1) distributed errors.
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Table 3
Results for normal, t(3) and t(1) distributed errors for Scenarios 5 and 6. RMSE, MAD, FNR and
FPR, averaged over 500 replications are reported for each estimator.

Scenario Normal t(3) t(1)
RMSE FNR FPR RMSE FNR FPR MAD FNR FPR

5

MM-Lasso 3.29 0.01 0.35 1.73 0.00 0.33 1.24 0.00 0.32
adaMM-Lasso 3.29 0.01 0.21 1.72 0.00 0.16 1.20 0.00 0.12
ESL-Lasso 3.43 0.15 0.05 1.70 0.00 0.04 1.16 0.00 0.02
Sparse-LTS 3.83 0.00 0.67 1.87 0.00 0.64 1.36 0.00 0.53
WW-SCAD 3.16 0.01 0.09 1.69 0.00 0.11 1.32 0.12 0.05
LAD-Lasso 3.39 0.01 0.45 1.75 0.00 0.43 1.26 0.00 0.41
Lasso 3.22 0.00 0.24 1.79 0.00 0.28 5.30 0.34 0.21
adaLasso 3.18 0.00 0.17 1.75 0.00 0.18 5.32 0.36 0.14
Oracle 3.09 0.00 0.00 1.67 0.00 0.00 1.09 0.00 0.00

6

MM-Lasso 1.78 0.04 0.07 1.76 0.01 0.05 1.28 0.04 0.04
adaMM-Lasso 1.77 0.11 0.02 1.75 0.05 0.01 1.28 0.13 0.01
Sparse-LTS 1.70 0.01 0.01 1.78 0.00 0.01 1.27 0.02 0.01
LAD-Lasso 1.73 0.03 0.06 1.77 0.01 0.06 1.29 0.03 0.05
Lasso 1.77 0.01 0.19 1.97 0.02 0.20 7.24 0.49 0.08
adaLasso 1.94 0.03 0.12 2.15 0.05 0.12 7.58 0.63 0.04
Oracle 1.56 0.00 0.00 1.68 0.00 0.00 1.12 0.00 0.00

Table 4
Results for normal, t(3) and t(1) distributed errors for Scenario 7. RMSE, MAD and FNR,
averaged over 500 replications are reported for each estimator.

Scenario Normal t(3) t(1)
RMSE FNR RMSE FNR MAD FNR

7

MMLasso 1.19 0.46 1.84 0.52 1.33 0.61
adaMM-Lasso 1.25 0.65 1.89 0.70 1.41 0.76
Sparse-LTS 1.94 0.00 2.68 0.00 2.64 0.03
WW-SCAD 1.33 0.74 2.01 0.79 1.73 0.88
LAD-Lasso 1.22 0.45 1.86 0.51 1.36 0.58
Lasso 1.22 0.50 1.93 0.62 5.98 0.92
adaLasso 1.27 0.69 1.96 0.76 6.21 0.95

Table 5
Results for Scenarios 1 and 2 with normal errors and 10% contaminated observations.
Maximum RMSEs, FNRs and FPRs over all outlier sizes are averaged over 100 replications.

Scenario Max. RMSE Max. FNR Max. FPR

1

MM-Lasso 4.38 0.11 0.55
adaMM-Lasso 4.49 0.23 0.32
ESL-Lasso 4.87 0.60 0.19
Sparse-LTS 4.92 0.07 0.95
WW-SCAD 5.69 0.54 0.18
LAD-Lasso 4.61 0.41 0.52
Lasso 5.78 0.27 0.49
adaLasso 6.14 0.36 0.33
Oracle MM 3.71 0 0

2

MM-Lasso 2.02 0.20 0.35
adaMM-Lasso 2.11 0.36 0.21
MM-NNG 2.33 0.48 0.24
ESL-Lasso 13.69 0.83 0.21
Sparse-LTS 3.18 0 1
WW-SCAD 3.36 0.55 0.21
LAD-Lasso 3.31 0.29 0.34
Lasso 3.05 0.25 0.26
adaLasso 3.24 0.41 0.15
Oracle MM 2.09 0 0
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Table 6
Results for Scenarios 3 and 4 with normal errors and 10% contaminated observations.
Maximum RMSEs, FNRs and FPRs over all outlier sizes are averaged over 100 replications.

Scenario Max. RMSE Max. FNR Max. FPR

3

MM-Lasso 2.48 0.21 0.15
adaMM-Lasso 2.72 0.37 0.05
Sparse-LTS 2.14 0.22 0
LAD-Lasso 3.63 0.39 0.08
Lasso 20.25 0.64 0.15
adaLasso 13.03 0.79 0.06
Oracle MM 2.09 0 0

4

MM-Lasso 4.97 0.36 0.08
adaMM-Lasso 5.08 0.45 0.04
Sparse-LTS 5.40 0.47 0.11
LAD-Lasso 5.13 0.45 0.10
Lasso 6.04 0.42 0.07
adaLasso 7.89 0.45 0.06
Oracle MM 3.68 0 0

Table 7
Results for Scenarios 5 and 6 with normal errors and 10% contaminated observations.
Maximum RMSEs, FNRs and FPRs over all outlier sizes are averaged over 100 replications.

Scenario Max. RMSE Max. FNR Max. FPR

5

MM-Lasso 4.14 0.20 0.48
adaMM-Lasso 4.17 0.30 0.31
ESL-Lasso 4.31 0.87 0.18
Sparse-LTS 4.85 0.16 0.90
WW-SCAD 4.92 0.67 0.17
LAD-Lasso 4.25 0.27 0.51
Lasso 5.69 0.09 0.44
adaLasso 6.03 0.20 0.34
Oracle MM 3.50 0.00 0.00

6

MM-Lasso 2.29 0.11 0.13
adaMM-Lasso 2.34 0.25 0.05
Sparse-LTS 1.97 0.17 0.01
LAD-Lasso 3.59 0.36 0.09
Lasso 14.13 0.94 0.09
adaLasso 14.09 0.97 0.03
Oracle-MM 1.99 0.00 0.00

Table 8
Results for Scenario 7 with normal errors and 10% contaminated observations. Maximum
RMSEs, FNRs and FPRs over all outlier sizes are averaged over 100 replications.

Scenario Max. RMSE Max. FNR

7

MM-Lasso 1.33 0.51
adaMM-Lasso 1.41 0.70
Sparse-LTS 4.06 0.01
WW-SCAD 8.72 0.31
LAD-Lasso 1.89 0.69
Lasso 5.34 0.85
adaLasso 5.85 0.87

In Fig. 1we show the RMSEs of the estimators as a function of the outlier size for Scenario 1. TheMM-Lasso has the overall
best behaviour, followed closely by the adaptive MM-Lasso. Note that even though the maximum RMSE of the LAD-Lasso is
in this case similar to that of the MM-Lasso, Fig. 1 shows that the overall behaviour of the MM-Lasso is substantially better.

Finally, we calculated the computing times of the estimators for Scenarios 1–4, for the case of normal errors and no
contamination. Since the computing times for the adaptive MM-Lasso and the MM-Lasso, and for Lasso and the adaptive
Lassowere very similar we only report the results for the adaptiveMM-Lasso and the adaptive Lasso. Computing timeswere
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Fig. 1. RMSEs as a function of outlier sizes for each of the estimators for the first scenario, with p = 8, n = 40, normal errors and 10% contamination.
RMSEs are averaged over 100 replications.

Table 9
Computing times in seconds for the estimators, averaged over 100 replications.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

adaMM-Lasso 3.46 7.58 44.59 9.05
MM-NNG – 22.04 – –
ESL-Lasso 0.30 0.93 – –
Sparse-LTS 0.78 1.77 31.12 27.35
WW-SCAD 0.27 9.73 – –
LAD-Lasso 2.22 2.37 10.31 10.25
adaLasso 0.05 0.14 0.99 0.30

averaged over 100 replications and calculations were performed on a 3.07 × 4 GHz Intel Core i7 PC. Results are shown in
Table 9. It is clear that the adaptive Lasso is orders of magnitude faster than the other estimators. The Sparse-LTS is generally
faster than the adaptive MM-Lasso, except for Scenario 4, where the adaptive MM-Lasso is almost three times faster.

5. Two real data sets

5.1. X-ray microanalysis of archaeological glass vessels data

First we analyse data from an electron-probe X-ray microanalysis of archaeological glass vessels, where each of n = 180
glass vessels is represented by a spectrumon 1920 frequencies. For each vessel the contents of thirteen chemical compounds
are registered. This data set appears in Janssens et al. (1998), and was previously analysed in Maronna (2011). We fit a
linear model where the response variable is the content of the 13th chemical compound (PbO) and the carriers are the 1920
frequenciesmeasures on each glass vessel. Since for frequencies below 15 and above 500 the values of xij are almost null and
show very little variability, we keep frequencies 15–500, so that we have p = 486. We apply the MM-Lasso, the adaptive
MM-Lasso, the Sparse-LTS, the LAD-Lasso, the Lasso and the adaptive Lasso estimators to the data.

TheMM-Lasso selects seven variables. The adaptiveMM-Lasso drops three of the variables selected by theMM-Lasso. The
Sparse-LTS selects three variables. The LAD-Lasso selects five variables. The Lasso selects seventy one variables, the adaptive
Lasso selects forty nine.
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Fig. 2. Boxplot of the cross-validated τ -scale of the prediction residuals for the X-ray microanalysis data.

Table 10
Predictors selected for the air pollution data.

Predictor MM-Lasso adaMM-Lasso MM-NNG Sparse-LTS LAD-Lasso Lasso adaLasso

JanTemp 1 0 1 1 1 1 1
JulyTemp 0 0 0 1 0 0 0
RelHum 0 0 0 1 1 0 0
Rain 1 1 1 1 1 1 1
Edu 1 1 1 1 1 1 1
PopDens 1 1 1 1 1 1 0
%NonWhite 1 1 1 1 1 1 1
%WhiteCollar 1 0 0 1 1 1 0
Pop 1 0 0 1 1 0 0
Pop/House 1 1 0 1 1 0 0
Income 0 0 0 1 0 0 0
LogHCPot 0 0 0 1 0 0 0
LogNOxPot 0 0 1 1 1 1 1
LogS02Pot 1 1 0 1 1 1 1

To assess the prediction accuracy of the estimators, we used 5-fold cross-validation. The criterion used was a τ -scale
of the residuals, calculated as in Maronna and Zamar (2002). We repeated the procedure for 100 random splits. A boxplot
of the τ -scales is shown in Fig. 2. The MM-Lasso, the adaptive MM-Lasso, the Sparse-LTS and the LAD-Lasso have similar
behaviours, whereas the Lasso and the adaptive Lasso have higher prediction errors.

5.2. Air pollution data

Now, we analyse a data set on air pollution and mortality in 60 metropolitan areas in the United States. The data
is available at http://lib.stat.cmu.edu/DASL/Datafiles/SMSA.html and was also analysed in Gijbels and Vrinssen (2015).
The response variable is age-adjusted mortality. The 14 predictor variables are: mean January temperature (in degrees
Fahrenheit),mean July temperature (in degrees Fahrenheit), relative humidity, annual rainfall (in inches),median education,
population density, percentage of non-whites, percentage of white collar workers, population, population per household,
median income, hydrocarbon pollution potential, nitrous oxide pollution potential and sulphur dioxide pollution potential.
Observation number 21 contains two missing values and hence was removed. Since the pollution variables were skewed,
we transformed them to logarithmic scale.

We applied all the estimators considered in the previous section to the data. WW-SCAD and ESL-Lasso could not be
included because the programs crashed.

Table 10 shows the predictor variables selected by each estimator. Annual rainfall, median education and percentage of
non-whites are selected by all the estimators. Note that Sparse-LTS selects all the variables.

To assess the prediction accuracy of the estimators, we used 5-fold cross-validation. We repeated the procedure for 100
random splits. The criterion used was again a τ -scale of the residuals. A boxplot of the τ -scales is shown in Fig. 3. We see
that the results for all the estimators, except the Sparse-LTS, are similar, with the MM-Lasso and adaptive MM-Lasso having
a slightly better performance than the competitors.

6. Conclusions

We have studied the robust and asymptotic properties of MM-Lasso and adaptive MM-Lasso regression estimators. We
derived the asymptotic distribution of MM-Lasso estimators and proved that adaptive MM-Lasso estimators can have the
oracle property.

http://lib.stat.cmu.edu/DASL/Datafiles/SMSA.html
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Fig. 3. Boxplot of the cross-validated τ -scale of the prediction residuals for the air pollution data.

Our simulation study shows that, in the scenarios considered in this paper, the MM-Lasso and adaptive MM-Lasso
estimators provide the best balance between prediction accuracy and sparse modelling for uncontaminated samples, and
stability in the presence of high leverage outliers. The adaptive MM-Lasso reduces the false positive ratio of the MM-Lasso,
with the unpleasant, and foreseeable, side effect of an increase in the false negative ratio.
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