
Blue-light-dependent inhibition of twitching motility
in Acinetobacter baylyi ADP1: additive involvement
of three BLUF-domain-containing proteins

Mariana Bitrian,1 Rodrigo H. González,1 Gaston Paris,2 Klaas
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Twitching motility in Acinetobacter baylyi ADP1 is inhibited by moderate intensities of blue light in

a temperature-dependent manner (maximally at 20 6C). We analysed the involvement of four

predicted blue-light sensing using flavin (BLUF)-domain-containing proteins encoded in the

genome of this strain in the twitching motility phenotype. All four genes were expressed both in

light and in darkness. A phylogenetic tree showed that one BLUF domain, ACIAD2110, grouped

separately from the other three (ACIAD1499, ACIAD2125 and ACIAD2129). Individual knockout

mutants of the latter, but not of ACIAD2110, fully abolished the light dependency of the twitching

motility response. Quantitative analysis of transcripts level of the three genes showed a decreased

expression in the light, with dark/light ratios of 1.65±0.28, 1.79±0.21 and 2.69±0.39, for

ACIAD2125, ACIAD2129 and ACIAD1499, respectively. Double and triple knockouts of

ACIAD1499, ACIAD2125 and ACIAD2129 confirmed the same phenotype as the corresponding

single knockouts. Complementation of all the single knockouts and the triple knockout mutants

with any of the three BLUF-domain-encoding genes fully restored the inhibition of twitching

motility by blue light that is observed in the wild-type strain. A. baylyi ADP1 therefore shows a high

degree of redundancy in the genes that encode BLUF-containing photoreceptors. Moreover, all

plasmid-complemented strains, expressing any of the BLUF- proteins irrespective of the specific

set of deleted photoreceptors, displayed increased light-dependent inhibition of twitching motility,

as compared to the wild-type (P,0.001). We conclude that the three genes ACIAD1499,

ACIAD2125 and ACIAD2129 are jointly required to inhibit twitching motility under moderate blue-

light illumination.

INTRODUCTION

The ability to colonize surfaces with the purpose of growth,
development or survival in different environments, is a
fundamental property of bacterial cells. Twitching motility is
a special kind of surface translocation, driven by cycles of
extension, tethering and retraction of type IV pilus (tfp)
fibres (Wall & Kaiser, 1999; Merz et al., 2000). Twitching
motility was first described by Loutrop as a flagella-
independent surface movement in Acinetobacter calcoaceti-
cus (Lautrop, 1962). Later, Henrichsen and Blom confirmed
the observations and portrayed twitching motility as an
intermittent and jerky movement of predominantly single

cells, although smaller moving aggregates could also occur
(Henrichsen & Blom, 1975). However, the underlying
mechanism of this movement was unknown until 1980,
when Bradley proposed that retraction of polar pili (later
referred to as tfp) was in fact its driving force (Bradley,
1980).

Twitching motility appears to be restricted to a group of
Gram-negative bacteria that includes important pathogens
of animals, plants, and fungi (Bieber et al., 1998; Dörr
et al., 1998; Fullner & Mekalanos, 1999; Hahn, 1997; Liles
et al., 1998; Liu et al., 2001; Craig et al., 2004; Collyn et al.,
2002). In addition, tfp was shown to be required for a
number of functions, namely protein secretion (Li et al.,
2007), biofilm formation (Li et al., 2007; O’Toole & Kolter,
1998; Chiang & Burrows, 2003), fruiting body development
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(Kaiser, 2003), virulence (Shi & Sun, 2002) and many
forms of horizontal gene transfer (Dubnau, 1999; Wolfgang
et al., 1998).

A great diversity of environmental factors, including media
components, regulate twitching motility, but the mech-
anism of action by which they affect this process is in most
cases poorly understood (Rashid & Kornberg, 2000; Terry
et al., 1991; Harshey, 2003). This is e.g. the case in
Pseudomonas aeruginosa where twitching motility is
responsive to iron (Patriquin et al., 2008), medium
viscosity (Glick et al., 2010), inorganic polyphosphate
(Rashid & Kornberg, 2000) and to phosphatidylethanola-
mine (Kearns et al., 2001), a lipid which has been shown to
enhance social gliding motility in Myxococcus xanthus
(Kearns & Shimkets, 2001). Another environmental signal
that has been shown to control motility is light, both in
phototrophic and chemotrophic organisms. In the cyano-
bacterium Synechocystis PCC6803, for instance, light and
carbon source regulate motility (and phototaxis) via a
cluster of genes, where signalling is linked to chromo-
phore-binding photoreceptor domains (Bhaya et al., 2001).

In silico analysis of genomes of non-phototrophic (i.e.
chemotrophic) bacteria led to the identification of
numerous putative photoreceptors (van der Horst et al.,
2007). Strictly focusing in prokaryotes, known photore-
ceptors that absorb in the blue region of the spectrum
include cryptochromes, BLUF-containing-proteins, LOV-
containing proteins (i.e. phototropins), all of them using
flavins as chromophores, and the photoactive yellow
proteins, using p-cumaric acid as the chromophore. So
far, researchers have demonstrated the physiological
relevance of light in a handful of chemotrophic bacterial
species. Blue-light responsive chemotrophs defined at
present are, Bacillus subtilis (Avila-Pérez et al., 2006),
Brucella abortus (Swartz et al., 2007), Escherichia coli
(Tschowri et al., 2009), Caulobacter crescentus (Purcell
et al., 2007), Stigmatella aurantiaca (Purcell et al., 2007)
Acinetobacter baumannii (Mussi et al., 2010) and A. baylyi
ADP1 (Hoff et al., 2009), and recently also Rhizobium
leguminosarum (Bonomi et al., 2012), each inhabiting
niches in which the ability to tightly regulate cell
physiology or development at the interface of soil or water
with air provides an adaptive advantage to the cell.

A. baylyi ADP1 expresses two types of pili (type I and type
IV), displays typical twitching motility on solid surfaces
(Henrichsen & Blom, 1975; Gohl et al., 2006) and encodes
in its genome putative light-sensing proteins of the BLUF-
family type. In silico alignments indicate that, in the genus
Acinetobacter, the majority of putative bacterial BLUF-
containing proteins are ‘short’ proteins composed of a
BLUF domain plus 30–70 additional amino acids, unlike
e.g. AppA in Rhodobacter sphaeroides and YcgF in E. coli,
which are ‘complex’ multi-domain proteins (Gomelsky &
Klug, 2002).

We previously reported that twitching motility in the
environmental strain A. baylyi ADP1 was affected by light

(Hoff et al., 2009). Molecular studies in the opportunistic
pathogen A. baumannii strain 17978 subsequently iden-
tified and characterized a blue-light sensing gene (blsA)
(Mussi et al., 2010). Interestingly, while A. baumannii has a
single BLUF-encoding gene, the A. baylyi ADP1 genome
harbours four sequences predicted to encode BLUF-
domain-containing proteins, a fact that according to
bioinformatic data, is not exceptional in the class of
Gammaproteobacteria (Losi & Gärtner, 2008). The rea-
son(s) for the need for such an abundance of these genes is
presently unknown. In this manuscript we addressed this
question and conclude that there is considerable redund-
ancy of the BLUF-encoding genes present in the A. baylyi
ADP1 genome. This conclusion is based on gene knockout
experiments and phenotypic analyses of the wild-type,
knockout mutants, and complemented strains.

METHODS

Strains, plasmids and culture conditions. A. baylyi ADP1 and its

isogenic mutants were grown at 30 uC in lysogeny broth (LB) in batch

culture at 200 r.p.m. Single A. baylyi ADP1 knockout mutants were

grown in LB supplemented with 15 mg kanamycin ml21.

Complemented strains were grown in LB with 15 mg tetracycline

ml21. Single, double and triple knockout mutants, constructed by

gene plus marker deletion, were grown at 30 uC and 200 r.p.m.

without added antibiotics. Strains and plasmids used in this work are

listed in Table 1.

Cell motility. Cell motility was assayed as previously described

(Mussi et al., 2010). Briefly, Petri plates were prepared with freshly

poured medium containing 10 g tryptone l21, 5 g NaCl l21 and a

variable concentration of agarose, adjusted according to the

temperature used in the assay. A 0.3 % (w/v) agarose concentration

was used for assays incubated at 20 uC or 24 uC during 48 h and 15 h,

respectively. For assays performed at 30 uC or 35 uC the plates were

prepared with 0.4 % (w/v) agarose and incubated for 15 h and 9 h,

respectively. The plates were inoculated on their surface with 3 ml of a

bacterial culture, growing exponentially in LB to OD600 0.3, and were

incubated in darkness or in red or blue light. The light sources were

red- and blue-light emitting diodes (LED), with emission peaks

centred at 634 nm and 456 nm, respectively, and an intensity of 5–

7 mmol m–2 s–1, as determined by a LI-COR LI-1800 spectro-

radiometer. After the indicated incubation periods, the diameter of

colonies expanding through twitching motility was measured. The

assays were performed in triplicate plates and the mean±SD was

calculated and plotted. In order to compare assays performed at

different temperatures the results were expressed as the ratio between

the diameters measured in dark versus light (D l21). To test the

hypothesis of increased blue-light dependent motility response of all

complemented knockout mutants (n512) with respect to the wild-

type strain (n54) we performed an ANOVA test on calculated D l21

motility ratios.

General DNA procedures. Genomic DNA was isolated with the Fast

DNA kit (Bio 101 System) according to the manufacturer’s

instructions. Plasmid DNA was isolated using commercial kits

(Promega). DNA digestions were performed with restriction enzymes

as indicated by the supplier (Promega) and fragment size was

analysed by agarose gel electrophoresis (Sambrook et al., 1989).

Construction of single mutants of A. baylyi ADP1. For single-

gene knockout mutants, internal segments of genes ACIAD1499,
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Table 1. CBacterial strains and plasmids used in this work EX

Strain or plasmid Relevant characteristics* Source or reference

Strains

Acinetobacter baylyi ADP1

A. baylyi ADP1 wild-type University of Amsterdam, The

Netherlands EO
Mutants of A. baylyi ADP1

1499KO ACIAD1499 : : nptII, Kmr This work

2110KO ACIAD2110 : : nptII, Kmr This work

2125KO ACIAD2125 : : nptII, Kmr This work

2129KO ACIAD2129 : : nptII, Kmr (46)

B++M1 DACIAD1499 This work

B++M2 DACIAD1499/ DACIAD2125 This work

B++M3 DACIAD1499/ DACIAD2125/DACIAD2129 This work

Complemented strains

1499KO-C1499 1499KO harbouring pWp1499, Kmr, Tetr This work

1499KO-C2125 1499KO harbouring pWp2125, Kmr, Tetr This work

1499KO-C2129 1499KO harbouring pWp2129, Kmr, Tetr This work

2125KO-C1499 2125KO harbouring pWp1499, Kmr, Tetr This work

2125KO-C2125 2125KO harbouring pWp2125, Kmr, Tetr This work

2125KO-C2129 2125KO harbouring pWp2129, Kmr, Tetr This work

2129KO-C1499 2129KO harbouring pWp1499, Kmr, Tetr This work

2129KO-C2125 2129KO harbouring pWp2125, Kmr, Tetr This work

2129KO-C2129 2129KO harbouring pWp2129, Kmr, Tetr This work

B++M3-C1499 B++M3 harbouring pWp1499, Tetr This work

B++M3-C2125 B++M3 harbouring pWp2125, Tetr This work

B++M3-C2129 B++M3 harbouring pWp2129, Tetr This work

Escherichia coli strains

DH5a Used for DNA recombinant methods Gibco-BRL

Top 10 Used for DNA recombinant methods Invitrogen

Plasmids

pGEM3zf(+) PCR cloning vector, Apr Promega

pAMB6K pGEM3zf(+) BamHI/PstI internal sequence ACIAD1499,

Apr, Kmr

This work

pAMB7K pGEM3zf(+) BamHI/PstI internal sequence ACIAD2110,

Apr, Kmr

This work

pAMB8K pGEM3zf(+) BamHI/PstI internal sequence ACIAD2125,

Apr, Kmr

This work

pK19 mobsacB Vector for allelic exchange in C. Glutamicum (pK18

oriVE.c., sacB, lacZa), Kmr

(47)

pK1499 pK19mobsacB derivative containing an overlap extension

PCR product composed of the up- and downstream

regions of ACIAD1499, Kmr

This work

pK2125 pK19mobsacB derivative containing an overlap extension

PCR product composed of the up- and downstream

regions of ACIAD2125, Kmr

This work

pK2129 pK19mobsacB derivative containing an overlap extension

PCR product composed of the up- and downstream

regions of ACIAD2129, Kmr

This work

pWH1266 E. coli-Acinetobacter shuttle vector, A. Iwoffi plasmid cloned

into pBR322 PvuII site, Apr, Tcr

(48)

pGp1499 Amplicon harbouring ACIAD1499 and its promoter cloned

into pGEM-T Easy; Apr

This work

pGp2125 Amplicon harbouring ACIAD2125 and its promoter cloned

into pGEM-T Easy; Apr

This work

pGp2129 Amplicon harbouring ACIAD2129 and its promoter cloned

into pGEM-T Easy; Apr

This work
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ACIAD2110 and ACIAD2125 were amplified by PCR using primers

1499KOPF/PR, 2110KOPF/PR and 2125KOPF/PR, respectively

(Table 2). Amplicons were cloned in the BamHI and PstI site of

pGEM-3zf(+) (Promega) and a kanamycin cassette was introduced

in the SmaI site, resulting in plasmids pAMB6K, pAMB7K and

pAMB8K, respectively. A. baylyi ADP1 was naturally transformed

with 2 mg of each plasmid as previously described (Palmen et al.,

1993) and transformants from single cross-over recombination events

were selected by plating on LB plates containing 15 mg kanamycin

ml21. To confirm the knockout mutagenesis and plasmid integration

into the A. baylyi ADP1 genome, PCR amplifications were performed

with a designed primer for the SP6 promoter region of pGEM-3zf(+)

and primers 1499PR, 2110PR or 2125PR, which bind to the 59 end of

each gene. A single knockout mutant of ACIAD2129 was kindly

provided by Genoscope (de Berardinis et al., 2008).

Construction of single, double and triple knockout mutants by

gene deletion of A. baylyi ADP1. The procedure described by Jones

& Williams (2003) was adapted to obtain multiple knockout mutants.

Briefly, flanking regions of ACIAD1499, ACIAD2125 and ACIAD2129

were amplified using primers 1499PF_up/1499PR_up, 1499PF_down/

1499PR_down; 2125PF_up/2125PR_up, 2125PF_down/2125PR_down;

2129PF_up/2129PR_up, 2129PF_down/2129PR_down, respectively

(Table 2). For each gene, flanking regions were joined by cross-over

PCR using PR-up and PR-down sequences and cloned in EcoRI and PstI

sites of pK19mobsacB (Schäfer et al., 1994) and transformed into E. coli

DH5a to generate plasmids pK1499, pK2125 and pK2129, respectively

(Table 1). A. baylyi ADP1 was naturally transformed first with 2 mg of

pK1499 as previously described (Palmen et al., 1993, 41; ) and selection

was made on LB plates, containing 15 mg kanamycin ml21. The selected

colonies had the plasmid inserted in one of the flanking regions and they

were kanamycin-resistant but were not able to grow in LB plates

containing 10 % (w/v) sucrose after incubation for 48 h at 16 uC. To

select double cross-over mutants, a single colony was grown for 24 h in

non-selective LB broth at 30 uC and 200 r.p.m. A dilution of the culture

was plated onto LB plates containing 10 % (w/v) sucrose and incubated

for 48 h at 16 uC. A sucrose resistant and kanamycin-sensitive colony

was selected in appropriate media and the ACIAD1499 deletion was

confirmed by PCR and automated DNA sequencing, using primers

PF1499DEL/PR1499DEL which anneal outside the flanking regions

(Table 2). The knockout mutant in ACIAD1499 (B++M1, Table 1)

was transformed with pK2125 and the selection procedure was repeated

in order to obtain the double knockout mutant (B++M2, Table 1).

Deletion of ACIAD2125 was then confirmed by PCR and automated

DNA sequencing, using primers PF2125DEL/PR2125DEL. To construct

the triple knockout mutant (B++M3, Table 1), B++M2 was

transformed with pK2129 and selection was performed as described

above. Deletion of ACIAD2129 was confirmed by PCR and automated

DNA sequencing, using primers PF2129DEL/PR2129DEL. Accordingly,

a triple knockout mutant was selected with the three putative BLUF-

domain-encoding genes, ACIAD 1499, ACIAD 2125 and ACIAD 2129,

deleted.

Construction of complemented strains. Chromosomal fragments

harbouring ACIAD1499, ACIAD2125 and ACIAD2129, including

their predicted promoter region were PCR-amplified using A. baylyi

ADP1 total genomic DNA and primers P1499-PF/P1499-PR, P2125-

PF/P2125-PR and P2129-PF/P2129-PR, respectively (Table 2). Each

amplicon was cloned into pGEM-T Easy, thus obtaining pGp1499,

pGp2125 and pGp2129, respectively, and subsequently subcloned into

the EcoRI and PstI site of pWH1266 in E. coli Top10, thereby

generating plasmids pWp1499, pWp2125 and pWp2129. A. baylyi

ADP1 single knockouts (1499KO, 2125KO and 2129KO) and

B++M3 triple knockout, were naturally transformed with 2 mg of

pWp1499, pWp2125 or pWp2129 as previously described (Palmen et al.,

1993) and tetracycline resistant colonies were selected. Thus, nine

complemented strains in the single knockouts (1499KO-C1499, 1499KO-

C2125, 1499KO-C2129, 2125KO-C1499, 2125KO-C2125, 2125KO-

C2129, 2129KO-C1499, 2129KO-C2125 and 2129KO-C2129) and three

complemented strains in the triple knockout (B++M3-C1499,

B++M3-C2125 and B++M3-C2129) were obtained (Table 1).

Protein alignment and phylogenetic analysis. Only

Gammaproteobacteria with complete genomes reported in the NCBI

database were selected for the phylogenetic analysis. BLUF domain

(pfam04940) sequences obtained from the UniprotKB database were

aligned using CLUSTAL W (Thompson et al., 1994) and Neighbour-

joining trees were produced with the MEGA5 program (Tamura et al.,

2011), using the Jones–Taylor–Thornton model of amino acid

substitution with a gamma distribution of 0.8. Confidence in

Neighbour-joining trees was determined by analysing 1000 bootstrap

replicates. Identical tree topologies were obtained when the

Maximum-likelihood and Minimal Evolution methods were used.

Biofilm assay. An overnight LB-grown culture of A. baylyi ADP1

was diluted 1/100 in fresh LB broth maintained at 30 uC. Two

millilitres of this dilution was inoculated into standard 15 ml

polypropylene tubes and incubated for 4 days stagnantly at 24 uC
or 30 uC, either in darkness or under white light (intensity ~ 11 mmol

m–2 s–1). After this period, supernatants were carefully removed with

a Pasteur pipette and the tubes were washed five times with PBS,

dried in the upside-down position, and stained with 1 % (w/v) crystal

violet (CV) for 20 min. The CV-stained cells were solubilized in 2 ml

of 96 % ethanol, incubated for 30 min with gentle mixing (80 r.p.m.),

after which the OD at 587 nm was measured. To normalize the

amount of biofilm formed to the total biomass present in each

sample, including pellicles, and attached and suspended cells,

additional tubes were included in the assay. For this determination,
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Table 1. cont.

Strain or plasmid Relevant characteristics* Source or reference

Strains

pWp1499 pWH1266 with a wild-type copy of ACIAD1499 with its

native promoter cloned into PstI and EcoRI sites, Aps, Tcr

This work

pWp2125 pWH1266 with a wild-type copy of ACIAD2125 with its

native promoter cloned into PstI and EcoRI sites, Aps, Tcr

This work

pWp2129 pWH1266 with a wild-type copy of ACIAD2129 with its

native promoter cloned into PstI and EcoRI sites, Aps, Tcr

This work

*Kmr, Kanamycin resistance; Apr, ampicillin resistance; Aps, ampicillin sensitive; Tcr, tetracycline resistance.
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tubes were centrifuged, supernatants were discarded, and the pellets

were resuspended in 2 ml of PBS, sonicated for 10 s at low power

with a thin probe, and vortexed for 1 min. The OD at 540 nm of the

resuspended cells was then measured and the results were expressed as

OD587/OD540. The assay was performed twice in quintuplicate.

Results were expressed as mean±SD.

Transcriptional analysis. Cells from six motility plates, incubated at

24 uC in the dark or under blue LED light, were washed with 2 ml of

RNAlater1 solution (Life Technologies). Samples from the same

incubations, i.e. dark or light, were pooled and processed as a single

sample. ‘Light’ and ‘dark’ samples were centrifuged at 5000g for

2 min at 4 uC and each pellet was subjected to total RNA extraction

with Trizol Reagent as indicated by the supplier (Invitrogen). Samples

were treated with DNase I (Promega) and retro-transcription was

performed with M-MLV reverse transcriptase (Promega). Samples

without enzyme added were included as negative controls. The cDNA

samples from ‘dark’ and ‘light’ conditions were used both in a

conventional PCR and for qPCR assays. Amplification was performed

with primers RT1499PF and RT1499PR, RT2110PF and RT2110PR,

RT2125PF and RT2125PR, RT2129PF and RT2129PR (Table 2)

corresponding to internal regions of ACIAD1499, ACIAD2110,

ACIAD2125 and ACIAD2129, respectively. A conventional PCR after

RT (RT <-PCR) was performed under the following conditions: 95 uC

%paper no. mic069153 charlesworth ref: mic069153&

Table 2. Primers EPused in this work

Primer 5 Nucleotide sequence EQ

1499KOPF 59-GCATCTGCAGATACGTTTTAACTCAAT-39

1499KOPR 59-GCATGGATCCATAAGGATTAAATTCGT-39

2110KOPF 59-GCATCTGCAGGAATTTAACTCAAATAATC-39

2110KOPR 59-GCATGGATCCAGGCAAAGTTGTTTTATC-39

2125KOPF 59-GCATCTGCAGAATGACATTACAGGGGT-39

2125KOPR 59-GCATGGATCCAGAGTCTGTAGTAAGCA-39

SP6PF 59-GCATGGATCCATTTAGGTGACACTATAGAATACT-39

1499PR 59-GCATCTGCAGTCAGGATGAATGAGGGTAAGGGTCA-39

2110PR 59-GCATCTGCAGCTATAAGAATGGATTAATTCCTCTG-39

2125PR 59-GCATCTGCAGCTAATGCATATCAGCTTGCTGAT-39

1499PF_up 59-GAGAATTCCACTTGAAGCACTTTATCAAC-39

1499PR_up 59-GTTATCAGGATGAATGAGGGATCTAACATAGGCCATAGAAGTTC-39

1499PF_down 59-GAACTTCTATGGCCTATGTTAGATCCCTCATTCATCCTGATAAC-39

1499PR_down 59-GCACTGCAGGTTTTCATTAAAACTGGCC-39

2125PF_up 59-GAGAATTCCCATAACCATTGGTGGGTG-39

2125PR_up 59-CAATTCTAATGCATATCAGCTTCTTACTTGCATACATCAAGC-39

2125PF_down 59-GCTTGATGTATGCAAGTAAGAAGCTGATATGCATTAGAATTG-39

2125PR_down 59-GCACTGCAGATTCAGGCAATATCATTTGAC-39

2129PF_up 59-GAGAATTCTATGTACTCACTCAAATAGAG-39

2129PR_up 59-GTACTTAAGTTTAAACATTATTTGGTAATTAAAACAATACAAATACTTG-39

2129PF_down 59-CAAGTATTTGTATTGTTTTAATTACCAAATAATGTTTAAACTTAAGTAC-39

2129PR_down 59-GCACTGCAGAGAATCATAACCAACCAGAGTC-39

PF1499DEL 59-ATTCTGCTGCATAAAGTCCAGC-39

PR1499DEL 59-ATTCCATTCTTCTCGATCAGC-39

PF2125DEL 59-GCTTATCATTATGATTTGCCAGTTG-39

PR2125DEL 59-ACCCACATCTTTGTTCTATCGATAC39

PF2129DEL 59-ACTTGGCAATTCGGTTATGC-39

PR2129DEL 59-CATGAGTATCGTCAATACCAAACG-39

P1499-PF 59-GACCTGCAGCACTAATTACGCTCAAACAGTCG 239

P1499-PR 59-GCGAATTCTCAGGATGAATGAGGGTAAGG-3§

P2125-PF 59-GACCTGCAGTTTCATGGTTCTGCATTAAACAG-3§

P2125-PR 59-CTAAGCTTCATCAATTCTAATGCATATCAGCTTG-39

P2129-PF 59-GACCTGCAGCGCAATAAAATCATTCCAGATTAA-3§

P2129-PR 59-CTAAGCTTTCCACTTTCAAATTAAATATAAAGGAT-3§

RT 1499PF 59-TGTCAGCAAAACCGCCAAACA-39

RT 1499PR 59-CGTATTGCTGTTGTCAAGATTTCCA-39

RT2110PF 59-AACGGGACCTTCTGGAAGAC-39

RT2110PR 59-CGTCTGCATAATACAGGACACC-39

RT 2125PF 59-CGAAACCATCGGAAAATCGATCC-39

RT 2125PR 59-TGGTGCAAACTTCATGCTCCAA-39

RT 2129PF 59-ATGCAAGAATGCTGTATGTGAG-39

RT 2129PR 5-GTGCACCACAAATAGAATTTG 239

RecA_PF 59-CGAATTGCATGGTAATCTTCATT-39

RecA_PR 59-CTTGACCAATACGGCGTATATCT-39

Blue light and twitching motility in A. baylyi ADP1
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for 5 min, 30 cycles of 95 uC for 45 s, 55 uC for 45 s and 72 uC for

1 min. qPCR was performed using SYBR green as fluorescence dye in

the Mx3005P2 QPCR System (Strategene) under the following

conditions: 95 uC for 5 min; 40 cycles of 94 uC for 15 s, 55 uC for

30 s and 72 uC for 30 s; finally 95 uC for 1 min and 55 uC for 30 s in

order to obtain the melting curve. Three biological samples were

analysed in triplicate and expression levels were normalized to the

recA expression level in each RNA sample.

RESULTS

Phylogenetic analysis of BLUF domains from
Gammaproteobacteria

In silico analysis of the five fully sequenced Acinetobacter
genomes revealed that all species harbour BLUF-coding genes.
While ten strains referred to as ‘A. baumannii’ carry only one
BLUF-coding gene, members of the other four species (A.
baylyi ADP1, A. calcoaceticus PHEA-2, A. oleivorans DR1 and
A. radioresistens WCA157) carry two or more predicted
proteins containing this domain. Particularly, A. baylyi ADP1
and A. radioresistens harbour four and five putative BLUF
sequences, respectively. The corresponding hypothetical genes
in the A. baylyi ADP1 genome were tagged ACIAD1499,
ACIAD2110, ACIAD2125 and ACIAD2129 in the NCBI
database.

A multiple sequence alignment of putative BLUF domains
from six Acinetobacter strains and Stenotrophomonas
maltophilia K279a is shown in Fig. 1(a). These two genera
have a pairwise distance average of 74.82 %. The alignment
revealed 11 highly conserved amino acids (indicated with
an asterisk). Seven of them are fully conserved; they are
identical to the corresponding residues of the canonical
BLUF domain, defined according to pfam04940. The other
four amino acids, Leu46, Phe54, Trp99 and Met101, are
generally considered as partially conserved residues for this
domain family (Gomelsky & Klug, 2002). This analysis
suggests that, in spite of the relatively low percentage of
identity among the four BLUF-containing protein
sequences of A. baylyi ADP1 (37–55 %), they all conserve
the amino acids involved in the flavin cofactor binding,
namely Tyr6, Asn37, Gln56 and Trp99, considered essential
in this type of photoreceptor (Fig. 1a).

A phylogenetic tree of putative BLUF domains with
members of the class of Gammaproteobacteria is shown in
Fig. 1(b). As several members of this class have genes coding
for ‘complex’ proteins composed of various domains, we
restricted the analysis only to the BLUF domain, consisting
of 90–98 amino acids length. The Neighbour-joining tree
built with these sequences showed that the six BLUF
domains encoded in the S. maltophilia K279a genome may
have been derived from a single (monophyletic) origin
(Group S), whereas the BLUF domains encoded in the
Acinetobacter genomes (Group A) are most likely diverted
into two branches, subgroup IA and subgroup IIA, as
supported by the bootstrap value of 66 %, thus either
pointing to two distinct origins, or to a post-speciation

gene-duplication event. Note that the putative A. baylyi
ADP1 BLUF-domain-encoding sequences display a distri-
bution that differs from the one expected according to the
species in which they have been identified, with ACIAD2110
corresponding to subgroup IA, while the other three BLUF-
domain-encoding genes, ACIAD2125, ACIAD2129 and
ACIAD1499, belong to subgroup IIA. Additionally, the
calculated pairwise distance average within Group A and
Group S were 47.57 % and 49.99 %, respectively, suggesting
that the differences between sequences within each category
(A and S) could be due to evolutionary mutation rate. Thus,
the retrieval of two or more putative BLUF-domain-
encoding genes in a single strain in the same category could
be due to gene duplication from a common ancestor,
followed by gene mutations. Furthermore, for A. baumannii,
the additional hypothesis of gene loss should be considered
to explain the presence of a single BLUF-domain-encoding
gene.

Analysis of the genetic organization in A. baylyi ADP1
indicated that the four BLUF-domain-encoding genes
harbour, in addition to the BLUF domain pfam04940, a
short ~ 55 aa C-terminal peptide that shows no significant
similarity to known domains or motifs from the PFAM
database, thus clustering the BLUF domains in this strain
among the category of the ‘short’ BLUF proteins.
Interestingly, the analysis of the predicted secondary structure
of the four BLUF-containing proteins indicates that their C-
terminal tail would consist in all cases of well-conserved two
alpha helices.

Blue light inhibits twitching motility in a
temperature-dependent manner

We have previously shown in A. baylyi ADP1 that surface
migration through twitching motility is modulated by
illumination with visible light (Hoff et al., 2009). Therefore
we analysed twitching motility under red and blue light
and determined that motility is specifically inhibited by
blue light (Fig. 2a). The assay was carried out at four
different temperatures, as shown in Fig. 2(b, c). When the
motility assay was performed at 30 uC or 35 uC the
migration ratio between darkness and light was close to
1.0, suggesting a modest effect of blue light on motility
under these conditions. However, when the assay was
performed at 24 uC or 20 uC this ratio increased to 1.5 and
1.6, respectively, which means that the inhibition of
motility by blue light was considerably more significant
at lower temperatures. All successive experiments were
therefore done at 24 uC, as a compromise between rate of
twitching-based migration and light sensitivity, which was
also the temperature selected for experiments performed in
A. baumannii (Mussi et al., 2010).

Other phenotypes assayed, including the transformation
frequency and the production of catechol type side-
rophores, were also affected by visible light (data not
shown). On the other hand, biofilm formation was not
responsive to light, as the amounts measured under blue
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light (OD587/OD60051.11±0.18) or darkness (OD587/
OD60051.27±0.13)= were not significantly different.

Three BLUF domains are required for blue-light
dependent inhibition of twitching motility

Assays of 1499KO, 2110KO, 2125KO and 2129KO single
knockout mutants revealed that the phenotype of inhibition
of twitching motility by blue light was abolished in three of
the strains, while 2110KO remained fully sensitive, just as
the wild-type strain (Fig. 3a). From these results we
concluded that the BLUF-containing proteins encoded by
ACIAD1499, ACIAD2125 and ACIAD2129, were actively
and simultaneously involved in the regulation of twitching
motility, whereas ACIAD2110 was not. Moreover, a double
knockout mutant (B++M2), lacking both ACIAD1499
and ACIAD2125, and a triple knockout mutant (B++M3)
lacking all these three genes active in regulation of twitching
motility (i.e. ACIAD1499, ACIAD2125 and ACIAD2129),
displayed the same phenotype, that is, no inhibition of
twitching motility by blue light (Fig. 3b). Note that the triple
knockout mutant does contain the ACIAD2110 gene, which
provides additional confirmation that the BLUF domain
that this gene encodes is not involved in blue-light-mediated
inhibition of twitching motility.

In order to solve the way in which the three BLUF-domain-
encoding sequences, ACIAD1499, ACIAD1225 and
ACIAD2129, are involved in the light-induced regulation
of the twitching response, the single knockout mutants were
complemented with a plasmid carrying one of the three
genes, cloned with its own promoter. As shown in Fig. 4(a–
c), all three single knockout mutants, complemented with
any of the three plasmids expressing a BLUF-domain-
containing protein (pWp1499, pWp2125 or pWp2129)
reversed the twitching motility inhibition phenotype to that
of the wild-type. These results confirm that all three genes
contribute to light inhibition of twitching motility and,
more interestingly, that the different proteins can
complement (and replace) each other in this property. In
addition, all plasmid-complemented strains revealed a
significant increase in the light-dependent inhibition of
twitching motility, as compared to the wild-type strain by
ANOVA test on D l21 ratios (P,0.001), suggesting that the
requirement for the simultaneous expression of the three
genes might be related to a low amount of transcript that
each of these three genes generates individually (see below).

Additional supporting evidence was revealed in the analysis
of the complemented strains obtained in the triple knockout
mutant (B++M3) host. As shown in Fig. 4(d), comple-
mentation of B++M3 with any of the three plasmids,
pWp1499, pWp2125 or pWp2129, presumably expressing
increased amount of BLUF protein from their endogenous
promoter, fully restored the light inhibition of the twitching
phenotype, indicating that any single photoreceptor protein
is able to restore the light response, if adequately expressed.
These results confirmed the redundancy of the three genes,
and contribute to the hypothesis that the necessity of the
three proteins for inhibition of twitching under blue light in
the wild-type strain might be due to a low amount of
transcripts and/or protein that each of the BLUF encoded
genes individually makes available.

Analysis of expression of putative BLUF-encoding
proteins in A. baylyi ADP1

Studies on the expression pattern of the four BLUF-domain-
encoding genes from of A. baylyi ADP1 was performed by
RT-PCR analysis, on samples of the wild-type strain
obtained from motility assays at 24 uC (Fig. 5). We
demonstrated that the four genes were expressed in the
light and in the dark. Quantitative analysis of transcripts of
the three genes involved in blue-light inhibition of twitching
motility (ACIAD1499, ACIAD2125 and ACIAD2129, but
not ACIAD2110) showed differences in transcript levels
between light and dark conditions. For all three genes,
expression levels were higher in the dark than in the light,
with measured dark/light ratios of 2.69±0.39 for
ACIAD1499, 1.79±0.21 for ACIAD2129 and 1.65±0.28
for ACIAD2125 >. This lower expression level of the genes
encoding BLUF-domain-containing proteins under blue
light complicates the straightforward interpretation of the
molecular mechanism of light inhibition of twitching
motility (see Discussion).

DISCUSSION

Genomics analyses

Blue-light sensing photoreceptor proteins of varied domain
composition have been described in non-phototrophic
organisms. Examples are the YcgF (BLUF-EAL) antire-
pressor in E. coli and the YtvA (LOV-STAS) protein in B.
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subtilis. Also histidine kinases (HK) have been described
that contain an N-terminal LOV domain and exhibit
increased autophosphorylation activity in the light (Losi &
Gärtner, 2008). Such kinases have also been found
responsible for processes, i.e. the regulation of cell
attachment in C. crescentus (Purcell et al., 2007), virulence
in the human/animal pathogen B. abortus (Swartz et al.,

2007) and presumably in the plant pathogen Pseudomonas
syringae (Losi, 2004). HKs with N-terminal GAF and/or
Bhy domains (i.e. bacteriophytochromes) were identified
in Deinococcus radiodurans and P. aeruginosa (Li et al.,
2010; Yang et al., 2008) while orphan LOV domains, that
lack an effector module, have been found e.g. in
Pseudomonas putida (Jentzsch et al., 2009).
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Fig. 2. Effects of light and temperature on A. baylyi ADP1 motility B. (a) Plate surfaces were inoculated with 3 ml of A. baylyi ADP1
cultures growing exponentially (OD60050.3), incubated in darkness (D) or under blue (BL) or red (RL) light at 24 6C during
15 h and motility diameters were measured. (b) Plate surfaces were inoculated with 3 ml of A. baylyi ADP1 cultures growing
exponentially (OD60050.3) and incubated in darkness (D) or under blue light (L) at 20 6C, 24 6C, 30 6C or 35 6C during 48 h,
15 h, 15 h or 9 h, respectively. (c) Ratio of colony diameter in dark versus light at different temperatures.

Blue light and twitching motility in A. baylyi ADP1

http://mic.sgmjournals.org 9



The combination of domains present in the majority of
bacterial light-sensing proteins studied to date gives an
explicit suggestion for their function. However, this is not
the case in representatives of the five species of the
Acinetobacter genus, since all fully sequenced Acinetobacter
genomes analysed in this work carry putative BLUF-
domain-encoding genes consisting of a pfam04940 domain
plus a ~55-amino acid long C terminus, without addition-
ally recognizable sequence signatures. A similar gene
architecture was found in pixD of Synechocystis sp. PCC
6803 (Yuan & Bauer, 2008) and papB of Rhodopseudomonas
palustris (Kanazawa et al., 2010). In this last strain biofilm
formation is regulated via a blue-light-dependent modu-
lation of the cellular c-di-GMP level, mediated by protein–
protein interaction between the short BLUF-domain-con-
taining protein, PapB, and the EAL-domain-containing
protein, PapA. Whether a similar complex between a
photoreceptor protein and putative output proteins operate
in Acinetobacter is currently unknown.

The four genes identified as ACIAD1499, ACIAD2110,
ACIAD2125 and ACIAD2129 in the A. baylyi ADP1
genome were transcriptionally active both in light and in

darkness, and none of the expressed BLUF-domain-contain-
ing proteins carried any accompanying structural motifs
such as HK, response regulator, GGDEF, HYD, EAL, STAS,
or helix–turn–helix type. Moreover, in A. baumannii ATCC
17978 the only BLUF-domain-encoding gene (blsA), which
is also of the ‘short’ type, is close to an upstream gene
encoding a putative BOF (binding of oligosaccharide)
protein that has been suggested to synergistically contribute
to a possible function (Mussi et al., 2010). In A. baylyi,
however, it is not possible to link the function of any of the
BLUF-domain-containing proteins with any of the genes
that are physically close in their genomic context. To date,
only a mutS gene (upstream ACIAD1499) and two genes
flanking ACIAD2125, corresponding to a (putative) side-
rophore biosynthesis protein and a ferredoxin, have been
found at close distance.

Blue-light regulation of biofilm formation has been
demonstrated in a number of non-phototrophs, namely E.
coli (Tschowri et al., 2009), C. crescentus (Purcell et al., 2007)
and Idiomarina loihiensis (van der Horst et al., 2009).
Surprisingly, we were not able to correlate the amount of
biofilm formation to the presence of light in A. baylyi ADP1,
as it has been reported in A. baumannii ATCC 17978 (Mussi
et al., 2010) and recently also in A. baylyi (Golic et al., 2013).

On the other hand, we observed inhibition of twitching
motility by blue light in a temperature-dependent manner,
similar to the results previously described for A. baumannii
(Mussi et al., 2010). Furthermore, temperature has been
found to strongly affect blue-light sensitivity, probably
owing to differential expression of the proteins at different
temperatures or due to involvement of a temperature-
dependent monomer–dimer equilibrium (Losi & Gärtner,
2012).

The mechanism of light inhibition of twitching
motility

A unique molecular mechanism underlying the blue-light
mediated inhibition of twitching motility cannot be
proposed yet. Blue light presumably converts the BLUF
domains from their dark (i.e. basal) state to their signalling
state. Upon illumination by blue light, the signalling state
of each of the three proteins can then (i) interact with the
pilus machinery to inhibit twitching motility or (ii) affect
the expression of gene(s) that in turn would modulate
twitching motility. Our current assays do not allow us to
distinct between these two possibilities. If the difference in
growth rate between wild-type, knockouts and comple-
mented strains is taken into account (20 % approximately
lower in the mutants due to marker insertions, plasmid
copy number, etc.) it may be considered that (the rate of)
twitching in the dark is unaffected by BLUF-domain
deletion or complementation (Fig. 3 and 4).

Light decreases the expression level of all three BLUF
domains involved in regulation of twitching motility
(Fig. 5). This presumably will give rise to an overshoot in
the extent of light inhibition of twitching motility, because
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Fig. 3. Effect of blue light on twitching motility in A. baylyi ADP1 and
knockout bluf mutants. Plates surfaces were inoculated with 3 ml
cultures growing exponentially (OD60050.3), incubated in darkness
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motility diameters were measured. (a) A. baylyi ADP1, 1499KO,
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B++M3 (lacking ACIAD1499, ACIAD2125 and ACIAD2129).
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the lower levels of transcripts will, in turn, also decrease the
amount of signalling state of the BLUF domains in the
light. The increased and persistent inhibition of twitching
motility observed in the complemented strains (Fig. 4) is in
agreement with this interpretation.

Redundancy of the BLUF-domain-encoding genes
and additive effect of the encoded proteins

Strikingly, three of the four BLUF-domain-encoding genes,
ACIAD1499, ACIAD2125 and ACIAD2129, but not

ACIAD2110, are simultaneously and additively involved
in providing light sensitivity to twitching motility in A.
baylyi. This conclusion is based on the observation that
knocking out any of these three genes, while the two others
are actively present fully abolished the phenotype of light
inhibition of twitching motility. For the gene labelled
ACIAD2110, that groups in a different branch compared to
the other three BLUF domains of A. baylyi ADP1, a
different origin could be proposed, compatible with a
horizontal gene transfer event, or a divergence occurring
before the speciation event (Fig. 1). Nevertheless, the null
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Fig. 4. Effect of blue light on motility of A.

baylyi ADP1, its single knockout mutants (KO),
its triple knockout mutant (B++M3) and their
corresponding complemented strains (C). (a)
Motility diameter measurements of A. baylyi

ADP1, 1499KO, 1499KO-C1499, 1499KO-
C2125 and 1499KO-C2129 after incubation
in darkness (black bars) or under blue light
(white bars) at 24 6C during 15 h for A. baylyi

ADP1, and 21 h for the single knockout
mutants and complemented strains. (b) Same
assay and condition as (a) using strains A.

baylyi ADP1, 2125KO, 2125KO-C1499,
2125KO-C2125 and 2125KO-C2129. (c)
Same assay and condition as (a) using strains
A. baylyi ADP1, 2129KO, 2129KO-C1499,
2129KO-C2125 and 2129KO-C2129. (d)
Same assay and condition as (a) using strains
A. baylyi ADP1, B++M3, B++M3-C1499,
B++M3-C2125 and B++M3-C2129.
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phenotype associated with this gene was an unexpected
result, in view of its similarity to the blsA gene identified in
A. baumannii ATCC 17978, and the response of this
organism to light (Fig. 5).

The three genes, ACIAD1499, ACIAD2125 and
ACIAD2129, may be considered functionally redundant,
as any of them, singly and independently, can restore the
blue-light inhibition on motility phenotype in the triple
knockout mutant, when expressed from a plasmid
(Fig. 4d). In contrast to the situation in higher organisms,
micro-organisms and particularly phages and viruses are
very economical with the coding capacity of their DNA.
Hence few examples of gene redundancy in bacteria are
available. Exceptions are e.g. the seven rrn operons in E. coli
(Stevenson & Schmidt, 2004) the four lactate dehydro-
genases in Lactococcus lactis (Gaspar et al., 2011), and the
three tcpD detoxification genes for the degradation of
haloaromatic compounds in Cupriavidus necator (Pérez-
Pantoja et al., 2009). In most cases there is a clear
physiological function for this redundancy: high transcript
levels that cannot be provided with a single promoter (in E.
coli and Lactococcus), and differentiated selectivity of the
separate promoters, or the advantage to rapid respond in
environments defined by fluctuations in resource avail-
ability, in the case of Cupriavidus. For the three BLUF
domains in A. baylyi ADP1 such a reason has not been
identified. Our data indicate that (i) the three BLUF-
domain-encoding genes are relatively poorly expressed as
compared to genes such as recA and rrn, (ii) all three
BLUF-domain-encoding genes are functionally replaceable
by each other with respect to the twitching motility
response under blue light and (iii) all are moderately
repressed by light. In contrast to higher plants, in which
specific physiological responses may be regulated by up to
four or five phytochromes (Franklin & Whitelam, 2005),
the triple BLUF-domain based regulation of twitching
motility in A. baylyi is the first example of the additive
involvement of multiple photosensory receptors in the
prokaryotic kingdom.

ACKNOWLEDGEMENTS

The authors are grateful to Dr Veronique de Berardins, for providing

the strain 2129KO. Funding was granted by the University of Buenos

Aires (UBACYT B095), CONICET (PIP 1937) and ANPCYT (PICT

2008-1155). M. B. is a recipient of a CONICET fellowship and G. P.

and C. B. N. are CONICET Fellows.

REFERENCES
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