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A B S T R A C T

Sensitivity analyses (SAs) identify how an output variable of a model is modified by changes in the input
variables. These analyses are a good way for assessing the performance of probabilistic models, like Bayesian
Networks (BN). However, there are several commonly used SAs in BN literature, and formal comparisons about
their outcomes are scarce. We used four previously developed BNs which represent ecosystem services provision
in Pampean agroecosystems (Argentina) in order to test two local sensitivity approaches widely used. These SAs
were: 1) One-at-a-time, used in BNs but more commonly in linear modelling; and 2) Sensitivity to findings,
specific to BN modelling. Results showed that both analyses provided an adequate overview of BN behaviour.
Furthermore, analyses produced a similar influence ranking of input variables over each output variable. Even
though their interchangeably application could be an alternative in our bayesian models, we believe that OAT is
the suitable one to implement here because of its capacity to demonstrate the relation (positive or negative)
between input and output variables. In summary, we provided insights about two sensitivity techniques in BNs
based on a case study which may be useful for ecological modellers.

1. Introduction

Bayesian Networks (BN) consist on a set of variables with a prob-
abilistic distribution, and their outcome assesses how likely events are
and how these probabilities change with external interventions (Jensen
and Nielsen, 2007; Korb and Nicholson, 2004). A BN can be represented
visually as a set of nodes connected by direct links (Fig. 1). Nodes re-
present variables and the probability distribution of their possible
states, while links represent causal relationships between nodes
(Kristensen and Rasmussen, 2002). Nodes with no incoming arrows are
parent nodes (i.e. input variables); while nodes with incoming arrows
are child nodes (i.e. parameters) (McCann et al., 2006). Each node can
take different states (e.g. high/medium/low) which are clusters de-
limited by intervals or ranges (Fig. 1). The number of states is depen-
dent on the information conveyed and the possible values that they can
get (Dlamini, 2010). Parent nodes have marginal probabilistic dis-
tributions that represent the frequency of each state, while child nodes
are characterized by a conditional probability table that represents a
factorial combination of its parent nodes along with their probabilistic
values (Chen and Pollino, 2012).

Currently, BNs are an increasingly accepted method for modelling
uncertain and complex domains, such as ecosystems (Uusitalo, 2007).
The conceptual representation of BN results (i.e. graphical networks) is
very useful for an intuitive presentation of functional relationships
within complex systems. Their advantages are commonly related to the
flexibility for dealing with both expert knowledge and system un-
certainty (Borsuk et al., 2004; Castelletti and Soncini-Sessa, 2007). BNs
have been used for modelling in a wide range of disciplines like psy-
chology (López Puga et al., 2007), education (García et al., 2007),
ecological risk assessment (Pollino et al., 2007), agroecosystems sus-
tainability (Ticehurst et al., 2007) and ecosystem services provision
(Rositano and Ferraro, 2014), among others. Regarding natural re-
source management, BNs are able to both capture the influence of
management decisions on key ecological variables, and to help decision
makers on selecting the best course of action (McCann et al., 2006).

As in other modelling methodologies, BNs require the assessment of
their performance. Validation is “a demonstration that a model within
its domain of applicability has a satisfactory range of accuracy con-
sistent with the intended application of the model” (Rykiel, 1996).
Model validation is not an easy process and, as a consequence, should
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be done with multiple strategies (Bert et al., 2014). Rykiel (1996) stated
that sensitivity analyses (SAs) could be considered a strategy of model
validation. Results of SAs are able to highlight the critical aspects of
model development and data collection by identifying the impact of a
change in input variables over the output variable (Newham et al.,
2003; Thogmartin, 2010). Two groups of SAs are recognized: local and
global (Saltelli et al., 2000). In local SA, parameter values are changed
one at a time, while fixing all other variables. These SAs are not able to
capture potential interactions among input variables as well as they
partially explore parametric aspects (Cariboni et al., 2007; Hu et al.,
2015; Saltelli and Annoni, 2010). Global SA involves varying all or
several input variables at the same time, thus allowing identification of
non-linear interactions among parameters (Confalonieri et al., 2010;
Mackler-Pick et al., 2011). Lee et al. (2015) describe many techniques
to carry out global SA. Taking this into account, environmental mod-
ellers need to be aware about the particularities of sensitivity meth-
odologies in order to conduct a proper validation process (Cariboni
et al., 2007).

Validating BNs is not simple to carry out (Payraudeau and van der
Werf, 2005). In current practice, if a user has sufficient data on the
phenomenon of interest, this data may be used to validate model pre-
dictions. However, BNs are commonly used to model complex systems
with limited data (Chen and Pollino, 2012). Because of this, expert
opinion could be an option to validate the structure, discretization and
parameterization of bayesian models (Korb and Nicholson, 2004). Al-
though expert test is quite simple, it is not sufficient to verify model
validity in an independent way (Pitchforth and Mengersen, 2013).
Aguilera et al. (2011) reviewed the use of BNs for environmental
modelling and highlighted that ca. 40% of the studies showed no type
of model validation, while only 13% of the models reviewed were va-
lidated through any kind of SA, like variance reduction (e.g. Marcot
et al., 2006; Stelzenmüller et al., 2010), one-at-a-time (e.g. Bednarski
et al., 2004; Chan and Darwiche, 2004; Coupé and van der Gaag, 2002;
Coupé et al., 1999), sensitivity to findings (e.g. Chen and Pollino, 2012;
Grêt-Regamey and Straub, 2006; Marcot, 2012; Pollino et al., 2007;
Smith et al., 2007) or Latin hypercube sampling method (e.g. Borsuk
et al., 2004). One-at-a-time (OAT) is the simplest methodology in order
to obtain the effect of variation of parameter estimate on posterior
probabilities (Coupé et al., 1999). Nonetheless, some authors have
pointed out that this SA is not suitable for probabilistic methodologies
(Chen and Pollino, 2012). A SA currently available in BN software
packages, like Hugin (Madsen et al., 2005) or Netica (Norsys Software
Corp., 2009), is "Sensitivity to findings" (STF) which is able to assess
how much a finding at one variable will likely change the beliefs at
another variable (Korb and Nicholson, 2004). It should be carried out
with the BN previously populated since results change according to the
quantitative information included into the model; therefore, this ana-
lysis is recalculated each time new information is collected. As well as
OAT, this SA is only done to one variable at a time (Uusitalo, 2007).
Despite conflicting opinions on which SA is the most appropriate

(Saltelli and Annoni, 2010), BN modellers should be aware about ad-
vantages and disadvantages when using each approach.

In BN literature, both kinds of SAs have been used to evaluate
bayesian models; however, their comparison is lacking. A case study
could be useful for doing a first attempt to highlight differences and
similarities between these SAs. For that reason, we used previously
developed BNs originally applied for assessing four ecosystem services
provision (i.e. Soil Carbon balance, Soil Nitrogen balance, N2O emission
control, and Groundwater contamination control) in the Pampa region
(Argentina) (Rositano and Ferraro, 2014). Therefore, the objective of
this paper was to evaluate and compare the information provided by
two local SAs: one used in BNs but more commonly in linear modelling
(OAT), and one specific for BN modelling (STF).

2. Methodology

2.1. Bayesian models development

Ecosystem services (ES) offer the possibility to evaluate changes in
ecosystems caused by human action and to resolve conflicts arised by
different land uses (Vihervaara et al., 2010). In this sense, Rositano and
Ferraro (2014) developed a framework to assess changes in ES provi-
sion as a consequence of environmental variability and agricultural
management practices in Pampean agroecosystems (Argentina). The
framework was based on two tools capable of dealing with ecosystems
complexity and uncertainty: conceptual networks and probabilistic
networks (i.e. BNs).

First, a conceptual network was developed representing the set of
environmental and productive variables that determine the provision of
eight ES in the Pampa Region. ES selected were: 1) Soil Carbon (C)
balance, 2) Soil Nitrogen (N) balance, 3) Soil structure maintenance, 4)
Soil water balance, 5) N2O emission control, 6) Biotic adversities reg-
ulation, 7) Groundwater contamination control, and 8) Species richness
maintenance. This list is based on an ES concept which not only in-
cludes the attributes and processes of those ecosystems that support ES,
but also strictly services. The conceptual network was the result of a
bibliographic review and an expert knowledge elicitation through semi-
structured interviews. Experts considered were researchers involved in
several areas related to agroecosystems functioning (e.g. crop fertili-
zation, contamination by fertilizers, nutrient dynamics, groundwater
quality, soil fertility, weed ecophysiology). Researchers were selected
within the academic field of Facultad de Agronomía, Universidad de
Buenos Aires (FAUBA) as well as within other national universities and
institutions. The expert panel was finally composed by 20 researchers.

Second, four sub-networks detached from the general conceptual
network were selected in order to parameterize them with BNs. These
sub-networks were: 1) Soil C balance, 2) Soil N balance, 3) N2O emis-
sion control, and 4) Groundwater contamination control. The para-
meterization process consists on obtaining the conditional probabilities
of child nodes (parameters) based on a conceptual network previously

Fig. 1. Example of a Bayesian Network with three variables or nodes
(A, B and C). Nodes A and B are parent nodes, while node C is a child
node. Each node has three states (High, Medium and Low) with a
uniform probability distribution.

F. Rositano et al. Ecological Informatics 41 (2017) 33–39

34



developed (Bressan et al., 2009). Prior to this process, it was necessary
to determine the number of states (e.g. three states: high, medium, and
low) of each node. In our case, nodes had between two and three states
(see Appendix 1). Conditional probability tables were the result of a
process of knowledge elicitation from a subset of those experts inter-
viewed during the previous stage.

Finally, parent nodes (input variables) were quantified with en-
vironmental and productive databases from three agricultural areas in
the Pampa region with different agro-ecological characteristics.
Environmental databases were provided by the National Meteorological
Service and the National Institute of Agricultural Technology, while
productive databases were obtained from the Argentine Association of
Regional Consortia of Agricultural Experimentation. Then, ES provision
level was obtained for ten growing seasons (2000/2001–2009/2010)
and three crops (wheat, maize and soybean).

2.2. Sensitivity analyses

Before quantifying input variables (parent nodes) with environ-
mental and productive information, we needed to assess the perfor-
mance of the four bayesian models developed. In order to do this, we
selected two local SAs: one used in BNs but more commonly in linear
modelling (OAT), and one specific for BN modelling (STF).

2.2.1. One-at-a-time
The simplest method to perform a SA is through OAT, in which only

one input variable varies at a time while the others remain fixed
(Hamby, 1994). Generally, each variable in the model could be changed
by a specific amount; for example, all variables were to be increased or
decreased by 20% of their original value. For each variable change, the
percentage impact on the output variable may be recorded. Through
this analysis, it is possible to rank input variables according to their
influence on the output variable.

In this case, OAT requires a baseline scenario in which input vari-
ables had a uniform probability distribution in order to compare this
outcome with outcomes obtained after the analysis. All parameters
remained fixed throughout the analysis, while each state of each input
variable was varied one at a time alternatively. That is, a particular
state reaches a value of 100% leaving the remaining two states at 0.
Results for each state of the output variable were compared to the re-
sults obtained from the baseline scenario through the following for-
mula:

=
−

×VBS [%] (Scenario Scenario )
Scenario

100i
new baseline

baseline (1)

where VBSi (Variation from the Baseline Scenario) is the relative
change in model outcome after changes in the selected input variable (i)
(Scenarionew) referred to model outcome under the fixed baseline sce-
nario (Scenariobaseline).

We obtained a VBS value for each state of input variables over each
state of the output variable. In our case, VBS was shown for one state
(High) of input variables considering that the response for the other
states remain in the same magnitude but to the opposite side.
Ecologically, we were only interested in one state of each output vari-
able (i.e. the one directly related to agroecosystems sustainability); that
is, High C content in soil, High Available N in soil, Low Denitrification,
and Low NO3 concentration in groundwater (Rositano and Ferraro,
2014) (see Appendix 1). Final results were represented in Tornado
diagrams.

2.2.2. Sensitivity to findings
The second SA was done using the STF function from Netica (Chen

and Pollino, 2012). STF can use the properties of d-separation (Pollino
et al., 2007) which determines whether or not evidence (or findings)
about one variable may influence belief in a target variable (Albrecht
et al., 2014; Korb and Nicholson, 2004). Through this process, it is

possible to rank input variables according to their influence on the
model outcome. Unlike what happens in OAT, an influence value is
reported for the whole variable, not for each state. The influence value
obtained will change as findings (or evidence) arrive to one or more
input variables, so this analysis may need to be recomputed at each
stage. Even though it is not considered a problem to do this analysis
each time an input variable is quantified, it is possible to obtain a dif-
ferent ranking on each occasion. In BN literature, STF is commonly used
after quantifying input variables (e.g. Chen and Pollino, 2012). To
avoid this, we decided that input variables would have a uniform
probability distribution. We made this assumption because in this way
we make results comparable to those obtained with OAT.

The sensitivity of a selected variable could be measured by two
indicators: 1) entropy, and 2) mutual information (Pollino et al., 2007).
Entropy is the uncertainty (“self-information”) of a single random
variable, while mutual information is the reduction in uncertainty (i.e.
it measures the dependency of two variables). As they are interrelated
concepts (i.e. the relationship between both indicators is derived from a
mathematical theorem), we decided to focus our analysis on entropy.

Entropy, in ecological terms, is a measure of disorder in a system
(Wilkinson, 1963). Considering BNs, entropy (H) is commonly used to
evaluate the randomness or uncertainty of a variable characterized by a
probability distribution. Its formula is:

∑= −
∉

H(X) P(x) log P(x)
x X (2)

where X is a particular variable, and P(x) is the probability distribution
which characterizes that variable.

The Shannon (1948) measure of “entropy of information” provides a
measure for ranking information sources. It is based on the assumption
that the uncertainty regarding any variable X characterized by a
probability distribution P(x) can be represented by the entropy function
(Grêt-Regamey and Straub, 2006) (Fig. 2). Entropy (H(X)) depends on
the probability Pr(X = 1) that X takes when the value is 1. When Pr
(X = 1) = 0.5, all possible outcomes are equally likely (Fig. 2). Thus,
the result is unpredictable and entropy is maximum. For example, a rare
event has a lot of information in order to explain the system, while a
very common event has little information (Abramson, 1981). In the
latter, a situation highly organized (Pr(x) = 1) is not characterized by a
large degree of randomness; that is, the information (or the entropy) is
low (H(X) = 0) (Shannon and Weaver, 1964) (Fig. 2).

2.3. Comparison of sensitivity analyses

Both sensitivity techniques have different units in which their out-
comes are shown. In order to compare the output of both SAs, we
needed to standardize results. Through z-score transformation
(Sedgwick, 2014), we could compare them as this method has no units
(i.e. numerator and denominator of the ratio are measured in the same
units). Its formula is:

Fig. 2. Entropy (H(X)) curve associated to a range of probabilities.
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Fig. 3. Sensitivity analyses applied to four Bayesian Networks. Sensitivity analyses were: a) One-at-a-time, and b) Sensitivity to findings. Each pair of graphs (A to D) corresponded to one
Bayesian Network. In the case of One-at-a-time, the output variable for each Bayesian Network was: A) High C content in soil, B) High available N in soil, C) Low denitrification, and D)
Low NO3 concentration in groundwater. In the case of Sensitivity to findings, the output variable for each Bayesian Network was: A) C content in soil, B) Available N in soil, C)
Denitrification, and D) NO3 concentration in groundwater. VBS = Variation from the Baseline Scenario; C = Carbono; N = Nitrogen.
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=
−

z
x μ

σ (3)

where μ is the mean and σ is the standard deviation of the population.
This was applied to results obtained from OAT and STF.

3. Results

Both analyses, OAT and STF, produced similar groups of influential
variables in our models, although they used completely different
computing methods (Fig. 3). Crop yield, Nitrogen fertilization, and
Rainfall were the main variables influencing C content in soil, Available
N in soil, and Denitrification, respectively (Fig. 3A, B, C). NO3 con-
centration in groundwater was most influenced by Rainfall and Ni-
trogen fertilization (Fig. 3D). Rainfall had the least influence over
Available N in soil in both SAs (Fig. 3B). Soil erosion, Crop yield, and
Temperature had the least influence over Denitrification in both cases
(Fig. 3C). Crop yield and Temperature had the least influence over NO3

concentration in groundwater in both SAs (Fig. 3D). Values of input
variables which were used to make the ranking are shown in Appendix
2.

OAT detected the direction (positive or negative) of the most in-
fluential variables, while STF did not; that is, positive and negative
values were obtained during OAT (Fig. 3). Crop yield increased High C
content in soil, while Soil erosion decreased it (Fig. 3A). Nitrogen fer-
tilization increased High Available N in soil, and Nitrogen losses de-
creased it (Fig. 3B). Rainfall increased Low Denitrification, while
Temperature decreased it (Fig. 3C). Nitrogen fertilization increased
Low NO3 concentration in groundwater, and Crop yield decreased it
(Fig. 3D).

Input variables had similar z-score values between OAT and STF
analyses showing that the ordering of these variables by their sensitivity
is the same regardless the methodology applied (Fig. 4). In the case of C
content in soil, Temperature and Crop yield had a similar z-score value
between SAs, while Rainfall and Soil erosion were slightly different
(Fig. 4A). In the case of Available N in soil, N losses had different z-
score values, while Temperature, Rainfall, Crop yield and Fertilization
had similar ones (Fig. 4B). In the case of Denitrification, Rainfall had
similar z-score values, while Temperature, Soil erosion, Crop yield,
Fertilization and N losses differed in them (Fig. 4C). In the case of NO3

concentration in groundwater, Soil texture, Irrigation, Rainfall and
Temperature had different z-score values, while Fertilization and Crop
yield had similar ones (Fig. 4D).

4. Discussion

The main goal of our work was to compare two SAs with different
methodological characteristics for assessing BNs in one case study. As
was previously introduced, these two analyses measure the effects of
individual variable changes; therefore, synergistic effects of changing
multiple variables are not detected even though they may be relevant
for BNs' predictions (Coupé et al., 1999). Whether global SA techniques
could be also employed, such as Latin hypercube sampling method (e.g.
Borsuk et al., 2004), two or more variables studied simultaneously
could imply difficulties to the interpretation of results (Coupé and van
der Gaag, 2002). Based on this, the choice made here (in terms of local
SA techniques selected) seems sufficient to provide a general overview
of the structural performance of four BNs developed in Rositano and
Ferraro (2014). Despite the fact that we obtained the same ranking
order of influence of input variables over an output variable, results
highlighted the existence of differences and similarities between OAT
and STF.

On one hand, a comparison was made according to different aspects
of input and output variables. During OAT, we had the opportunity to
assess in which way each state of input variables modifies a particular
state of the output variable. That is, an input variable increased or

diminished the output variable. For example, High Crop yield increased
High C content in soil, while High Soil erosion, High Rainfall and High
Temperature reduced it (Fig. 3A). The identification of these impacts
(positives or negatives) was made possible by Tornado diagrams. A
positive impact is shown at the right side of zero, while a negative
impact at the left side of zero. This is true only for High C content in soil
and High Available N in soil; but in the case of Low Denitrification and
Low NO3 concentration in groundwater, it goes in the opposite direc-
tion because we are interested in conserving these externalities in a low
degree. During STF, it was not possible to determine if the output
variable would increase or diminish through the change on a certain
input variable (Fig. 3). STF only informs the ranking of variables, from
the most to the least affecting model output. Considering these ob-
served differences, if there is a need to understand the relation (positive
or negative) between input and output variables, OAT should be used.

The identification of the most relevant input variables in a model is
necessary in order to consider, for example, their usefulness (Bednarski
et al., 2004; Confalonieri et al., 2010). Sometimes, such results have led
to changes in the network structure. This is the case of input variables
with 0 entropy which seem not to play an important role in BNs and,
hence, authors have removed them from their models (e.g. Chen and
Pollino, 2012). However, an input variable with “no effect, does not
mean it does not affect” the output variable (Saltelli and Annoni, 2010).
We could check this by applying OAT because it showed that input
variables with this characteristic (i.e. 0 entropy in STF) did increase or
diminish the output variable in a lesser extent than remaining input
variables (Fig. 3). This is the case of Rainfall and Temperature in High
Available N in soil (Fig. 3B), Soil erosion, Crop yield and Temperature
in Low Denitrification (Fig. 3C), or Crop yield and Temperature in Low
NO3 concentration in groundwater (Fig. 3D). In STF analysis, all these
input variables had entropy equal to zero implying that these variables
could be excluded from the model. However, they did play a role: in-
creasing or diminishing the model outcome. Here, this could be only
discovered with the OAT analysis. Therefore, the need to keep an input
variable can arise from applying alternative SA methods. If every sen-
sitivity technique shows that an input variable does not matter, the
modeller can decide to take it out from the model (and viceversa).

On the other hand, we obtained the same ranking order of influence
of input variables over each output variable in spite of their different
magnitudes of change (Fig. 3). This type of result was also obtained by
Confalonieri et al. (2010) when applying alternative global SA techni-
ques to the rice model WARM. It is also true that these results could be
obtained because of the structure of our models and the range of input
values considered. From this ranking, it could be possible to set those
input variables in which greater emphasis upon parameterization and
quantification should be made (Chen and Pollino, 2012). However,
comparing magnitudes of change was not possible because these SAs
assessed models with different units. Similarity in z-score values en-
countered (Fig. 4) set the idea that not only the ranking but also the
magnitude are comparable between sensitivity methodologies. More-
over, it could be interesting to understand whether changes in input
variables magnify or attenuate the output. Then, if variations in input
variables are not proportional or non-linear, uncertainty will propagate
through the model reaching the output variable. In relation to this, Bert
et al. (2007) proposed a simplified method based on the evaluation of
model sensitivity at extreme values of the input variables to evaluate
the CERES-Maize model non-linear responses. Considering these ob-
served similarities, OAT and STF could be applied interchangeably,
meaning that either one could be used in this case study.

Finally, this comparison was made without populating input vari-
ables with realistic quantitative information from a particular study site
during STF, which is usually seen in BN literature (e.g. Chen and
Pollino, 2012; Grêt-Regamey and Straub, 2006). Populating input
variables implies fulfilling them with quantitative information in a
probabilistic way. In this case, we did both SAs with no quantitative
information (i.e. productive and environmental databases) not because
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of lack of data but because we decided to perform them with a uniform
probability distribution in their input variables in order to make both
methods comparable. Thus, we do not know if we would have obtained
the same ranking of input variables if we had populated them. Our issue
highlights the performance of STF in cases where no quantitative in-
formation related to a study site is used. Therefore, our future work
should be focused on the population of input variables with quantita-
tive information from different study sites in order to assess the ranking
of input variables and compare these results with OAT.

5. Conclusions

This paper provided insights about SA methodologies in BNs based
on a case study. Specifically, we presented a comparison of two local
SAs: one commonly used in linear models (OAT), and another popular
within bayesian modellers (STF). We highlighted the existence of dif-
ferences and similarities between both SAs. All these preliminary
identified pros and cons could be of key importance for ecological
modellers since SA techniques are an aid in “understanding and ma-
nipulating complex models” (Confalonieri et al., 2010), such as OAT
and STF for BNs. Even though their interchangeably application could
be an alternative in our bayesian models, we believe that OAT is the

suitable one to implement here because of its capacity to demonstrate
the relation (positive or negative) between input and output variables.
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