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Abstract
The Fast Fourier Transform–based method, originally introduced by Moulinec and

Suquet in 1994 has gained popularity for computing homogenized properties of

composites. In this work, the method is used for the computational homogenization

of the elastic properties of cancellous bone. To the authors' knowledge, this is the

first study where the Fast Fourier Transform scheme is applied to bone mechanics.

The performance of the method is analyzed for artificial and natural bone samples of

2 species: bovine femoral heads and implanted femurs of Hokkaido rats. Model

geometries are constructed using data from X‐ray tomographies, and the bone tissue

elastic properties are measured using microindentation and nanoindentation tests.

Computed results are in excellent agreement with those available in the literature.

The study shows the suitability of the method to accurately estimate the fully

anisotropic elastic response of cancellous bone. Guidelines are provided for the

construction of the models and the setting of the algorithm.
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1 | INTRODUCTION

Bones are hierarchical bio‐composite materials with complex
multiscale structural geometry.1 Bone tissue is arranged either
in a compact pattern (cortical bone) or a spongy pattern (cancel-
lous bone). The cancellous structure is organized into a 3‐dimen-
sional lattice of bony processes, called trabeculae, arranged
along lines of stress. The trabeculae consist of a nanometric
extracellular matrix that incorporates hydroxyapatite, the bone
mineral that gives bones their rigidity; and collagen, an elastic
protein, which improves fracture resistance. Cancellous bone,
also called trabecular bone, is found at the ends of long bones,
proximal to joints and within the interior of vertebrae.2

Advancements in 3D imaging technology and computa-
tional power have enhanced the classical methods to evaluate
wileyonlinelibrary.com/jo
the mechanical properties of cancellous bone, which are
relevant to assess the risk of osteoporotic fracture.3,4 High‐
resolution finite element (FE) models are constructed from
bone microarchitectures that are digitized by using micro–
Computed Tomography (micro‐CT) and in vivo high‐
resolution peripheral quantitative CT scanners. Finite element
analysis (FEA) are used to compute bone effective elastic
properties,5-8 to predict bone strength9 and as part of
sophisticated multiscale analysis.10,11 These models assign
the trabeculae the mechanical properties of the mineral
matrix, which is assumed linear elastic, and it is experimen-
tally characterized via microindentation and nanoindentation
tests.12,13 More elaborated nonlinear material behaviors are
also available, eg, Schwiedrzik et al14 introduced a cohesive‐
frictional model to capture the effects leading to cancellous
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bone failure. There are also models that account for the
presence of the interstitial fluids in cancellous microstructure
to assess viscous effects15,16 and bone permeability.17

Another approach consists in the use of equivalent artifi-
cial cancellous microstructures.18,19 This method has been
widely accepted empirically since trabecular microstructures
approximately resemble a few typical patterns consisting of
3‐dimensional interconnected bars and/or plates. Artificial
bone microstructures are typically described by a reduced
number of geometrical parameters, what makes them practi-
cal to deal with qualitative studies of bone morphometry20

and simulations of bone remodeling processes.21,22 Such
equivalent microstructural models are typically designed
and analyzed using FEA.

A Fast Fourier Transform (FFT)–based method, originally
introduced by Moulinec and Suquet,23 has gained popularity
for computing the homogenized properties of composites.
The method is based on solving the Lippmann‐Schwinger
equation iteratively making use of the Green operator associ-
ated to a reference linear material. The FFT method has found
applications in linear elasticity,24 thermoelasticity,25 thermo-
plasticity,26 residual stresses27 as well as in thermal,28 electri-
cal,29,30 coupled thermo‐magneto–electro‐elastic,31 optical
materials,32 and Stokes flow in porous solids.33 The method
avoids meshing, and it can cope with arbitrarily complex
microstructures that are supplied as segmented images of real
materials. Its implementation is easily parallelizable, and it can
take full advantage of graphical processing unit hardware to
accelerate FFT computations.

The FFT reduces the equilibrium problem of the com-
posite with periodic boundary conditions to the iterative
resolution of the Lippmann‐Schwinger equation, which
involves the Green operator associated to a reference linear
elastic material. Several variants have been proposed to
increase the convergence rate of the initial scheme
proposed by Moulinec and Suquet,34 which presents some
limitations when the phases of the composite have high
contrasts of properties. Among others, the schemes by Eyre
and Milton,35 the augmented Lagrangian due to Michel et
al36 and the polarization‐based scheme by Monchiet and
Bonnet37 can be named. In a recent work, Moulinec and
Silva38 have shown that the schemes by Eyre and Milton35

and by Michel et al36,39 reduce to particular cases of the
Monchiet and Bonnet37 scheme by setting the algorithm
parameters appropriately. Moulinec and Silva38 have also
demonstrated that, for finite contrast between the phases,
there are optimal choices of the algorithm parameters and
the reference medium that maximize the rate of conver-
gence of the scheme by Eyre and Milton.35 Unfortunately,
Moulinec and Silva38 could not demonstrate the convergence
of the method for the case of microstructures with voids and
rigid inclusions, ie, microstructures with infinite contrast. On
the other hand, Michel et al36,39 and Bilger et al40 used the
augmented Lagrangian scheme to perform analyses for mate-
rials with voids and rigid inclusions that did converge, at
least for the prescribed tolerance they used.

In the present work, we use the FFT method to compute
the homogenized anisotropic elastic properties of trabecular
bone. To the authors' knowledge, this is the first study where
the FFT scheme is applied to bone mechanics. The perfor-
mance of the method is investigated for natural and artificial
bone microstructures. The application to natural bone
includes the analysis of 2 animal specimens, bovine femoral
heads and implanted femurs of adult Hokkaido rats, while
the artificial microstructures are the repeatable parameterized
cellular material introduced by Kowalczyk.41
2 | CANCELLOUS BONE

A typical cancellous bone microstructure is depicted in
Figure 1. The cancellous microarchitecture is generally
characterized in terms of the solid volume fraction, ϕ, the
trabecular thickness, t, and the trabecular spacing, s, see
Figure 1B. Bone tissue mechanical properties and trabecular
architecture are the main factors that determine the mechani-
cal properties of cancellous bone, which show a high depen-
dency on species, anatomic site, age, and size of the
sample.42 The minuscule dimensions of the trabeculae (of
order from tens to a cent of microns) make of tissue‐level
mechanical characterization a difficult task. In recent years,
nanoindentation has provided the means for the direct
measurement of the elastic properties of trabecular bone
tissue (a complete review of the available techniques, many
of them indirect, can be found in a recent paper by Oftadeh
et al43). By means of high‐resolution nanoindentation,
Brennan et al44 studied the variations in the properties of
the tissue within a single trabecula; they found that Young
modulus and hardness increase towards the core of the tra-
beculae. Although these findings, the inhomogeneity and
anisotropy of the mechanical properties in bone tissue have
a minor impact on the apparent properties of cancellous bone.
Consequently, it can be modeled as an isotropic material.45

Different experiments have shown that linear elasticity can
predict the behavior of cancellous bone.46 Cowin47 states that
infinitesimal strain theory is adequate for studying the mechan-
ical response of bone providing that strains remain within the
physiological range. Therefore, we can safely assume a lin-
ear‐elastic response at the microscale and, consequently, at
higher scales. Therefore, the relationship between the stress σ
and strain ε tensors at the macroscale is given in terms of the
fourth‐order homogenized stiffness tensor C such that

σ ¼ C ε: (1)

The trabecular architecture determines the elastic anisot-
ropy of C, which in its most general form is defined in terms



FIGURE 1 A, macroscopic (continuum level) and B, representative sample of the cancellous bone microstructure with their corresponding
characteristic lengths
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of 21 independent constants. However, Yang et al48 demon-
strated that cancellous bone has elastic orthotropic symmetry
with a 95% confidence level for a set of 141 human speci-
mens. Hence, only 9 independent components are required
to fully describe the elastic behavior of the structure.
2.1 | Artificial samples

The geometries for the artificial samples are from the work
by Kowalczyk,41 which introduces the repeatable parameter-
ized cellular material in Figure 2A that mimics the elastic
response of cancellous bone. The repeatable geometry is
described in terms of 4 parameters: tc, th and tv, which define
proportions between trabecular plate widths and thicknesses
to produce transversely isotropic microstructures in the
y1− y2 plane; and te, which scales the geometry in the y1
direction to produce fully orthotropic microstructures. To pro-
duce feasible geometries, the parameters must comply with
the restrictions tc≤ th and tc≤ tv. Parameter values can be set
to produce microstructures with solid volume fractions in
the range 0.01<ϕ<0.99. The geometry in Figure 2A can
be conveniently arranged to produce the hexahedral repeat-
able unit cells, as the one depicted in Figure 2B.

Five microstructures are considered in this work. They
were selected to have solid volume fractions and geometrical
parameters that cover the ranges reported by van Rietbergen
and Huiskes49 and Kabel et al50 for cancellous bone. Their
data are reported in Table 1.

Sample geometries were sliced to produce stacks of
2‐dimensional binary images that mimic micro‐CT scans.
These 2‐dimensional images were used for geometrical
analyses using the software BoneJ.51 Table 1 reports the
results for the volume fraction, the trabecular thickness and
spacing, and the normalized trabecular thickness.
2.2 | Natural samples

Four natural cancellous bone specimens are studied, which
are labeled as N1, N2, N3, and N4 (Figure 3). Specimens
N1 and N2 are from bovine femoral heads. Ibarra Pino52

produced specimen N1 at INTEMA, while the School of
Engineering of São Carlos of the University of São Paulo
kindly provided the CT data of N2.53 Specimens N3 and
N4, which were also produced at INTEMA,54,55 are from
femurs of adult Hokkaido rats with coated stainless steel
implants. Implantation times of N3 and N4 were 4 and
8 weeks, respectively. Therefore, the bone maturity of N3 is
thought to be less than that of N4.

Specimens produced at INTEMA were prepared accord-
ing to the following procedure. They were cleaned from
surrounding soft tissues and fixed in neutral 10 wt% formal-
dehyde for at least 24 hours (10 days in the case of N1
sample). Afterwards, they were dehydrated in a series of
acetone‐water mixtures followed by a methacrylate solution,
and finally embedded in a methyl methacrylate (PMMA)
solution and polymerized. Five‐millimeter thick samples
were cut from the PMMA embedded blocks for micro‐CT
and nanoindentation studies. Cuts were made with a low‐
speed diamond blade saw (Buehler GmbH) cooled with
water. The samples used for nanoindentation were further
polished with 600 to 2000 water‐lubricated grid paper and
then fine polished with 0.3‐μm alumina powder using an
automatic grinding and polishing machine (Logitech, UK).
Care was taken to keep the samples surface free from
scratches as much as possible.



FIGURE 2 A, repeatable structural cell by Kowalczyk (2006); B, associated repeatable cubic cell used for the numerical models (tc=0.15, th=0.35,
tv=0.55, and te=1)
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Samples were X‐ray scanned using a SkyScan 1172
(Bruker microCT, Belgium). The data of the in‐plane pixel
sizes are reported in Table 2. Slice thicknesses (out‐of‐plane)
were set to be the same as the in‐plane pixel size. The CT
images were processed with BoneJ51 to obtain geometrical
data over the regions of interest shown in Figure 3. The
results for solid volume fractions, trabecular thicknesses,
and trabecular spacing are shown in Table 2.

The elastic moduli of the trabecular tissues were mea-
sured via microindentation and nanoindentation tests using
the method due to Oliver and Pharr.56 Sample N1 was
microindented in a TI 900 Triboindenter (Hysitron,
Minnesota) using a Vickers diamond indenter. The maximum
indentation load was set to 1500 mN, which was held con-
stant for 45 seconds to minimize creep effects. The loading
and unloading rates were set to 200 mN/s and 100 mN/s,
TABLE 1 Geometrical data of the artificial samples. Note that all dimens

Sample Volume Fraction, ϕ tc th tv te

A1 0.07 0.05 0.55 0.15 0.60

A2 0.12 0.10 0.10 0.35 1.20

A3 0.28 0.15 0.35 0.55 1.00

A4 0.35 0.25 0.30 0.50 1.20

A5 0.50 0.25 0.95 0.50 1.00
respectively. Reported results are the average of eight inden-
tations. Sample N2 was not available for indentation, so it
was assumed to have the same properties of N1. Rat speci-
mens (samples N3 and N4) were nanoindented using a
Berkovich diamond indenter. The maximum load was set to
1 mN and it was held constant for 30 seconds. Loading and
unloading rates were set both equal to 0.1 mN/s. Grids of
3×3 indentations separated by 5 μm were performed on
each specimen and the results averaged. The results for
the material hardness and Young modulus are summarized
in Table 3. A Poisson ratio ν=0.3 was assumed for all
samples.

Data in Table 2 show that N3 an N4 do not exhibit small
differences between their trabecular thickness and spacing.
The differences in hardness and elastic modulus in Table 3
are 22% and 14%, respectively, but their standard deviations
ions are normalized with respect to the unit length in Figure 2A

Trabecular
Thickness, t

Trabecular Spacing,
s

Normalized Trabecular
Thickness, t/(t+ s)

0.22 3.06 0.07

0.27 1.98 0.12

0.49 1.91 0.20

0.74 1.57 0.32

0.87 1.40 0.38



FIGURE 3 Segmented CT scans of the natural samples. A and B: bovine femoral heads, C and D: femurs of Hokkaido rats. Boxes indicate the
ROIs. Reference lengths are 100 μm long in all figures. Red arrows in C and D indicate growth plates

TABLE 2 Geometrical data of the natural samples

Sample
ROI Dimensions

[mm]
Pixel Size

[μm]
Solid Volume
Fraction, ϕ

Trabecular
Thickness, t [μm]

Trabecular Spacing,
s [μm]

Normalized Trabecular
Thickness t/(t+ s)

N1 4.1 × 6.5 × 5.6 5.96 0.39 200 443 0.31

N2 6.6 × 6.6 × 6.2 6.62 0.51 315 523 0.38

N3 2.6 × 3.5 × 2.6 8.70 0.27 150 376 0.29

N4 2.6 × 2.6 × 2.6 8.70 0.30 152 390 0.28

Abbreviation: ROI, regions of interest.
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overlap. Differences can be attributed to natural variability
among specimens and the different degrees of bone maturity.
Since the implantation time of sample N4 is twice as long
as that of N3, the higher solid volume fraction of the first
one might be also a result of a longer maturity time during
which the rate of tissue deposition is larger than the rate of
resorption.54,57 The data for the elastic modulus were aver-
aged, and a single value was used for the numerical
homogenization analyses of both samples in the following
sections.
3 | COMPUTATIONAL
HOMOGENIZATION

The computational homogenization analysis uses the
asymptotic method as reported by Hollister and Kikuchi.58



TABLE 3 Hardness and elastic modulus obtained by
microindentation and nanoindentation

Sample Hardness [GPa] Elastic modulus [GPa]

N1: Bovine bone 0.39 ± 0.02 7.93 ± 0.86

N3: Rat bone 0.94 ± 0.22 26.59 ± 3.05

N4: Rat bone 0.73 ± 0.19 23.28 ± 4.00

Rat bone average 0.85 ± 0.22 25.21 ± 3.64
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The method considers 3 scales: the macroscale or continuum
level where homogenized properties are valid, the scale of the
sample used for computing such properties, and the micro-
scale or microstructural scale, see Figure 1. The method
also assumes that the principle of separation of scales is
valid, ie, the characteristic length of the microscale, the tra-
becular thickness t, is much smaller than the characteristic
length of the representative sample l, which in turn is also
small when compared to the macroscale. In what follows,
we assume that it is always possible to find a representative
sample such that the separation of scales is attained, and
we refer to it as the representative volume element (RVE).

Macroscopic stress and strain can be computed as the
volume average of their microscopic counterparts over the
domain V of the representative sample, this is

σ ¼ σμ
� � ¼ 1

V
∫V σμ dV and ε ¼ εμ

� � ¼ 1
V

∫V εμ dV : (2)

Microscopic stresses σμ and strains εμ are related via the
microscopic stiffness tensorCμ, which varies across V accord-
ing to the different phases in the microscale:

σμ ¼ Cμ εμ: (3)

Following Kabel et al,50 the elastic behavior of the mate-
rials in the microstructure are considered isotropic; hence, the
microscopic stiffness tensor Cμ can be defined in terms of 2
elastic constants: the Young modulus Eμ and the Poisson
ratio νμ.

Although asymptotic homogenization is rigorously
valid for periodic microstructures, ie those composed by
repeated unit cells in the domain, Terada et al59 showed
that periodic boundary conditions can be applied to
nonperiodic heterogeneous media to get estimates of the
mechanical properties. In fact, they showed that results
obtained using other boundary conditions converge to the
results obtained using periodic boundary conditions when
the size of the sample is big enough. Thus, the problem
involves compatibility equations, linear elastic constitutive
equations, equilibrium, and periodic conditions at the
boundary of the RVE
εμ yð Þ ¼ 1
2

∇uμ yð Þ þ ∇uTμ yð Þ
� �

∀y∈ V

σμ yð Þ ¼ Cμ yð Þ: εμ yð Þ ∀y∈ V

div σμ yð Þ ¼ 0 ∀y∈ V

uμ yð Þ− ε:y periodic

σμ yð Þ:n antiperiodic

8>>>>>>>><
>>>>>>>>:

(4)

where n is the outward normal vector to the boundary of V.
In general, the strain field in the macroscale is not known

a priori. However, since the problem is linear, any arbitrary ε
may be written as a linear combination of 6 unit strains,
which are defined in matrix form as

ε11pm ¼
1 0 0

0 0 0

0 0 0

2
64

3
75; ε22pm ¼

0 0 0

0 1 0

0 0 0

2
64

3
75; ε33pm ¼

0 0 0

0 0 0

0 0 1

2
64

3
75

ε12pm ¼
0 1 0

1 0 0

0 0 0

2
64

3
75; ε13pm ¼

0 0 1

0 0 0

1 0 0

2
64

3
75and ε23pm ¼

0 0 0

0 0 1

0 1 0

2
64

3
75;
(5)

where the superscripts denote a loading case and the
subscripts stand for the strain components.

Once the 6 microscopic strain states are known, the local
structure tensor Mijpm, which relates the macroscopic strain
εpm and the microstructural total strain εμij , can be calculated

using

εμij ¼ Mijpm εpm: (6)

The homogenized elasticity tensor C is then calculated
from M . Starting from the Equation 3, both sides are
integrated over the RVE and divided by its volume to get

1
V

∫V σμ dV ¼ 1
V

∫V Cμ εμ dV ; (7)

which combined with Equations 2 and 6 allows to write

σ ¼ 1
V

∫V Cμ M dV
� �

ε; (8)

where we have made use of the fact that ε is constant within
the RVE. From the comparison of Equations 1 and 8, it is
immediate to conclude that

C ¼ 1
V

∫ VCμ M dV : (9)

The approach by Browaeys and Chevrot60 is used to com-
pute the norm and to explore the symmetries of C. Browaeys
and Chevrot60 represent C as an elastic vector X with 21
orthogonal components:



X ¼ C11;C22;C33;
ffiffiffi
2

p
C23;

ffiffiffi
2

p
C13;

ffiffiffi
2

p
C12; 2C44; 2C55; 2C66; 2C14; 2C25; 2C36; 2C34; 2C15; 2C26; 2C24; 2C35; 2C16; 2

ffiffiffi
2

p
C56; 2

ffiffiffi
2

p
C46; 2

ffiffiffi
2

p
C45

� �
: (10)
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The normalization factors in the above expression are

included so that the Euclidean norm of an arbitrary elastic
tensor C and its associated elastic vector X are identical.

Following Browaeys and Chevrot,60 the method by
Cowin and Mehrabadi61 is used to express X in the orienta-
tion for optimal decomposition, the so‐called symmetry
Cartesian coordinate system. Then, X is decomposed by a
cascade of projections into a sum of vectors belonging to
the symmetry classes triclinic, monoclinic, orthorhombic,
tetragonal, hexagonal, and isotropic,

X ¼ Xtric þ Xmon þ Xort þ Xtet þ Xhex þ Xiso: (11)

The above decomposition is suitable to address the
dominant orthotropic symmetry behavior of the cancellous
bone (see Section 1), Xorthotropic ¼ Xort þ Xtet þ Xhex þ Xiso.
Computations for the norm, optimal orientation, and the
decomposition of the elasticity tensor are done using the
Matlab Seismic Anisotropy Toolkit by Walker and
Wookey.62
4 | HOMOGENIZATION ANALYSIS
USING THE POLARIZATION‐BASED
FFT METHOD

The scheme by Monchiet and Bonnet37 is used to implement
the FFT method used in this work. Monchiet and Bonnet37

reformulated the problem 4 in terms of the “polarization ten-
sor,”

τ yð Þ ¼ Cμ yð Þ−C0� 	
: εμ yð Þ; (12)

to obtain

εμ yð Þ ¼ 1
2

∇uμ yð Þ þ ∇uTμ yð Þ
� �

∀y ∈V

divσμ yð Þ ¼ 0 ∀y ∈V

εμ yð Þ ¼ Cμ yð Þ−C0� 	−1
: τ yð Þ ∀y ∈V

σμ yð Þ ¼ τ yð Þ þ C0 : εμ yð Þ ∀y ∈V

uμ yð Þ−ε∙y periodic

σμ yð Þ∙n antiperiodic

τ yð Þh iV ¼ Τ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(13)

where C0 is the stiffness tensor for a homogeneous reference
medium. Note that the uniform polarization Τ is prescribed
over the unit cell, and that, both, the macroscopic stress and
strain, σ and ε, are unknowns. However, because of the
linearity of the equations, macroscopic stress and strain are
related as follows37:

σ ¼ Τþ C0 : ε: (14)

The solution of the problem in Equation 13 is found by
discretizing the RVE into a regular grid consisting of
N1×N2×N3 voxels in the directions y1, y2 and y3, respectively,
and computed using the following discrete iterative scheme:

τi ¼ F−1 bτ i� 	
εiμ ydð Þ ¼ Cμ ydð Þ−C0� 	−1

: τ i ydð Þ
ε̂iμ ¼F εiμ

� �
σ ̂ iμ ξdð Þ ¼ C0 : ε ̂iμ ξdð Þ þ τ ̂ i ξdð Þ
Convergence tests

τ̂ iþ1 ξdð Þ ¼ τ ̂ i ξdð Þ− αC0 : bΓ0 ξdð Þ : σ ̂ iμ ξdð Þ− βΔ̂0 ξdð Þ : εîμ ξdð Þ

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(15)

where bΓ0 and bΔ0 are respectively the periodic Green tensors
for strain and stress (see expressionsA1andA2 inAppendix1);
F andF−1 denote the Fourier transform and its inverse, while
the b is used to indicate that variables are in the Fourier
space; vectors yd are the discrete coordinates of the voxels
in the real space and ξd are their corresponding N1×N2×N3

frequencies in Fourier space; α and β are coefficients, which
are chosen thereafter to obtain the best rate of convergence.
It is interesting to observe that the above scheme reduces to
the Eyre‐Milton35 and augmented Lagrangian36 schemes
when the coefficients α and β are set to α= β=2 and
α= β=1, respectively.32,33

The iterative scheme 15 converges when stress σiμ and

strain εiμ are respectively equilibrated and compatible fields,

and the average strain equals the prescribed macroscopic
strain εiμ yð Þ

V
¼ ε:38 Moulinec and Silva38 did a comprehen-

sive review and analysis of the conditions for the convergence
of the iterative scheme, and they summarized the sufficient
conditions for convergence. Unfortunately, they could not
demonstrate the convergence of the method for the case of
microstructures with voids and rigid inclusions (ie, micro-
structures with infinite contrast). On the other hand, Michel
et al31,34 and Bilger et al40 used the augmented Lagrangian
scheme to perform analyses for materials with voids and rigid
inclusions that did converge.

The optimal choice of α and β to minimize the number of
iterations is a very difficult task that depends on elastic
properties, model resolution, and geometry.32,33 In general,
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the convergence rate reduces markedly with the increase of
the contrast between the elastic properties of the microstruc-
ture phases. High‐contrast cases are of particular interest for
this work as cancellous microstructures consists of a solid
and a void phase. In the absence of a formal demonstration
yielding to the convergence of the iterative scheme for
infinite contrast microstructures,38 the mechanical response
of the void phase is mimicked using very compliant elastic
properties, what results in high, but finite, contrast models.
Moulinec and Silva38 studied the dependency of the rate of
convergence with the contrast for different settings of the
iterative scheme 15. They found that for high‐contrast
models, the Eyre‐Milton (α= β=2) and the polarization‐
based scheme with α= β=1.5 present the highest
convergence rates (both settings converge at the same rate).
Based on these results, the polarization‐based scheme with
α= β=1.5 was chosen for this work. The selection of the
stiffness for the void phase that results in reasonable balance
between accuracy and computational performance will be
addressed in next section.

The convergence criteria consist on comparing the devia-
tions from equilibrium, compatibility, and the prescribed
loading conditions in the Fourier space with a prescribed tol-
erance ϵ ¼ 10−4. The expressions for the convergence criteria
in the Fourier space can be found in Appendix 2.

The scheme 15 was implemented in‐house according to
the memory‐saving algorithm by Moulinec and Silva.38

The algorithm was programmed in C, and a suitable
parallel code was obtained using OpenMP. Two computers
were used to test the implementation, a HP ML350p
equipped with 2 Intel E5‐2620 Xeon processors and
136GB of RAM, and a Dell PowerEdge C6145 equipped
with 4 AMD Opteron 6276s processors and 128GB of
RAM. Depending on the load case, the solution of a model
consisting of 128×128×128 voxels needed of around 950
iterations. The solution time was around 2 hours per load
case in the HP system in sequential mode (1 processor),
while in parallel mode, a maximum of 2× speedup was
achieved using 4 logical processors. A model consisting
of 300×300×300 voxels was used to test the algorithm
in the Dell system. The number of iterations for that model
were around 830 iterations, depending on the load case.
Computation times were between 36 and 45 hours in
sequential mode; a maximum of 3× speedup was achieved
with 8 logical processors. In what respects to the memory
requirement, it increased linearly with the number of voxels
according to the following equation

Memory GB½ � ¼ 1:57�
Number of voxels

1×106
: (16)

For the homogenization, the 6 load cases in Equation 5
are solved using the scheme 15, and the corresponding results
are replaced in Equation 6 to compute the structure tensorMp

for every voxel in the model. To this end, a system of
equations is set for each load case using the macroscopic
strains εklpm and their corresponding strains εklμij at the micro-

scale:

ε11ij

ε22ij

ε33ij

ε12ij

ε13ij

ε23ij

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
¼

ε11μ11 ε11μ22 ε11μ33 ε11μ12 ε11μ13 ε11μ23

ε22μ11 ε22μ22 ε22μ33 ε22μ33 ε22μ13 ε22μ23

ε33μ11 ε33μ22 ε33μ33 ε33μ33 ε33μ13 ε33μ23

ε12μ11 ε12μ22 ε12μ33 ε12μ33 ε12μ13 ε12μ23

ε13μ11 ε13μ22 ε13μ33 ε13μ12 ε13μ13 ε13μ23

ε23μ11 ε23μ22 ε23μ33 ε23μ12 ε23μ13 ε23μ23

2
66666666664

3
77777777775
p

Mij11

Mij22

Mij33

Mij12

Mij13

Mij23

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
p:

(17)

Once Mp is known for every voxel, the homogenized
stiffness tensor is calculated using the discrete version of
Equation 9:

C ¼ 1

∑N
p¼1Vi

∑
N

p¼1
Cp

μ Mp Vi ¼ 1
N

∑
N

p¼1
Cp

μMp (18)

where N is the number of voxels within the RVE and Vi are
their volumes. Note that, in Equation 18, we made use of
the fact that the volumes of all voxels are identical. The com-
putations for the homogenization analysis were coded in
Matlab.
5 | MODEL CONSTRUCTION

Models for the FFT analyses are constructed from stacks
of 2‐dimensional images of the microstructures. In the
case of natural samples, images are obtained directly from
micro‐CT scans, while for the artificial samples they are
produced synthetically from the cell geometry (see
Section 2.1). In both cases, the images are resized using
region averaging to create a “box” of dimensions
N1×N2 ×N3. Every voxel is identified as belonging to the
bone tissue or to the void phase. Two approaches are
considered for the specification of the threshold for the
image segmentation: (1) it is set equal to that used for
the determination of the solid volume fraction of the spec-
imen (see Section 2.2); and (2) it is adjusted individually
for each model such that its volume fraction matches that
measured for the specimen.63 Figure 4 illustrates a typical
model of a natural specimen.

The voxels in the loci of the solid phase have the
mechanical properties of the bone tissue reported in
Table 3. As mentioned earlier, the mechanical response of
the void phase is mimicked using very compliant elastic



FIGURE 4 Model for the Fast Fourier Transform analysis of sample
N3. Geometry representation using 135 × 135 × 135 voxels

(A)

(B)

FIGURE 5 A, norm of the homogenized stiffness tensor and B,
number of iterations as functions of the stiffness contrast between the
phases
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properties. Preliminary tests were performed for the
selection of the stiffness for the void phase that results in
reasonable balance between accuracy and computational
performance. To this end, a model for a solid cubic unit
cell with a cylindrical hole of radius r/L=0.47 (volume
fraction ϕ=0.30) was solved for a wide range of
contrasts between the bulk moduli k of the void and the
solid phase,

θ ¼ kvoid
ksolid

: (19)

The model was discretized using N1=N2 = N3 = 51
voxels. The bulk modulus for the reference material was set
to k0= (ksolid+ kvoid)/2 and the shear modulus μ0= (μsolid
+μvoid)/2. The results for the normalized norm of the
homogenized stiffness tensor, Ck k= Csolidk k, and the number
of iterations in terms of θ are presented in Figure 5A and
Figure 5B, respectively. The reference value Ck k= Csolidk k ¼
0:50 in Figure 5A was computed using PREMAT64 with a
high‐resolution FEA model. Based on the ad hoc criterion
that Ck k= Csolidk k changes less than 1% over the range 10
−4≤ θ≤ 10−8, the value θ=10−4 is selected as a trade‐off
between the accuracy and performance of the computations.
The result Ck k= Csolidk k ¼ 0:48 for θ=10−4 differs by less
than 4% with respect to the PREMAT result. No attempt
was made to refine the model. The effects of the voxel size
on the results of the computational homogenization
procedure will be assessed in Section 6.
6 | RESULTS

6.1 | Artificial samples

The first analyses aim to assess the effect of the voxel size d
on the accuracy of the FFT method. To draw conclusions
independently of the error in the representation of the
geometry that arises from the segmentation, analyses are
performed for models constructed using images with resolu-
tions coarse enough to produce geometries that are exactly
represented by all the voxel sizes. Each of the 5 artificial
specimens were solved using 7 voxel sizes in the range
0.02≲ d/t≲ 0.4. The resultant models had from 40 ⋅103 to
20 ⋅106 voxels. Results of the convergence analyses for the
norm of the stiffness tensors Ck k= C0:02k k are plot in
Figure 6. The normalizing factor C0:02k k is the norm of
the stiffness tensor computed with the smallest voxel size
d/t=0.02. It can be observed from Figure 6 that, in all the
cases, norms of the stiffness tensors attain voxel‐size
independent values. Results for voxel sizes d/t≲ 0.05 have



FIGURE 6 Artificial samples. Normalized norm of the stiffness
tensor as a function of the normalized voxel size. Results of models
without geometry representation error

FIGURE 8 Artificial samples: normalized norm of the stiffness
tensor as a function of the normalized voxel size. Results for the A1
sample were not calculated because it was not possible to compute
models with the sizes needed to get d/t≤0.10 (more than 108 voxels)
with the available computing resources
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a deviation less than 1% from C0:02k k , whereas for
d/t≲ 0.10 the deviations are less than 5%.

The effects of the geometry representation error are
assessed in Figure 7. To keep the figure clear, results are
presented only for A3 and A5, the samples that resulted with
the largest deviations from the reference solid volume frac-
tions when segmented using a fixed threshold value
(segmentation approach (1) in Section 5). As it can be
observed from Figure 7, solid volume fractions converge
linearly to the references values either by excess (A3) or by
defect (A5). For example, the solid volume fraction of A5
has a deficit of approximately 15% with respect to the
reference when the voxel size is d/t=0.1.

Figure 8 depicts the results for the convergence analyses
of the normalized stiffness tensors Ck k= CFEMk k for the 2
segmentation strategies introduced in Section 5. The normal-
ization factor CFEMk k for each sample is the norm of the
stiffness tensors computed by Kowalczyk41 using FEM. It
can be observed that in Ck k converges linearly with the voxel
FIGURE 7 Solid volume fraction as a function of the normalized
voxel size for the natural and artificial samples
size for every case. The 2 segmentation strategies behave
almost the same; they lead to nearly identical results when
extrapolated to 0 voxel size. Moreover, extrapolated results
are in excellent agreement to reference values by
Kowalczyk,41 maximum differences are less than 2% for
sample A2. Results in Figure 8 allow to conclude that,
irrespectively of the segmentation strategy, the linear
extrapolation of the values computed for 2 models with
d/t≲ 0.10 can be used to produce accurate estimations of
the homogenized stiffness tensor.
6.2 | Natural samples

The model size is a key issue for the homogenization analysis
of the natural samples. The 1‐dimensional probabilistic
model of the tissue microstructure due to Harrigan et al65 is
used to estimate representative model sizes. Based on the
assumption that bulk stress and strain are volumetric averages
of the stress and strain within the constituents of the micro-
structure, see Equation 2, Harrigan et al65 propose that the
length scales of stresses and strains are similar to that of the
solid volume fraction.

Figure 9 shows the mean values and standard deviations
of the solid linear fraction as functions of the normalized
scanned length, ℓ= t þ sð Þ, for samples N2 (bovine femoral
head) and N4 (femur of adult rat). Each data point in
Figure 9 is the result of 300 linear scans along lines oriented
in the orthogonal directions y1 , y2 and y3 and with origins at
random locations. These analyses are done using the
maximum resolution of the CT‐scans reported in Table 2.
For comparison purposes, Figure 9 also presents the
(volumetric) solid volume fractions determined in
Section 2.2. Figure 9A shows that, for the sample N2, the
mean value of the solid linear fraction and its standard



FIGURE 9 Mean and standard deviation of the linear solid fraction
as functions of normalized line length for artificial samples A, N2 and
B, N4
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deviation are direction independent. The linear solid fraction
rapidly converges towards the solid volume fraction. Differ-
ences between the solid linear fractions and the reference
value are smaller than 6% for scanned lengths larger than 5
intertrabecular lengths. The standard deviation diminishes
exponentially with the scanned length, flattening out at
approximately 4 intertrabecular lengths. The maximum value
for the dispersion is about 20% of the mean value.

Results for the mean solid linear fraction of sample N4 in
Figure 9B are like those of sample N2. Discrepancies
between the solid linear fraction and the reference volume
solid fraction are below 10% for scanned lengths larger than
4 intertrabecular distances. On the other hand, the standard
deviation depends on the direction of analysis. Directions y1
and y3 behave similarly; they both converge towards a
standard deviation of about 60% the mean value. The
y2‐direction converges to a standard deviation of around
26% the mean value. Based on the above results, it is
concluded that scanned lengths ℓ= t þ sð Þ≥ 4 allow for
size‐independent values of the mean values and standard
deviations of the solid volume fractions. Samples N1 and
N3 show analogous behaviors to N2 and N4, respectively;
they are not plot due to space limitations.

The bone type and the relative sizes of the specimens
affect the results obtained in terms of linear solid fraction
for the 2 sets of samples. Samples N1 and N2 are relatively
small when compared to the diaphysis of the femur from
which they were obtained, so they might be considered as
RVEs. On the other hand, samples N3 and N4 span over large
portions of the entire distal section of the rat femurs, so they
do not satisfy the scale separation hypothesis. The anisotropy
and larger dispersion of the results for samples N3 and N4
can be explained by the presence of the growth plates
observed in Figure 3C,D. Therefore, samples N3 and N4
cannot be considered RVEs, but they are suitable for the
computation of apparent elastic properties.

The effect of the voxel size on the accuracy of the
homogenization method was assessed for the natural
samples. Three convergence analyses were conducted: the
convergence of the FFT method when models are free of
geometry representation error, the error of the segmentation
procedure, and the convergence rate of the overall homogeni-
zation procedure.

Convergence of the FFT method when free of the geom-
etry representation errors was assessed using series of models
with voxel sizes 0.03≤ d/t≤ 0.3. Results for the norm of the
stiffness tensors, Ck k , were compared to the solution
computed for the smallest voxels size, C0:03k k . Quotients
Ck k= C0:03k k as functions of voxel sizes for the different
samples behave similarly to those of the artificial
samples in Figure 6; Ck k= C0:03k k≤ 0:98 for d/t≲ 0.05 and
Ck k=k C0:03k≤ 0:90 for d/t ≲ 0.10.
The results for the geometry representation error for the

segmentation procedure (1) are shown in Figure 7 for samples
N2 and N4. The comparison with the artificial samples show
that natural samples are less sensitive to voxel size than artifi-
cial samples. Note, for instance, that for a voxel size d/
t=0.1 the errors in the solid volume fractions of the natural
samples are around 2%, while for the artificial samples they
can reach 15%. These results are attributed to the differences
in the geometric periodicity and smoothness between the 2 sets
of samples. When discretized with regular voxel arrays, the
periodic and smooth geometries of artificial samples result in
consistent mismatches (either in excess or in deficit of solid
volume) between the actual sample geometries and their voxel
representations. On the other hand, the irregular geometries of
natural samples result in a combination of local excess and def-
icit mismatches that compensate over the whole model domain.
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The convergence analyses for the complete homogeniza-
tion procedure followed a strategy similar to that of the
artificial samples. Since no reference solutions were available,
Ck k were computed for the natural samples N1 and N2 using
progressively smaller voxel sizes and the results compared to
those of the smallest voxel size, d/t=0.06, in terms of the
quotient Ck k= C0:06k k . When plotted as functions of d/t,
Ck k= C0:06k k exhibite linear behaviors like that of the
artificial samples in Figure 8. Results for models with voxel
sizes d/t<0.10 allow for accurate linear extrapolations of
the components of the stiffness tensor. In fact, under these
conditions, the linear fits have coefficients of determination
R2 higher than 0.99.

Based on the previous results, the stiffness matrices for
N1 and N2 are computed via the extrapolation to 0 voxel size
of 2 sets of results of models with d/t<0.10. The stiffness
matrices expressed in the symmetry Cartesian coordinate
system (see Section 3) are

CN1 ¼

0:9924 0:4030 0:4398 0:0378 0:0134 0:0063

0:4030 1:4566 0:4773 −0:0041 −0:0020 0:0171

0:4398 0:4773 1:8418 −0:0139 −0:0092 0:0005

0:0378 −0:0041 −0:0139 0:4657 −0:0417 −0:0042
0:0134 −0:0020 −0:0092 −0:0417 0:5450 −0:0093
0:0063 0:0171 0:0005 −0:0042 −0:0093 0:3493

2
6666666664

3
7777777775
GPa½ �

(20)

and

CN2¼

1:8765 0:5059 0:7400 0:0283 −0:0906 0:0484

0:5059 2:2795 1:0195 0:0817 0:0554 −0:0410
0:7400 1:0195 2:6216 −0:0747 0:0624 −0:0178
0:0283 0:0817 −0:0747 0:8846 0:0010 0:0065

−0:0906 0:0554 0:0624 0:0010 0:8174 −0:0363
0:0484 −0:0410 −0:0178 0:0065 −0:0363 0:6703

2
6666666664

3
7777777775
GPa½ �:

(21)

Figure 10 shows the symmetry classes decomposition
of the stiffness matrices in Equations 20 and 21. It is
observed that the isotropic class accounts for the most
FIGURE 10 Decomposition of the stiffness tensors of the natural
samples in their symmetry classes
significant fractions (78% and 83% for N1 and N2,
respectively) of the stiffness matrices. Other relevant
contributions are the hexagonal (9% and 6%), orthorhombic
(7% and 4%), and triclinic (3% and 7%) classes. On the
other hand, tetragonal and monoclinic classes have minor
contributions, less than 2%. It is interesting to note that
the overall orthotropic symmetry, given by the sum of the
isotropic, hexagonal, tetragonal, and orthorhombic classes,
adds up 95% for N1 and 93% for N2. These results are
in excellent agreement with the 95% orthotropic elastic
symmetry of the human trabecular bone reported by van
Rietbergen and Huiskes.49

The stiffness matrices for N3 and N4, also expressed in
their symmetry Cartesian coordinate systems, are

CN3 ¼

0:4924 0:1716 0:3116 −0:0411 −0:0600 0:0400

0:1716 1:2586 0:4481 0:0015 0:0037 0:0358

0:3116 0:4481 1:8429 −0:0096 0:0654 −0:0902
−0:0411 0:0015 −0:0096 0:6102 −0:0581 −0:0130
−0:0600 0:0037 0:0654 −0:0581 0:2365 0:0386

0:0400 0:0358 −0:0902 −0:0130 0:0386 0:3771

2
6666666664

3
7777777775
GPa½ �

(22)

and

CN4¼

0:4028 0:2245 0:2498 0:0035 −0:0278 0:0551

0:2245 1:8178 0:6833 0:0565 −0:0280 0:0164

0:2498 0:6833 3:0901 −0:0661 0:0303 −0:0216
0:0035 0:0565 −0:0661 0:9328 −0:1265 0:0246

−0:0278 −0:0280 0:0303 −0:1265 0:3018 0:0172

0:0551 0:0164 −0:0216 0:0246 0:0172 0:2356

2
6666666664

3
7777777775
GPa½ �

(23)

The results for the symmetry class decompositions are
shown in Figure 10. The overall orthotropic symmetries
for N3 an N4 are 88% and 90%, respectively. These values
are slightly lower than those found for N1 and N2. There
are also differences between the relative fractions of the
symmetry classes. Although isotropic symmetry makes the
largest contributions to the stiffness matrices of samples
N3 and N4, their contributed percentages, 59% and 46%,
are lower than for samples N1 and N2. Increments in the
hexagonal symmetry, which rise to 15% for N3 and to
26% for N4, compensate the reduction in the isotropy. The
higher elastic anisotropy of N3 and N4 with respect to N1
and N2 is consistent with the anisotropy of the linear solid
fraction observed for N4 above in this section.

7 | CONCLUSIONS

The polarized‐based FFT method of Monchiet and Bonnet37

and asymptotic homogenization were used in combination
with micro‐CT scans and nanoindentation tests to compute
the effective elastic properties of cancellous bone. The
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performance of the method was investigated for natural and
artificial bone microstructures.

Model geometries were built directly from micro‐CT
scans. It is found that the geometry representation error,
measured as the discrepancy between the model and the
actual solid volume fraction, is smaller for the natural
microstructures than for the artificial ones. Voxel sizes
equal to one‐tenth the trabecular thickness, d/t≲ 0.1,
resulted in errors less than 2% for the natural samples. Arti-
ficial samples required of voxel sizes approximately 5‐time
smaller to attain the same level of accuracy. These results
are attributed to differences in periodicity and smoothness
between natural and artificial bone microstructures.
Because of the regular voxel array, the periodic and smooth
artificial microstructures result in consistent mismatches
(either in excess or in deficit) between the actual sample
geometries and their voxel representations. On the other
hand, the irregular geometry of natural bone results in a
combination of local excess and deficiency mismatches that
compensate over the whole domain. In every case, the
geometry representation errors converge linearly to 0 as
voxel sizes go to 0.

The elastic response of the void phase was mimicked
using a very compliant material. Based on the results for a
benchmark problem, it was concluded that the compliance
for the void phase must be set, at least, 104 times that of the
bone tissue to attain homogenized stiffness tensor with errors
less than 1%. This setting results in a reasonable trade‐off
between accuracy and the computational cost (number of
iterations) for the FFT method.

It was found that, in absence of geometry representa-
tion errors, the results for the effective homogenized
stiffness tensor are independent of the voxel size for
models with d/t≲ 0.05. Besides, when the geometry
representation error is considered, the effective elastic
properties can be accurately estimated via the linear
extrapolation of the results computed using 2 models with
voxel size d/t≲ 0.10.

The above guidelines have proven effective to deal
with both, artificial and natural microstructures. The
results for the homogenized stiffness tensors of the
artificial microstructures showed discrepancies smaller
than 2% with respect to the FE computations by
Kowalczyk.41 For its part, the symmetry classes of the
stiffness tensors computed for the bovine femoral‐head
samples were in excellent agreement with those reported
by van Rietbergen and Huiskes.49 For the implanted
Hokkaido rat femurs, the sample sizes only allowed for
the computation of apparent elastic properties. Anyway,
the results were consistent with measurements of the
linear solid fraction anisotropy.

Overall, this study has shown that the FFT method is
suitable to estimate the fully anisotropic elastic response of
cancellous bone using data from micro‐CT images and
nanoindentation tests. The method is computationally
efficient, it avoids meshing, which makes model
construction very fast, versatile, and robust. These character-
istics make the method very attractive to automate the sys-
tematic analysis of a series of microstructures. Moreover,
the recent work by Ly et al33 provides the means to extend
the FFT method to the computation of the cancellous bone
permeability, which is an important property towards the
simulation of cancellous bone as a biphasic medium.
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APPENDIX 1

The explicit versions of the periodic strain and stress Green
tensors associated to the isotropic reference material with
Lamé coefficients λ0 and μ0 are

Γ̂0ijkh ξð Þ ¼ 1

4μ0 ξj j2 δkiξhξj þ δhiξkξj þ δkjξhξi þ δhjξkξi
� 	

−
λ0 þ μ0

μ0 λ0 þ 2μ0
� 	 ξiξjξkξh

ξj j4

(A1:1)

and

bΔ0
ijkh ξð Þ ¼ C0 −C0 : bΓ0

ijkh ξð Þ : C0; (A1:2)

where δki is the Kronecker delta function.
APPENDIX 2

The convergence test at each iteration i consists in comparing
the deviations from equilibrium, compatibility, and the
prescribed loading conditions with a prescribed tolerance.
Following Moulinec and Silva,38 the following convergence
tests are used in this work:

• Criterion on equilibrium: It evaluates the L2‐norm of the
divergence of the stress, which is evaluated in Fourier
space as

div σμ
� 	�� ��

2 ¼
ffiffiffiffiffi
∑
ξ

r
ξ⋅bσμ ξð Þ�� ��2 (A2:1)
where ⋅j j is the Euclidean norm of a vector. Expression A2.1
is normalized by the macroscopic stress to make it insensitive
to a linear factor on the prescribed strain

ϵequilibrium ¼ div σμ
� 	�� ��

2

<bσμ>�� �� ¼
ffiffiffiffiffiffiffi
∑ξ

q
ξ ⋅ bσμ ξð Þ�� ��2
bσμ 0ð Þ�� �� ; (A2:2)

where ⋅k k is the Frobenius norm of a tensor.

• Criterion on compatibility: It is evaluated in Fourier
space by

ϵcompatibility ¼
maxξ maxj¼1;…;6 bcj ξð Þ�� ��� 	� 	ffiffiffiffiffiffiffi

∑ξ

q bε μ ξð Þ : bε μ
� ξð Þ

(A2:3)

where ∙ð Þ� stands for the complex conjugate and the 6
compatibility relations are

bc1 ξð Þ ¼ −ξ2ξ2bεμ11 ξð Þ−ξ1ξ1bεμ22 ξð Þ þ 2ξ1ξ2bεμ12 ξð Þ

bc2 ξð Þ ¼ −ξ3ξ3bεμ22 ξð Þ−ξ2ξ2bεμ33 ξð Þ þ 2ξ2ξ3bεμ23 ξð Þ

bc3 ξð Þ ¼ −ξ1ξ1bεμ33 ξð Þ−ξ3ξ3bεμ11 ξð Þ þ 2ξ3ξ1bεμ13 ξð Þ

bc4 ξð Þ ¼ −ξ2ξ3bεμ11 ξð Þ þ ξ1ξ2bεμ13 ξð Þ þ ξ1ξ3bεμ12 ξð Þ
−ξ1ξ1bεμ23 ξð Þ

bc5 ξð Þ ¼ −ξ3ξ1bεμ22 ξð Þ þ ξ2ξ3bεμ12 ξð Þ þ ξ2ξ1bεμ23 ξð Þ
−ξ2ξ2bεμ13 ξð Þ

bc6 ξð Þ ¼ −ξ1ξ2bεμ33 ξð Þ þ ξ3ξ1bεμ23 ξð Þ þ ξ3ξ2bεμ13 ξð Þ
−ξ3ξ3bεμ12 ξð Þ:

(A:24)

• Criterion on the loading condition: The convergence on
loading conditions on the prescribed macroscopic strain
is tested using

ϵloading ¼
<cσμ>−ε�� ��

εk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<cσμ>−ε� 	

: <cσμ>−ε� 	q
ffiffiffiffiffiffiffiffiffi
ε : ε

p :

(A2:5)
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