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A stochastic model for directional changes of
swimming bacteria

G. Fier,a D. Hansmann *ab and R. C. Bucetaab

In this work we introduce a stochastic model to describe directional changes in the movement of

swimming bacteria. We use the probability density function (PDF) of turn angles, measured on tumbling

wild-type E. coli, to build a Langevin equation for the deflection of the bacterial body swimming

in isotropic media. We have solved this equation analytically by means of the Green function method

and shown that three parameters are sufficient to describe the movement: the characteristic time, the

steady-state solution and the control parameter. We conclude that the tumble motion, which is manifested

as abrupt turns, is primarily caused by the rotational boost generated by the flagellar motor and

complementarily by the rotational diffusion introduced by noise. We show that in the tumble motion the

deflection is a non-stationary stochastic process during times at which the tumbling occurs. By tuning

the control parameter our model is able to explain small turns of the bacteria around their centres of

mass along the run. We show that the deflection during the run is an Ornstein–Uhlenbeck process,

which for typical run times is stationary. We conclude that, along the run, the rotational boosts do not

exist and that only the rotational diffusion remains. Thus we have a single model to explain the turns of

the bacterium during the run or tumble movements, through a control parameter that can be tuned

through a critical value that can explain the transition between the two turn behaviours. This model is

also able to explain in a very satisfactory way all available statistical experimental data, such as PDFs and

average values of turning angles times, of both run and tumble motions.

1 Introduction

Bacterial systems, among other microorganism systems, have
the property of absorbing energy from their environment and
storing it internally. The partial conversion of their internal
energy into kinetic energy results in different specific move-
ments of the individual active agents. This mechanism is
absent in colloidal systems that are in thermal equilibrium,
which are composed of passive particles that perform Brownian
motion with an average speed tending to zero at very long
times. Instead, self-propelled microorganisms (SPMs) without
taxis (or directed motion) are active agents that are far from
equilibrium at long times, changing incessantly between
different metastable equilibrium states. In contrast, SPMs,
under taxis in response to external stimuli (chemical, radiation,
thermal, or magnetic, among others), move along the gradient
of a guiding field with a nonzero drift speed.1 The different
kinds of bacterial movements have been classified by Jøren
Henrichsen2 and include individual movements (e.g. swimming),

collective movements (e.g. flocking or swarming), as well as
movements which occur individually and collectively (e.g. gliding
or twitching). The first studies concerning bacterial motions
involving statistical mechanics were performed in the 1970s on
swimming E. coli3–5 and build the base for the physics of
microorganisms as a branch of soft condensed matter.

Flagellate SPMs (including species of bacteria, algae, protozoa,
sperms, etc.) have developed efficient mechanisms to move in
bulk fluids or on moist surfaces between thin layers of fluid.6

Commonly, the body of a motile flagellated bacterium (MFB)
behaves like a rigid body, its basic movements are translations
and rotations, while its deformations are negligible. Both, the
translational and the rotational degrees of freedom can be
reduced by the constraints which are imposed by the geometry
of the medium and/or by the interactions between neighboring
congeners. Often bacteria develop strategies (quorum-sensing,
surfactant secretion, or other) to explore and colonize the
resource rich environments (nutrients, temperature, oxygen, or
other) and, thus, facilitate their development.7–9 The different
bacterial species show characteristic movement patterns (e.g.
run–tumble, run–reverse or run–reverse–flick) which can also
depend on the density of the bacterial colony. MFB swim or
swarm when they rotate their helical flagella (e.g. Escherichia
coli or Salmonella typhimurium), each attached by a joint to a
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reversible rotary motor.5 A bacterium is pushed to the front when
its flagellum or flagella (forming a bundle) turn with a definite
chirality. The run of the bacterium is essentially determined by
the anisotropy of the hydrodynamic friction generated by the
slender body of the flagella, allowing a drag-based thrust.10

E. coli inoculated in a stimulus free environment where taxis
effects can be neglected, shows a movement pattern composed
of two alternate steps: run and tumble. During the run the
bacterium moves forward with slight fluctuations in orienta-
tion and speed. During the tumble the bacterium stops and
deflects its body with an abrupt turn in its orientation. Between
the end of the tumble (run) and the start of the run (tumble) the
bacterium undergoes a transition between two metastable
equilibrium states, through internal mechanisms that are not
yet fully understood.11 Viewed from behind, during the run, the
flagella bundle of E. coli rotates counterclockwise (CCW) and
during the slowdown (with a reverse thrust) the flagella rotate
clockwise (CW).12 The change from CCW to CW rotation
unbundles one or more filaments,13 causing a turn of the
bacterium body around its center of mass.14 It is commonly
accepted that the center of mass of the bacterium does not
move (or moves insignificantly13) during the tumble and that
only the direction of swimming changes. After tumbling, the
bacterial motor switches from CW to CCW and all filaments
form a new bundle which generates a forward thrust in the new
direction. Thus, the swim motion of E. coli is reduced to two
alternating stages called run-and-tumble, which have been
studied as separate movements15,16 and in their entirety.17

A large number of experimental results are available for theo-
retical studies of run and tumble movements. This is particu-
larly the case of E. coli experiments; in fact E. coli is one of the
best studied microorganisms in regard to both its genomic and
its biochemical processes.1,18

Based on its simple dynamics, a swimmer bacterium can be
characterized at a given time t by its velocity v(t) and position r(t)
within a three-dimensional (3D) reference frame. Taking into
account that each tumbling motion might be performed in a
different two-dimensional (2D) plane it is only possible to
describe one sequence run–tumble–run in the same plane. The
use of a reference frame with two coordinate axes on the tumble
plane, in which the velocity v = v(t)e(t) has two components (vx,vy)
in Cartesian coordinates or (v,c) in polar coordinates is the
common 2D approach in order to treat the run and tumble
movements separately.19 Assuming that the velocity v(t) is a
two dimensional a continuous-time stochastic process, whose
statistical properties depend on the studied system, the displace-
ment of the center of mass of the bacterium during time [t0,t]

is given by rðtÞ � r t0ð Þ ¼
Ð t
t0
vðt 0Þdt 0. The velocity correlation hv(t0)�

v(t00)i and the mean-squared displacement (MSD) h|r(t) � r(t0)|2i
for run or tumble movements can be conveniently described in
the reference frame too.20 A simple 2D projection of the position
and the velocity of swimmer bacterium can be obtained by
single-cell tracking based on the standard imaging microscopy.
More detailed information can be obtained by 3D tracking,
which requires special equipment and might be limited with

respect to the statistical precision by the number of averages
achieved.3,4,21 Current devices use two identical orthogonal
imaging assemblies that combine 2D projections to track 3D
movements of the bacteria. A complementary 3D tracking
method is the use of dynamic differential microscopy. But this
method is used to characterize the motions of an entire popula-
tion rather than movements of individual cells, by analysing
temporal fluctuations of the particle density on different length
scales via image processing.22,23 The swimming speed distribu-
tion, fraction of motile cells, and diffusivity have been measured
for E. coli using these techniques.

It is quite common to describe the dynamics of micro-
organisms in terms of stochastic differential equations (or
Langevin equations). This is because of the rough similarity,
originally observed, of the microscopic cell motion to Brownian
motion.24 Moreover, the observation of the tendency of cells to
maintain their direction of movement during a characteristic
time has led to the use of the idea of persistent random walks to
describe the trajectories.25 Langevin equations have been used
to describe the stochastic motion of cells based on experi-
mental observations.26,27 Based on this, the Langevin equations
may include terms for self-propelling forces as well as external
forces and random forces or torques, referred to as noise. Noise
typically includes all fast variables of the system, e.g. events that
occur within very small time scales compared to the time-scale
of the analysed process, like collisions between the micro-
organism and the surrounding medium, or intracellular
processes involved in locomotion.

The SPMs are usually characterized as active agents (or
individuals moving actively gaining energy from the environ-
ment) or more precisely active Brownian particles (ABPs).28

Fluctuations affecting the movement of each active agent may
be due to internal or environmental processes. These systems
can be effectively described as introducing a dissipation force
�f (r,v)e(t) which points in the direction of movement. Simple
models of ABP in homogeneous media have been studied in
detail19,28–33 using a velocity dependent dissipation force with
intensity f = f (v). Moreover, the existence of energy sources or
nutrients can be modeled by a force �rU(r), where U is an
attractive potential. The corresponding Langevin equation of
such an ABP system is :v = �f e � rU + n(t), where the noise
components of n (e.g. xv and xc) are Gaussian white noises, and
it is easy to show that dE/dt = �f v + n�v, where E is the
mechanical energy of the system. Assuming noise with correla-
tion hn(t)�n(t0)i = 2Dd(t � t0) we obtain hn�vi = 2D, where D is
the noise intensity, and with small noise intensity we obtain
hdE/dtiC �f v. All ABP models show that the system dissipates
energy with f 4 0 for high speeds and show active friction
(converting, partially, stored energy into kinetic energy) with
f o 0 for low speeds. In addition, the fluctuation–dissipation
relationship valid for Brownian particles becomes invalid
for ABP.34

Swimmer bacteria as well as other active agents, have a
preferential orientation (or polarity), referred by the heading
unit vector e(t), e.g. for E. coli the orientation from the tail to the
head is chosen, which allows characterizing the persistence
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of movement. Not always does the orientation coincide with the
direction of movement. The speed v(t) can be positive or negative
according to the bacteria from moving forward or backward,
respectively. Nonetheless, due to the impact of noise, swimming
bacteria do not follow a straight line during their run move-
ments. In the case of E. coli (wild type), that ‘runs’ E 1 s, the
noise introduces deflections (or orientation changes) with mean
lateral turns of E231 with respect to the mean direction.4

The extent of these straight-line deflexions depends on the
runtime and as experiments with swimming bacteria shows
the runtime (as well as the tumble time) is not constant but a
random variable. Actually the runtime follows an exponential
distribution4 or a power-law distribution.35 The tumble time,
which also follows an exponential distribution, is typically an
order of magnitude smaller than the runtime.4 However, some
theoretical investigations use tumble-time distributions with
the power-law behaviour.36 In each tumble the bacterium under-
goes reorientation with a distribution (of tumble angles) that is
characteristic of each bacterial species and strain. To the best of
the authors’ knowledge the first tumble-angle distribution (TAD)
was measured by Berg and Brown (BB) for swimming E. coli.4

More recent studies deal with the TAD of pseudopod eukaryotic
cells, e.g. Dictyostelium discoideum.37,38

In this paper, we address the stochastic dynamics of
turn angles corresponding to run and tumble motions based
on BB’s TAD data.4 They determine, among other observables,
the mean change in the bacterial direction from run to run, the
mean change in the bacterial direction during runs, the mean
tumble time, the mean runtime and, based on more than 1100
events, and the tumble-angle distribution P(cT). With the same
aim as us, Saragosti et al.16 proposed in 2012 a rotational
diffusion process to model the tumble movement of E. coli.
In contrast to Saragosti’s work, we assume that the tumble
motion is an active stochastic process of the bacteria rather
than a pure diffusion process. Taking into account the BB’s
E. coli TAD data as the starting point we propose in Section 2 a
Fokker–Planck equation for the stochastic process x(t) = cosc(t),
with turn-angle c and deflection x, both at time t. We show that
the PDF of the deflection x (for all t) is derivable from an
equilibrium potential U(x), where �U(x) is the drift term of the
Langevin equation. We fit our theoretical PDF to the BB’s TAD
data using only three free parameters whose physical meaning
we analyse. We study the model for the tumble motion in
Section 3 and we obtain first the deterministic solution and
then the stochastic solution of the Langevin equation. These
solutions show that the deflection as a function of time is a
stochastic process reduced to three parameters: the steady-state
solution, the characteristic time, and the control parameter. We
show that the deflection at tumble times is a nonstationary
process and we find the mean deflection and the variance of the
process. In Section 4 we show that the proposed Langevin
equation offers a solution for the deflections during the run
motion, being a Ornstein–Uhlenbeck process that becomes
stationary for characteristic runtimes. In Section 5 we show
how the deflections of the run and tumble motions are linked
together based on experimental results, such that confirm a

single model for both motions. Finally, we discuss and inter-
pret out main results in a biophysical context.

2 A stochastic turn model

The tumble motion is usually described in terms of two random
variables, the tumble angle cT and the tumble time tT. The
tumble angle cT is defined as the direction-change angle
between the end of a run and the start of the following.
In the present work, we use the tumble deflection xT = coscT

(with |cT| r p) instead of the tumble angle for reasons of
mathematical convenience. Previous studies have shown16 that
the expansions in terms of the Legendre polynomial of xT fit the
BB’s experimental data very well. The random variables xT and
tT are completely characterized by the joint PDF P(xT,tT) which,
based on experimental data, is not available. Usually the deflection

PDF P xTð Þ ¼
Ðþ1
0 P xT; tTð ÞdtT is determined measuring the experi-

mental tumble-angle PDF P(cT) (referred often to as TAD) without
any further consideration of the tumble time tT. Complementarily,

the tumble-time PDF P tTð Þ ¼
Ð 1
�1P xT; tTð ÞdxT is measured without

considering the deflection xT. Several authors have shown4,35 that
tumble-time PDF follows an exponential behaviour, i.e. P(tT) B e�ztT

(with z 4 0). A well-established theoretical approach is the study of
dynamics as a stochastic (or time-dependent random) process.
In the present case, the stochastic process is the deflection by
turning x(t) = cosc(t) or, alternatively, in terms of heading unit
vector as x(t) = e(t0)�e(t0 + t), where t0 is the initial time of the
motion. The stochastic variable x, which refers to a single
bacterium, is defined in the real interval [�1,1]. The joint
PDF P(xT,tT) of the random variables may be derived from the
one-dimensional PDF of the stochastic process x(t) named here

p(x,t) though P xT; tTð Þ ¼
Ð 1
�1
Ðþ1
0 d t� tTð Þd x� xTð Þpðx; tÞdtdx,

where d is the Dirac delta function.
Assuming that x(t) is a continuous Markov process we

propose the following Fokker–Planck equation

@

@t
pðx; tÞ ¼ � @

@x
K1ðxÞ �

@

@x
K2ðxÞ

� �
pðx; tÞ (1)

with initial conditions p(x,0) = d(x� x0), where K1 and K2 are the
time-independent drift and diffusion coefficients, respectively.39

Assuming that p(x,t) B e�kt with k4 0, the PDF of the deflection
x(t) becomes zero when the time goes towards infinite, i.e.
lim

t!þ1
pðx; tÞ ¼ 0. In consequence, for all x a x0,

K1ðxÞ �
@

@x
K2ðxÞ

� �
pðxÞ ¼

ðþ1
0

Jðx; tÞdt ¼ const; (2)

where Jðx; tÞ ¼ K1 �
@

@x
K2

� �
pðx; tÞ is the probability density

current of eqn (1) and

pðxÞ ¼
ðþ1
0

pðx; tÞdt

is the PDF of the deflection x = x(t). The PDF of deflection xT

can be recovered by means of P xTð Þ ¼
Ð 1
�1pðxÞd x� xTð Þdx.
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We assume the constant of eqn (2) is equal to zero in order to
obtain the ansatz

pðxÞ ¼ N e�UðxÞ; (3)

where N is the normalization and the potential is

UðxÞ ¼ ln K2ðxÞ½ � �
ðxK1ðx0Þ
K2ðx0Þ

dx0: (4)

Assuming a stochastic process with additive noise, we propose
a constant diffusion coefficient K2(x) = D and a drift coefficient
K1(x) = �DU0(x). Based on eqn (3) and (4), the proposed
potential is

UðxÞ ¼ U0 �
1

D
½mx� n coshðdxÞ�; (5)

where all constants are positive real numbers. The ansatz of
eqn (3) is validated empirically by the good agreement between
the fitted model and the experimental data. The potential fits
very well with the experimental E. coli data of Berg and Brown4

as shown in Fig. 1. Notice that the potential of eqn (5) is defined
with only 3 parameters: m/D, n/D and d, while U0 is eliminated
by normalization. Without loss of generality we set m = D since
the fit of the coefficients m and D yield m/D F 1 (see Fig. 1).
Consequently the corresponding Langevin equation of the
tumble deflection x(t) is

:
x = K1(x) + Z(t), (6)

where the drift coefficient is

K1(x) = m � nd sinh(dx), (7)

and Z = Z(t) is additive Gaussian white noise with the mean
hZ(t)i = 0 and the correlation

hZ(t)Z(t0)i = 2Dd(t � t0), (8)

where D is the noise intensity.

3 Tumble motion
Deterministic solution

In order to determine the meaning of phenomenological con-
stants we integrate the system assuming that the noise Z(t) = 0.
Integrating the deterministic equation

:
X = m � nd sinh(dX). (9)

in the interval [0,t), with the initial condition X(0) = 1, yields

LðXÞ ¼ ge�dX þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
ge�dX þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p ¼ L1e
�t=t; (10)

where L1 = L(1), g = nd/m, and

t ¼ 1

md
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p (11)

is the characteristic time of the turn. Taking the E. coli tumble
data into account one can estimate that g { 1 (see Fig. 1). In
consequence, the zero order expansion in g of the characteristic
time is t C (md)�1. In addition, we infer from the fit of our
model to the experimental data of BB that m = D. Without loss of
generality, we chose D = 1 and calculated t E 0.10, which is
close to experimental tumble times of E. coli. Setting K1(xs) = 0
(or equivalently U0(xs) = 0) we obtain the steady-state solution

xs ¼
1

d
arsinh

1

g

� �
o 1: (12)

The deterministic solution depends on three parameters {g,d,m}
from which the two physical quantities {t,xs} are derived. The
solution of the eqn (9), with the initial condition X(0) = 1, is

XðtÞ ¼ �1
d
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
g

1þ L1e
�t=t

1� L1e�t=t

� �
� 1

g

" #
; (13)

which is discussed in Fig. 2. For short times (t { t), we observed
an exponential change of the bacterial orientation, starting from
the unstable equilibrium (X = 1 or c = 0). Using the auxiliary

Fig. 1 Left: The plot shows the potential U(x) as a function of the deflection x = cosc (black solid line), fitted to the TAD data of Berg and Brown4 (blue
points with error bars). Around the fitted function the confidence interval of the fit is shown (pink shaded region). From the fit we obtain the parameters
m/D = 1.00 � 0.01, n/D = (7.41 � 1.05) � 10�4, and d = 9.74 � 0.14 (dimensionless). Right: The plot shows the tumble-angles PDF P(c) (black solid line)
modeled with eqn (3) using the fitted potential U(x) shown to the left. The shaded region and error bars represent the confidence interval of the fit and the
experimental uncertainties, respectively. Fit details: based on the experimental TAD, we performed more than 105 least-square adjustments to calculate
the numerical values and uncertainties of the free parameters of our model p(x), given by eqn (3), where for each adjustment the set of experimental data
were randomly set assuming that (a) the measured angles are uniformly distributed within intervals of 101, and (b) the number of events fallen in each
interval is Poisson-distributed.
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function y(t) = e�t/t, we expand the Taylor series of X(t) around
y = 1 (or equivalently around t = 0) up to first order and obtain the
deflection close to the unstable equilibrium (X u 1) given by

X(t) C 1 + a1(e�t/t � 1), (14)

where considering the results of the fit we assume that
�4L1 u g2 { 1 and consequently a1 C �4L1/[(4L1 + g2)d].
After some time, the bacterial orientation approaches a stable
equilibrium at deflection X = xs for (t \ t). Expanding the
Taylor series of X(t) around y = 0 (or equivalently for t - + N)
up to first order, we find an exponential approach to a stable
equilibrium (X ] xs) given by

X(t) C xs + a0e�t/t, (15)

where a0 C �4L1/(g2d) assuming that g { 1. The two analytical
approximations (for short and long times) are connected by the
exact deterministic solution as it is shown in Fig. 2. Contrary to
expectations, this transient regime connotes a slowdown of the
bacterial turn (clearly recognizable in the outer plot of Fig. 2).

Stochastic solution

The solution of Langevin eqn (6) is

xðtÞ ¼ xs þ x0 � xsð ÞG t; t0ð Þ þ
ðt
t0

ZðsÞGðt; sÞds; (16)

where

Gðt; t 0Þ ¼ XðtÞ � xs

Xðt 0Þ � xs
Hðt� t 0Þ; (17)

is the Green function of the problem, X(t) is the deterministic
solution given by eqn (13), and H is the Heaviside step function
defined as H = 1 if t Z t0 and H = 0 otherwise. Taking
into account (from the fit-parameters values shown in Fig. 1)

that �4L1/g2 u 1, we expand eqn (17) around g = 0 to obtain

Gðt; t 0Þ ¼
ln 1� be�t=t
� �

ln 1� be�t 0=tð ÞHðt� t 0Þ þO g2
� �

; (18)

where

b ¼ �4L1

g2
(19)

is the control parameter of the turn motion. Assuming that
the noise Z(s) of eqn (16) is white noise with zero mean, the
expectation value of x(t) is

hx(t)i = xs + (x0 � xs)G(t,t0). (20)

The approximation of eqn (20) to zero-order in g agrees very
well with the exact deterministic solution X(t) given by eqn (13).
Using eqn (16) with correlated noise of eqn (8), the covariance
r(t,t0) = C[x(t),x(t0)] = h[x(t) � hx(t)i][x(t0) � hx(t0)i]i is

rðt; t 0Þ ¼ 2D

ðminðt;t 0Þ

t0

Gðt; sÞGðt 0; sÞds: (21)

Using eqn (18) one can show that G(t,t0) C e�|t�t0|/t if
min(t,t0) c t, concluding that at very long times the solution
x(t) of eqn (16) describes an Ornstein–Uhlenbeck process.
Substituting u = be�s/t in the integrand (eqn (18)) of eqn (21)
we explicitly obtain

rðt; t 0Þ ¼ 2Dt ln 1�be�t=t
	 


ln 1�be�t
0=t

	 
ðbe� t0=tð Þ

be�½minðt;t 0 Þ=t�

du

u ln 2ð1� uÞ:

(22)

In order to calculate the integral we approximate the integrand
expanding it in a Laurent series around u = 0. Taking into
account that the indefinite integral is

IðuÞ ¼
ð

du

u ln 2ð1� uÞ ¼ �
1

2u2
þ 1

u
þ ln u

12
� u2

480
� u3

720
þO u4

� �
;

(23)

that ln(1 � be�t/t) C be�t/t if t c t, and that

minðt; t 0Þ ¼ 1

2
ðtþ t 0Þ � 1

2
jt� t 0j, one can show that

lim
t!þ1

rðt; tþ TÞ ¼ RðTÞ ¼ Dte�jT j=t: (24)

This limit, together with limt-Nhx(t)i = xs, shows that for very
long times the bacterium-turn process becomes stationary. The
process, however, is not stationary for short times including
typical tumble times tT that are in the order of the characteristic
time t. With t0 = 0, the variance v(t) = r(t,t) is

vðtÞ ¼ Dt 1� be�t=t þ t

6t
þ 2J ðbÞ � 13

12

� �
b2e�2t=t

�

þ t

6t
þ 2J ðbÞ � 1

	 

b3e�3t=t

þ 11

12

t

6t
þ 2J ðbÞ � 708

720

� �
b4e�4t=t þO e�5t=t

	 
i
;

(25)

Fig. 2 Log-linear plot of the mean deflection hxi vs. the adimensional
time t/t, for the tumble motion obtained from eqn (20) (red solid line).
Inside idem the linear plot (blue). For the tumble motion the curves are in
good agreement with the deterministic solution given by eqn (13). Initially
the deflection is x0 = 1 and after a short transient x goes asymptotically
to xs given by eqn (12). The dotted curves illustrate eqn (14), valid for in
the early regime (t { t), and eqn (15), valid in the late regime (t c t). The
data used in this plot are g = 0.00663 and d = 9.062. The steady-state value
is xs F 0.630 (calculated).
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where J ðbÞ ¼ IðbÞ � 1

12
lnb. The variance for the stationary

limit t - + N is vN = Dt = d�1. Eqn (25) confirms that the
process is non-stationary for t = tT as mentioned previously. This
result seems natural taking into account that the turn of the
bacterium ends at tumble times long before reaching the steady
state, as we show in the left plot of Fig. 3 (with a solid line).
Thus, the experimental TAD is measured over an ensemble of
tumble times. The average variance of the tumble times is

~v ¼
ðþ1
0

v tTð ÞP tTð ÞdtT; (26)

where P(tT) is tumble time distribution (TTD). In accordance
with the experimental results, we consider an exponential

distribution P tTð Þ ¼ N e�ktT=t and hence obtain the average
variance

~v

Dt
¼ 1� bk

1þ k
þ b2k
2þ k

� 1

6ð2þ kÞ þ 2J ðbÞ � 13

12

� �

þ b3k
3þ k

� 1

6ð3þ kÞ þ 2J ðbÞ � 1

� �

þ b4k
4þ k

� 1

6ð4þ kÞ þ 2J ðbÞ � 708

720

� �
þO b5

� �
:

(27)

The plot shown on the right side of Fig. 3 (solid line) shows
the ratio between the average variance and the asymptotic value
Dt is as a function of the parameter k, assuming the tumble

time PDF P tTð Þ ¼
Pþ1
j¼1

Aje
�kj tT=t leads to a more accurate

approach, which includes our approximation as a special case
(where Aj ¼ N d1j).

4 Run motion

Experimental observations of the swimming bacteria show that
their run motion is not completely rectilinear, but that the
bacteria perform random turns with angles c(t) around their

centres of mass that change their swimming directions. The
random deflection x(t) = cosc(t) from a straight line during
the run is not always small and depends on the bacterial
strain, body length, or other biological factors. In addition,
the average of the deflection-angle absolute value h|c|i and its
uncertainties s|c| is relatively big too as reported for E. coli
(e.g. |c| E 231 � 231 for wild type).4 Nevertheless experimental
results suggest that most probable deflection angle at the end
of the run is cs C 01. A steady state solution at x = xs = 1 based
on eqn (3) and (5) requires that the potential U(x), with |x| r 1,
has a global minimum at x = 1. Equivalently, x = 1 is a steady
solution if

x� ¼ 1

d
arsinh

1

g

� �
� 1 (28)

exists, such that U0(x*) = 0. This condition might be satisfied
with a proper choice of parameters (d,g). Notice that the
parameter x* is an amount without physical meaning. In turn,
the parameters d and g are linked through the control para-
meter b. Inverting the eqn (19) we obtain

dðb; gÞ ¼ � ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
g

1� 1

4
bg2

1þ 1

4
bg2

0
B@

1
CA� 1

g

2
64

3
75: (29)

The plot shown on the left side of Fig. 4 shows that the
condition x* Z 1 holds when the parameters b u 0 and
g o gc, where g = gc is the vertical asymptote of the x*(g).
Complementarily, the plot shown on the right side of Fig. 4
shows the parameter d as a function of the parameter g, for
several values of b u 0.

Stochastic solution

Setting x0 = xs in eqn (16), the deflection during the run
motion is

xðtÞ ¼ xs þ
ðt
t0

ZðsÞGðt; sÞds; (30)

Fig. 3 Both plots: show tumble-motion data (blue solid line) and run-motion data (red dashed line). Left: The plot shows the time dependent behaviour
of the variance v(t) given by eqn (25) and (33) (dimensionless with the asymptotic value Dt). Initially at t0 = 0 the system is completely uncorrelated. In
contrast, for t c t the system is becoming stationary and correlates completely. For intermediate times t = tT E t, an intermediate response is observed
which leads to the conclusion that the deflection x(t) is a non-stationary process. Right: The plot shows the average variance %v given by eqn (27) and (34)
(dimensionless with Dt) as a function of k, the exponent of the TTD. In both plots, the tumble-motion data (solid line) are plotted taking b = 0.965.
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which reflects that the deflections around the equilibrium are
fully random. Taking into account that b u 0 we can expand
eqn (17) around b = 0. The corresponding Green function is

G(t,t0) = e�|t�t0|/t + O(b). (31)

This shows that the bacterial deflection from a straight line
during the run motion, is a stochastic process with a solution
given by eqn (30) and with the Green’s function given by
eqn (31) which describes an Ornstein–Uhlenbeck process. The
covariance from eqn (21) is

r(t,t0) = Dt[e�|t�t0|/t � e�(t+t0�2t0)/t]. (32)

At very long times the system becomes a stationary Ornstein–
Uhlenbeck process verifying the conclusion drawn from eqn (24).
This limit is satisfied for min(t,t0) c t. With t0 = 0 the variance is

v(t) = Dt(1 � e�2t/t) (33)

and, taking an exponential TTD f ðtÞ ¼ N e�kt=t, the average
variance is

~v ¼ Dt
2

2þ k

� �
: (34)

The plot shown on the left side of Fig. 3 shows the variance of
the deflection of the run motion (dashed line) as a function

of time. Notice that the process becomes stationary for times
longer than the characteristic time. The plot shows joint results of
the run and tumble movements illustrating that the processes are
stationary and nonstationary, respectively, at times which are
longer than their characteristic times. The plot shown on the right
side of Fig. 3 shows that the average variance of the deflection of
both run and tumble motions, for small values of the parameter k,
approach their asymptotic values Dt.

5 A single model for run and tumble
motions

A problem with the modelling of the rotational component
of the bacterial run motion is the lack of an experimental turn-
angle PDF. Nevertheless, the experimental ratio rexp between
mean runtime and mean tumble time and the experimentally
measured deflection angle h|c|i � s|c| are available. The fact that
we can describe the Langevin dynamics of the turn deflection for
both tumble and run using the control parameter b makes us
optimistic that it is possible to reconstruct the deflection PDF
for the run motion on the base of these data. As the first step to
this end, we use the ratio rexp to find the theoretical deflection
PDF of the run motion. In a second step, with the PDF we

Fig. 4 Left: Plot of the parameter x* vs. the parameter g for several values of the control parameter b close to zero. Notice that x* Z 1 when b u 0 and
g o gc (where x* - +N when g - gc

�). All curves outside of the upper left quadrant (gray background) are not physical. Right: Plot of d vs. g, from
eqn (29), for several values of the control parameter b u 0.

Fig. 5 Left: Plot of the ratio r (between the mean runtime and the mean tumble time) vs. the parameter gR for different values of dT. One observes that at the
intersection of the dashed line with the curves, where r = rexp, the values of gR are restricted (e.g. for rexp E 6.14 and b = �0.01 we obtain 4.83 t gR t 5.08
when 11 Z dT Z 7). Right: Plot of the potential U(x) as a function of the turn deflection x of the run motion, defined in |x| r 1 (solid line, gray background).
Outside of this interval the potential function U(x) in non-physical (red dashed lines). Within the interval x 4 1 we find U0(x*) = 0. The parameters used for this
plot are b = �0.01, g = 4.98 and r = 6.15, where x* C 4.250 and d C 0.0471 are calculated using eqn (28) and (29), respectively.
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calculate theoretically the deflection angle and its uncertainty
and thus we confirm validity of our stochastic model for the
direction changes of swimming bacteria.

The experimental ratio rexp between the mean runtime htRi
and the mean tumble time htTi (e.g. rexp E 6.14 for E. coli4)
allows the estimation of a realistic value m/D, for a given set of
parameters g and d taking into account that m is linked with d, g
and the characteristic time t via eqn (11). Considering experi-
mentally measured time distributions one can use the expo-
nential distributions PJðtÞ ¼ N J exp �et= DJtJð Þ½ � (with J = R, T

and e is a constant that makes the exponent dimensionless) to
obtain the ratio r = (DRtR)/(DTtT), where the characteristic times
are given by eqn (11). While for tumble motion the fit of our
model to the experimental data yields that mT = DT, for the run
we propose mR = rDR. This leads to the relationship

dT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gT2

p
¼ r2dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gR2

p
; (35)

with dR = d(bR,gR) (see eqn (29)), which is in agreement with the
experimental data. The plot shown on the left side of Fig. 5
shows the ratio r as a function of the parameter gR. Assuming that
gR c 1 and gT { 1, the theoretical r has been calculated from
dT C r2dRgR. The validity of this approximation is supported by
the value of the theoretical r which is in good agreement with
the experimental ratio rexp. Replacing m = rD in eqn (5) with
d = d(b,g) (given by eqn (29)) the 3-parameter potential for the
run and tumble motion is

UðxÞ ¼ U0 � r x� g
d
coshðdxÞ

h i
; (36)

with r = 1 for tumble motion and r = r for run motion. The plot
shown on the right side of Fig. 5 shows the potential U(x) for the
run motion on interval |x| r 1, where x has a physical meaning
(the turn angle is c A [0,2p)) and outside of this interval where
the parameter x* has no physical meaning (the angle c is an
imaginary number).

If the run-and-tumble dynamics are expressed by a single
Langevin equation both movements have to be linked. In the
present work, this linking is achieved by the control parameter
b which clearly separates the solutions of both movements,
with well-differentiated behaviours. Fig. 6 visualizes the run–
tumble transition mechanisms. At the points R (run) and T
(tumble) of the parameter space (g,d) the system is in stable
equilibrium and the control parameter b takes a value bR u 0 at
point R and bT u 1 at point T. The critical control parameter
bc = 0 clearly separates run and tumble motions. Taking into
account that the value of the control parameter for the tumble
motion is bT u 1, it is possible that the system approaches
criticality by moving the control parameter b - 0+ along the
equilibrium condition U0(xs) = 0 and that the noise eventually
causes the loss of stability which leads to the transition T - R.
At the equilibrium point R, the value of the control parameter

Fig. 6 In the parameter space (d, g), the point of intersection T (or R) of
the two-upper (or two-lower) curves determines the set of parameters
that characterize the tumble (or run) motion. The dashed curves show the
function d = d(b,g) with control parameters b u 1 and bu 0 for the tumble
and run motions, respectively. The upper solid curve shows the values for
which U0(xs) = 0 (i.e. g sinh(dxs) = 1), corresponding to the solution of stable
equilibrium x = xs of tumble motion. The lower solid curve shows the
values for which x = 1 is a global minimum of the potential U, which is
equivalent to the use of a parameter x* 4 1 such that U0(x*) = 0
(i.e. g sinh(dx*) = 1), as can be seen in the plot shown on the left side of
Fig. 5. In this plot we have used the following data: for the tumble xs = 0.63
and b = 0.965 and for the run x* = 4.25 and b = �0.010. With these data
the obtained parameters are T F (6.63 � 10�3, 9.062) and R F (4.98,
4.71 � 10�2). Additionally, using eqn (35) we find r F 6.15, which is in very
good agreement with the experimental value rexp E 6.14.

Fig. 7 Both plots show the PDF of turn angles. Notice that the PDF is an even function of c. We used the same data as in Fig. 6 with the purpose of showing
for the two motions the high predictivity of the model. The mean and uncertainty of the angle absolute value |c| show in the plots are very close to the
experimental data.4 In plot shown on the left side the most probable angle cs F 511 corresponds to steady-state solution of the deflection xs F 0.63.
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bR u 0 is already close to the critical value, whereby the noise
destabilizes the equilibrium leading to the reverse transition
R - T. These transition mechanisms can only be sustained if
the effects of noise are more important for the tumble than for
the run movement. Since the tumble time is smaller than the
run time, the tumble motion can lose its stability more easily
than the run motion. The proposed mechanisms should be
complemented with stability studies of solutions in the presence
of noise, which goes beyond the scope of this paper. Finally, by
moving the parameters of the system continuously we can transit
from the turn-angles PDF of the run to the tumble and vice versa.
Fig. 7 shows both PDFs for values of parameters that reproduce
the experimental observables of the run and tumble motions.

6 Conclusions

More than four decades ago Berg and Brown4 measured the
tumble-angle distribution (TAD) of swimming wild-type E. coli
bacteria which moved without taxis in an isotropic solution. On
the basis of this work, we build a stochastic model using a
Langevin equation for the turn angles. We use the fact that the
normalized TAD can be represented as a series in x = cosc and
study the deflection x(t) as a stochastic process. We proposed
drift and diffusion coefficients for the Fokker–Planck equation
and the corresponding probability density function (PDF) repro-
duces the experimental TAD with very good agreement. Keeping
the diffusion coefficient constant leads us to a stochastic process
with additive noise and to a simple potential function U(x) which
is characterized by three fit parameters {g,d,m}, where m is directly
linked to the noise intensity D. We give a physical meaning to
these parameters showing that they are related to the character-
istic time t, the steady state solution xs, and the control para-
meter b of the tumble motion. We determine the Green function
associated with the Langevin equation of stochastic process x,
taking advantage of the fact that the system is fully integrable in
the absence of noise. We show that the homogeneous contribu-
tion of the stochastic solution is related to the drift and the
particular contribution is related to the noise. From this we
conclude that the tumble motion is primarily caused by the
flagellar motor and complementarily by diffusion. The contribu-
tion of the angular boost generated by the flagellar motor, which
is related to the gradient of the potential U(x), drives the system
within stable equilibrium. On the other hand, the noise con-
tribution to angular momentum moves the system away from
the stable equilibrium state. The rotational diffusion, which is
caused by the noise of the system, overlaps with the motion
caused by the flagellar motor and determines the width of the
tumble-angle PDF. We conclude from the covariance of the
process that at very-long times scales the turn process becomes
stationary, but at short time scales, which are on the order of the
characteristic time of the tumble motion, the system is far from
being stationary and the variance is time dependent. Assuming
an exponential PDF of tumble time (referred to as TTD) we
calculate the average variance of the tumble process. We use our
model to show that small turns of bacteria around their centres

of mass which occur during the run can be well modelled. Our
model reveals that the stochastic turns during the run motion
can be explained by an Ornstein–Uhlenbeck process, which for
typical run times is stationary. This result confirms that during
the run the rotational drift motions do not exist or are negligible
and that only the rotational diffusion remains. In general, we
show that different turn movements of swimming E. coli are
characterized by a control parameter b taking values bT u 1 (for
tumble motion) or bR u 0 (for run motion). The control
parameter b determines the way that the system can make
run–tumble transitions passing the critical value bc = 0, while
the system is in a stable equilibrium above and below to the
critical value during the movement of tumble and run, respec-
tively. Close to criticality, the noise drives the system from a
stable equilibrium (of run or tumble) to an unstable equilibrium
from which it transits to a new stable equilibrium state (of
tumble or run, respectively). On the basis of limited available
experimental data we suggest a possible self-consistent model
with high predictability, in which the parameters have a clear
physical meaning. This work leaves several open questions,
which have to be addressed in future studies. Taking into
account that our model is only based on E. coli data, it would
be desirable to check whether this model is capable of describ-
ing the turning behaviour of other bacterial species in isotropic
media without taxis. The consideration of external potentials in
order to study systems with taxis is also pending. In order to
investigate velocity correlations and the mean square displace-
ment of the run and tumble motion it is necessary to introduce
Langevin equations for the speed and deflection of the
bacterium and additionally take into account the present results.
Finally, our conclusions about the run–tumble transition require
new studies at a time scale which is much shorter than the
characteristic tumble time during which biochemical processes
in the flagellar motor occur.
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S. Mosler, K. Berg-Sørensen, N. B. Larsen and H. Flyvbjerg,
Brownian Motion after Einstein: Some New Applications and
New Experiments, Lecture Notes in Physics, Springer-Verlag,
2007, ch. 9, vol. 711, pp. 181–199.

25 P. Romanczuk, M. Bär, W. Ebeling, B. Lindner and
L. Schimansky-Geie, From individual to collective stochastic
dynamics, Eur. Phys. J.: Spec. Top., 2012, 202, 1–162.

26 G. Amselem, M. Theves, A. Bae, E. Bodenschatz and C. Beta,
A stochastic description of Dictyostelium chemotaxis, PLoS
One, 2012, 7, e37213.

27 D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen and
H. Flyvbjerg, Cell motility as persistent random motion:
Theories from experiments, Biophys. J., 2005, 89, 912–931.

28 L. Schimansky-Geier, M. Mieth and H. Rosè, Structure
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