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The “faster-is-slower” effect arises when crowded people push each other to escape through an exit during
an emergency situation. As individuals push harder, a statistical slowing down in the evacuation time can be
achieved. The slowing down is caused by the presence of small groups of pedestrians (say, a small human cluster)
that temporarily block the way out when trying to leave the room. The pressure on the pedestrians belonging to
this blocking cluster increases for increasing anxiety levels and/or a larger number of individuals trying to leave
the room through the same door. Our investigation shows, however, that very high pressures alter the dynamics
in the blocking cluster and, thus, change the statistics of the time delays along the escaping process. A reduction
in the long lasting delays can be acknowledged, while the overall evacuation performance improves. We present
results on this phenomenon taking place beyond the faster-is-slower regime.
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I. INTRODUCTION

The “faster-is-slower” (FIS) effect is the major phe-
nomenon taking place when pedestrians get involved in a
dangerous situation and try to escape through an emergency
door. It states that the faster they try to reach the exit, the slower
they move due to clogging near the door. This effect has been
observed in the context of the “social force model” (SFM) [1].
But, research on other physical systems, such as grains flowing
out a two-dimensional (2D) hopper or sheep entering a barn,
is also known to exhibit a faster-is-slower behavior [2].

Research on the clogging delays (in the context of the SFM)
has shown that a small group of pedestrians close to the door
are responsible for blocking the way to the rest of the crowd.
These blocking clusters appear as an archlike metastable
structure around the exit. The tangential friction between
pedestrians belonging to this blocking structure was shown to
play a relevant role with respect to the whole evacuation delays
[3,4]. However, either the amount of blocking structures or its
lifetime can vary according to the door width, the presence
of obstacles, or fallen individuals [5–8]. Further studies on
blocking structures appearing in granular media research can
be found in Refs. [9–12].

The relevance of the blocking structures on the time evac-
uation performance has alerted researchers that the analysis
of “reduced” systems rather than the whole crowd is still a
meaningful approach to the FIS effect [13,14]. In this context,
the authors of Ref. [14] introduced a simplified breakup model
for a small archlike blocking structure (in a SFM setting).
They examined theoretically the breakup of the arch due to a
single moving particle, and observed a FIS-like behavior. Thus,
they concluded that the essentials of the FIS phenomenon
could be described with a system of only a few degrees of
freedom.
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The pressure effects around the blocking structures may
cause large fluctuations on the whole crowd (called “crowd
turbulence”). Experimental work on small groups (less
than 100 individuals) [15–18] and computer simulations
[19–21] associate these fluctuations to the nonvanishing flow
of pedestrians at very high crowd densities. However, the
breakup of the archlike blocking structures and the possibility
of temporary releases has passed unnoticed in this recent
research.

To our knowledge, neither the theoretical approach nor
the computational simulations have been pushed to extreme
scenarios. That is, no special attention has been paid to those
situations where the pedestrians experience very high anxiety
levels (see Sec. IV) while the crowd becomes increasingly
large.

In this paper, we explore the pedestrian’s anxiety levels
from a relaxed situation to desired velocities that may cause
dangerous pressures. A dangerous pressure of 1600 Nm−1

may be associated to at least three pedestrians pushing with a
desired velocity close to 20 m/s (see Refs. [1,6]).

We want to stress the fact that this paper does not include
injury effects due to high pressure conditions, as reported in
Refs. [6,7]. The evacuation process may become blocked due
to unconscious (fallen) individuals. This scenario is likely to
occur. However, this paper is concerned with the breakup of
blocking structures during the emergency process. Thus, only
moving pedestrians will be taken into consideration.

We further want to make clear to the reader that neither
body shape nor body deformability effects are included in our
investigation. These effects might play a role in very dense
scenarios. But, in order to keep the analysis simple, we only
included similar parameters as in Ref. [1].

Our work is organized as follows: A brief review of the
basic SFM can be found in Sec. II. Section III details the
simulation procedures used to studying the room evacuation of
a crowd under panic. The corresponding results are presented
in Sec. IV. Finally, the conclusions are summarized in Sec. V.
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II. BACKGROUND

A. Social force model

Our research was carried out in the context of the “social
force model” (SFM) proposed by Helbing and co-workers
[1]. This model states that human motion is caused by the
desire of people to reach a certain destination, as well as other
environmental factors. The pedestrian’s behavioral pattern in a
crowded environment can be modeled by three kind of forces:
the “desire force,” the “social force,” and the “granular force.”

The “desire force” represents the pedestrian’s own desire
to reach a specific target position at a desired velocity vd .
But, in order to reach the desired target, he (she) needs to
accelerate (decelerate) from his (her) current velocity v(i)(t).
This acceleration (or deceleration) represents a desire force
since it is motivated by his (her) own willingness. The
corresponding expression for this force is

f(i)
d (t) = mi

v
(i)
d e(i)

d (t) − v(i)(t)

τ
, (1)

where mi is the mass of the pedestrian i. ed corresponds to the
unit vector pointing to the target position and τ is a constant
related to the relaxation time needed to reach his (her) desired
velocity. Its value is determined experimentally. For simplicity,
we assume that vd remains constant during an evacuation
process and is the same for all individuals, but ed changes
according to the current position of the pedestrian. Detailed
values for mi and τ can be found in Refs. [1,5].

The “social force” represents the psychological tendency
of two pedestrians, say i and j , to stay away from each other
by a repulsive interaction force

f(ij )
s = Ai e

(rij −dij )/Bi nij , (2)

where (ij ) means any pedestrian-pedestrian pair or pedestrian-
wall pair. Ai and Bi are fixed values, dij is the distance between
the center of mass of the pedestrians i and j , and the distance
rij = ri + rj is the sum of the pedestrians radius. nij means
the unit vector in the �ji direction.

Any two pedestrians touch each other if their distance dij is
smaller than rij . In this case, an additional force is included in
the model, called the “granular force.” This force is considered
to be a linear function of the relative (tangential) velocities of
the contacting individuals. Its mathematical expression reads
as

f(ij )
g = κ (rij − dij ) �(rij − dij ) �v(ij ) · tij , (3)

where κ is a fixed parameter. The function �(rij − dij ) is
zero when its argument is negative (that is, rij < dij ) and
equals unity for any other case (Heaviside function). �v(ij ) · tij
represents the difference between the tangential velocities of
the sliding bodies (or between the individual and the walls).

The above forces actuate on the pedestrian’s dynamics by
changing his (her) current velocity. The equation of motion for
pedestrian i reads as

mi

dv(i)

dt
= f(i)

d +
N∑

j=1

f(ij )
s +

N∑
j=1

f(ij )
g , (4)

where the subscript j represents all the other pedestrians
(excluding i) and the walls.

FIG. 1. Snapshot of an evacuation process from a 20 m × 20 m
room, with a single door of 1.2 m width. The blocking structure is
identified in red color (gray color in the printed version). The rest
of the crowd is represented by white circles. It can be seen three
individuals that have already left the room. The desired velocity for
the individuals inside the room was vd = 6 m/s.

B. Clustering structures

The time delays during an evacuation process are related
to clogged people, as explained in Refs. [3,4]. Groups of
pedestrians can be defined as the set of individuals that for
any member of the group (say, i) there exists at least another
member belonging to the same group (j ) in contact with the
former. That is, the distance between them (dij ) is less than
the sum of their radius (dij < ri + rj ). This kind of structure
is called a human cluster and it can be mathematically defined
as

i ∈ G ⇔ ∃j ∈ G/dij < ri + rj , (5)

where G corresponds to any set of individuals.
During an evacuation process, different human clusters

may appear inside the room. But, some of them are able to
block the way out. We are interested in the minimum set of
human clusters that connects both sides of the exit. Thus,
we will call blocking clusters or blocking structures to those
human structures that block the exit. Two blocking clusters
are considered to be distinct if they differ, at least, in one
pedestrian. That is, if they differ in the number of members
or in pedestrians themselves. Figure 1 shows (in highlighted
color) a blocking structure near the door.

We define the blocking time as the total time during which
the evacuation process is stopped due to any blocking cluster.
That is, the sum of the “lifetime” of each blocking cluster
(blocking delays).
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III. NUMERICAL SIMULATIONS

Most of the simulation processes were performed on a
20 m × 20 m room with 225 pedestrians inside. The occupancy
density was close to 0.6 individuals/m2 as suggested by
healthy indoor environmental regulations [22]. The room had
a single exit on one side, as shown in Fig. 1. The door was
placed in the middle of the side wall to avoid corner effects.

A few simulation processes were performed on 30 m ×
30 m and 40 m × 40 m rooms with 529 and 961 pedestrians
inside, respectively. The door was also placed in the middle of
the side wall. The pedestrians were initially placed in a regular
square arrangement along the room with random velocities,
resembling a Gaussian distribution with null mean value. The
desired velocity vd was the same for all the individuals. At
each time step, however, the desired direction ed was updated,
in order to point to the exit.

Two different boundary conditions were examined. The
first one included a reentering mechanism for the outgoing
pedestrians in the x direction (see Fig. 1). That is, those
individuals who were able to leave the room were moved
back inside the room and placed at the very back of the bulk
with velocity v = 0.1 m/s, in order to cause a minimal bulk
perturbation. This mechanism was carried out in order to keep
the crowd size unchanged. The second boundary condition
was the open one. That is, the individuals who left the room
were not allowed to enter again. This condition approaches
to real situations, and thus, it is useful for comparison
purposes.

The simulating process lasted for approximately 2000 s
whenever the reentering mechanism was implemented. If no
reentering was allowed, each evacuation process lasted until
70% of individuals had left the room. If this condition could not
be fulfilled, the process was stopped after 1000 s. Whenever the
reentering mechanism was not allowed, at least 30 evacuation
processes were run for each desired velocity vd .

The explored anxiety levels ranged from relaxed situations
(vd < 2 m/s) to extremely stressing ones (vd = 20 m/s). This
upper limit may hardly be reached in real life situations.
However, extremely stressing situations may produce similar
pushing pressures as those in a larger crowd with moderate
anxiety levels (see Ref. [23] for details). Thus, this wide range
of desired velocities provided us a full picture of the blocking
effects due to high pressures.

The simulations were supported by LAMMPS molecular
dynamics simulator with parallel computing capabilities [24].
The time integration algorithm followed the velocity Verlet
scheme with a time step of 10−4 s. All the necessary parameters
were set to the same values as in previous works (see
Refs. [5,23,25]).

We implemented special modules in C++ for upgrading
the LAMMPS capabilities to attain the social force model
simulations. We also checked over the LAMMPS output with
previous computations (see Refs. [5,25]).

Data recording was done at time intervals of 0.05τ , that is,
at intervals as short as 10% of the pedestrian’s relaxation time
(see Sec. II A). The recorded magnitudes were the pedestrian’s
positions and velocities for each evacuation process. We also
recorded the corresponding social force fs and granular force
fg actuating on each individual.

05 10 15 20

vd (m/s )

0

50

100

150

200

tim
e

(s
)

evacuation time
blocking time

FIG. 2. Evacuation time and blocking time as a function of the
desired velocity vd . Both data sets represent the mean values from
60 evacuation processes. The simulated room was 20 × 20 m with a
single door of 1.2 m width on one side. The number of individuals
inside the room was 225 (no reentering mechanism was allowed).
The simulation lasted until 160 individuals left the room.

IV. RESULTS

A. Evacuation time versus the desired velocity

As a first step, we measured the mean evacuation time
for a wide range of desired velocities vd , many of them
beyond the interval analyzed by Helbing and co-workers (see
Ref. [1]). This is shown in Fig. 2 (filled symbols and red
line). The faster-is-slower regime can be observed for desired
velocities between 2 and 8 m/s (approximately). However, the
evacuation time improves beyond this interval, meaning that
the greater the pedestrian’s anxiety level, the better with respect
to the overall time saving. This phenomenon was reported for
both boundary conditions mentioned in Sec. III.

Therefore, we actually attain a faster-is-faster regime for
desired velocities larger than 8 m/s, instead of the expected
faster-is-slower regime. This is a behavior that has not been
reported before (to our knowledge) in the literature. This effect
holds even if we include the elastic force introduced by Helbing
et al. in Ref. [1] (not shown in Fig. 2).

The overall time performance has been reported to be
related to the clogging delays, understood as the period of
time between two outgoing pedestrians (see Refs. [3–5] for
details). But, since most of these time intervals correspond to
the presence of blocking structures near the door, we examined
closely the delays due to blockings for increasing anxiety levels
(i.e., desired velocities vd ).

Figure 2 exhibits (in hollow symbols and blue line) the
computed blocking time for a wide range of desired velocities,
that is, the cumulative “lifetime” of all the blocking clusters
occurring during an evacuation process. Notice that the
blocking delays become nonvanishing for vd > 2 m/s. This
threshold corresponds to those situations where the granular
forces become relevant, according to Refs. [3,4]. It is, indeed,
the lower threshold for the faster-is-slower effect.

No complete matching between the mean evacuation time
and the blocking time can be observed along the interval
2 m/s < vd < 4 m/s. This means that the blocking time does
not fulfill the evacuation time, but other time wastes are
supposed to be relevant. We traced back all the time delays
experienced by the pedestrian and noticed that the time lapse
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FIG. 3. Evacuation time per individual vs desired velocity for
N = 225, 529, and 961 (no reentering mechanism was allowed). The
rooms sizes were 20 × 20, 30 × 30, and 40 × 40 m, respectively, with
a single door of 1.2 m width on one side. Mean values were computed
from 30 evacuation processes until 70% of pedestrians left the room.

between the breakup of the blocking structure and the leaving
time of the pedestrians (belonging to this blocking structure)
was actually a relevant magnitude. This transit time explained
the difference between the evacuation time and the blocking
time.

According to Fig. 2, the transit time does not play a role
for desired velocities larger than vd = 4 m/s. The evacuation
time appears to be highly correlated to the blocking delays
above this value. Thus, the noticeable enhancement in the
evacuation performance taking place between 8 and 20 m/s
(i.e., the “faster-is-faster” effect) is somehow related to the
reduction of the blocking time. In other words, the delays
associated to the blocking clusters appear to explain the entire
faster-is-faster effect.

We next measured the evacuation time for three different
crowd sizes. We chose a relatively small crowd (225 pedestri-
ans), a moderate one (529 pedestrians), and a large one (961
pedestrians). The corresponding room sizes were 20 × 20 m,
30 × 30 m, and 40 × 40 m, respectively. The results are shown
in Fig. 3.

The three situations exhibited in Fig. 3 achieve a faster-
is-faster phenomenon since the slope of each evacuation
curve changes sign above a certain desired velocity. As the
number of individuals in the crowd becomes larger, the vd

interval attaining a negative slope increases. That is, only a
moderate anxiety level is required to achieve the faster-is-faster
phenomenon if the crowd is large enough. Notice that the larger
crowd (i.e., 961 individuals) attains the steepest negative slope.
Thus, as more people push to get out (for any fixed desired
velocity vd ), the faster they will evacuate.

For a better insight of the faster-is-faster phenomenon,
we binned the blocking delays into four time intervals or
categories. This allowed a quantitative examination of the
changes in the delays when moving from the faster-is-slower
regime to the faster-is-faster regime. Figure 4 shows the mean
number of blocking delays (for each time interval) as a function
of vd .

The four blocking time intervals represented in Fig. 4
increase for increasing desired velocities until 8 m/s. This is in
agreement with the faster-is-slower regime since the faster the
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FIG. 4. Mean number of blocking delays for four different time
intervals (see legend for the corresponding blocking times tb) as a
function of the desired velocity vd . The simulated room was 20 ×
20 m with a single door of 1.2 m width on one side. The number
of individuals inside the room was 225 (no reentering mechanism
was allowed). Mean values were computed from 60 realizations. The
simulation lasted until 160 individuals left the room.

pedestrians try to evacuate, the more time they spend stuck in
the blocking structure. Beyond 8 m/s, the number of blockings
corresponding to those time intervals greater than 0.3 s reduces
(as vd increases). Thus, the individuals spend less time stuck
in the blocking structure for increasing anxiety levels.

It is true that the delays between 0.1 and 0.3 s increase for
high anxiety levels. But, a quick inspection of Fig. 4 shows
that this increase (represented in red triangular symbols) is not
enough to balance the decrease in the time intervals greater
than 0.3 s. Consequently, the overall evacuation time follows
the same behavior as the long lasting delays (say, the faster-is-
faster behavior).

The above research may be summarized as follows. The
scenario for high anxiety levels (say, vd > 4 m/s) corresponds
to a “nearly always” blocking scenario. However, two different
blocking instances can be noticed. The “faster is slower”
corresponds to the first instance. The “faster is faster” is the
second instance appearing after either high values of vd or
increasing number of pedestrians. Many long lasting blockings
seem to break down into shorter blockings, or even disappear
(see Fig. 4).

Our results, so far, suggest that the breakup process of the
blocking structures needs to be revisited. We hypothesize that a
connection between this breakup process and the pedestrian’s
pushing efforts should exist. The next two sections will focus
on this issue.

B. Blocking cluster breakup

We now examine the position of the breakups in the
blocking cluster. We define the breakup position as the one
on the y axis (according to Fig. 1) where any pedestrian
gets released from the blocking structure. Figure 5 exhibits
a histogram of the breakup position for a fixed anxiety level
(vd = 10 m/s).

The mean value of the distribution in Fig. 5 is close to
y = 10 m, that is, the mid-position of the door. This means
that the breakups are likely to occur in front of the exit. The
same result holds for other desired velocities in the investigated
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FIG. 5. Histogram of the position of the breakup of the blocking
cluster. The room size was 20 × 20 m with 225 pedestrians (no
reentering mechanism was allowed). The door’s width was 1.2 m
(from y = 9.4 to 10.6 m). The vertical red lines represent its limits.
30 evacuation processes were performed until 70% of pedestrians left
the room. The desired velocity was vd = 10 m/s.

range (not shown). Therefore, this region is of special interest
with respect to the breakup process.

From our current simulations and previous work (see
Ref. [23]), we realized that the mid-position corresponds to
the crowd area of highest pressure (for an exit width of 1.2 m).
This is in agreement with the maximum amount of breakups
since higher pushing efforts may help forward the blocking
pedestrians.

C. Stationary blocking model

For a better understanding of the relation between the crowd
pushing forces and the breakup process, we decided to focus
on the behavior of a single pedestrian who tries to get released
from the blocking structure. We mimicked a small piece of
the blocking structure (i.e., red individuals in Fig. 1) as two
individuals standing still, but separated a distance smaller
than the pedestrian’s diameter. A third pedestrian was set
in-between the former, mimicking the pedestrian who tries to
get released from the blocking structure. Figure 6(a) represents
this set of three pedestrians. Notice that Fig. 6(a) may represent
any piece of the blocking structure, but according to Sec. IV B,
it will usually correspond to the middle piece of the blocking
structure.

The middle pedestrian in Fig. 6(a) is being pushed from
behind by the rest of the crowd. The crowd pushing force
fs points in the x direction. Two granular forces fg appear
in the opposite direction as a consequence of pedestrian’s
advancement. More details can be found in the Appendix.

The still pedestrians on both sides experience the repulsion
due to the mid-pedestrian, as shown in Fig. 6(b). This repulsion
f points in the y direction. We are assuming, however, that
the pedestrians on the sides do not move during the breakup
process. Thus, the force f should be balanced by the crowd
(in the y direction). This corresponds to the balancing force F
in Fig. 6(b). More details can be found in the Appendix.

Notice that our mimicking model assumes that the crowd
pushes the mid-pedestrian along the x direction, while also
pushes the still pedestrians along the y direction. Both forces

(fs and F) are similar in nature. Actually, for the current
geometry, fs and F are approximately equal.

The crowd pushing force increases for increasing anxiety
levels. For a slowly moving crowd, this force varies linearly
with vd , according to Eq. (1). We can therefore set its value as

fs = F = βvd (6)

for any fixed coefficient β. The value of β depends linearly
on the number of individuals in the crowd. We assume a com-
pletely blocked situation at the beginning of the simulation.
The center of mass of the three pedestrians was initially aligned
and the velocity of the individual in the middle was set to zero.

We computed the blocking time on this simple model. This
was defined as the period of time required for the moving
pedestrian to release from the other two (still ones). This
time is supposed to mimic the blocking time of the blocking
structure since the three pedestrians represent a small piece of
this structure. Figure 7 shows the blocking time as a function
of the desired velocity vd .

A comparison between Figs. 2 and 7 shows the same
qualitative behavior for the blocking time, although the scale
along the vd axis is somehow different. The blocking time
slope changes sign at 7 m/s in Fig. 2, while Fig. 7 shows a
similar change at 3.75 m/s. This discrepancy can be explained
because of the chosen value of β.

Three values of β are represented in Fig. 7 (see caption).
The value β = 2000 corresponds to the expected pushing force
for a crowd of 225 pedestrians (and vd = 2 m/s). However, as
the pedestrians evacuate from the room, the crowd pushing
force diminishes. The effective force along the whole process
is actually smaller, and so is the β value. Thus, according to
Eq. (A7), the “effective” maximum blocking time is expected
to lie at a larger vd value than 3.75 m/s. This can also be
checked from Fig. 7 since the maximum blocking time in
there shifts to the right for decreasing β values.

The above reasoning is also in agreement with the evac-
uation time shown in Fig. 3 for an increasing number of
pedestrians. The maximum evacuation time takes place at
lower anxiety levels (i.e., vd values) as the crowd size becomes
larger. Therefore, the pushing force βvd downscales the
faster-is-faster threshold, as expected from our simple model.

So far, the mimicking model for a small piece of the
blocking structure exhibits a faster-is-slower instance for low
crowd’s pushing forces, and a faster-is-faster instance for large
pushing forces. The associated equations for both instances are
summarized in the Appendix. This formalism, however, stands
for a simple stationary situation.

D. Nonstationary blocking model

Our next step was to examine the force balance on the
moving pedestrian along the x axis [see Fig. 6(a)]. As
already mentioned, the attention is placed on initially aligned
pedestrians with null velocity.

Figure 8 shows the force balance on the moving pedestrian
(of the mimicking model) during the simulated breakup
process. The balance is expressed as the ratio between the
positive forces and the negative forces. The former corresponds
to the sum of all the forces that push the moving pedestrian
towards the exit (i.e., the own desired force, and the social force
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(a) force balance for the x-axis. (b) force balance for the y-axis.

FIG. 6. Force balance for a moving pedestrian between two still individuals. The moving pedestrian is represented by the white circle,
while the gray circles correspond to the still individuals. The movement is in the +x direction. fs represents the (mean) force due to other
pedestrians pushing from behind. fd is the moving pedestrian’s own desire. fg corresponds to the tangential friction (i.e., granular force)
between the moving pedestrian and his (her) neighbors. F and f are the forces actuating on the upper (still) pedestrian. f corresponds to the
social repulsive force due to the moving pedestrian, while F represents the counter force for keeping the pedestrian still.

from all the neighbors). The latter corresponds to the force
in the opposite direction to the movement (i.e., the granular
force). According to Sec. II A and Fig. 6,

ratio = fs + F + fd

2fg

, (7)

where fs and F correspond to the pushing forces from the
crowd. Both are social forces in nature. Notice, however, that
only the contribution on the x axis is relevant in the mimicking
model (see Fig. 6).

Figure 8 presents three different situations, corresponding
to those desired velocities highlighted in red color in Fig. 7.
The three situations stand for any faster-is-slower instance,
the maximum blocking time instance, and any faster-is-faster
instance, respectively. But, care was taken in choosing similar
blocking times for the first and the third situation, in order to
achieve a fair comparison.

The three situations shown in Fig. 8 exhibit a ratio close
to unity during the first stage of the process. This means
that all the forces actuating on the moving pedestrian are
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FIG. 7. Blocking time of the three pedestrians model (one moving
pedestrian between two still ones) as a function of the desired velocity
vd . The initial velocity of the moving pedestrian was set to zero.
The crowd pressure was set to F = fs = β vd (β value indicated on
the top right). Each blocking time was recorded when the moving
pedestrian lost contact with the other individuals. Desired velocities
of vd = 1.75, 3.5, and 11.25 m/s are indicated in red color (and
squared symbols) for β = 2000. The blocking time for vd = 1.75
and 11.25 m/s are the same. Only one realization was done for each
vd value.

approximately balanced. The formalism presented in the
Appendix is approximately valid during this stage of the
process.

Notice that this quasistationary stage lasts until the very
end of the breakup process (say, 1% above unity). However,
a striking positive slope can be seen during the last stage of
each process. The slopes are quite similar on each process
(although shifted in time) and, thus, this last stage seems not
to be relevant in the overall blocking time. We can envisage the
last stage as an expelling process before the blocking structure
breaks into two pieces.

An important conclusion can be derived from the inspection
of Fig. 8: although the breakup process is actually nonstation-
ary, the balance constraint (ratio � 1) is quite accurate for the
early breakup process.

E. Remarks

From our point of view, the balance constraint (that is,
ratio � 1) is actually the main reason for the faster-is-faster
phenomenon to take place. Recall that the positive forces
fs + F + fd correspond to the sum of the pushing forces
of the crowd (fs and F) and the moving pedestrian’s own
desire (fd ). The latter, however, is not relevant with respect
to the former because most of the pushing effort is done
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FIG. 8. Ratio of positive forces (desire force and social repulsion)
and negative force (granular) on the moving pedestrian as a function
of time for three desired velocities (see text for details). The initial
velocity of the moving pedestrian was zero. The simulation finished
when he loses contact with the other individuals. One realization is
done.
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by the crowd (for example, fd is approximately 10% of fs

for 225 individuals). Thus, the positive forces are roughly
fs + F = 2βvd , according to Sec. IV C and Appendix A 3.
The balance constraint becomes approximately

βvd

fg

� 1. (8)

Equation (8) is meaningful since it expresses the fact that
the negative force fg balances the pushing force, in order to
keep the pedestrian moving forward (at an almost constant
velocity). However, the granular force is currently fg =
κ v B ln(βvd/A). The B ln(βvd/A) factor corresponds to the
compression between the pedestrian and his (her) neighbor in
the blocking structure [see Eq. (A5) for details]. Thus,

v−1 ∼ ln(βvd/A)

βvd/A
. (9)

Notice that Eq. (9) resembles the behavior of Fig. 7. The
slope of v−1 is positive for low anxiety levels (i.e., vd values),
but changes sign as the anxiety level becomes increasingly
large. Since the blocking time varies as v−1, we may conclude
that Eq. (9) mimics the faster-is-slower and the faster-is-faster
instances.

The logarithm in Eq. (9) is the key feature for the slope
change. Recall from Eq. (A5) that ln(βvd/A) stands for
the compression in the blocking structure. But, although
compression increases for increasing pushing forces of the
crowd, it seems not enough to diminish the pedestrian velocity
in order to hold the faster-is-slower phenomenon at high
anxiety levels. Consequently, the blocking time decreases,
achieving a faster-is-faster instance. In Appendix A 4, a more
detailed formalism is exhibited on this issue.

V. CONCLUSIONS

Our investigation focused on the evacuation of extremely
anxious pedestrians through a single emergency door, in the
context of the “social force model.” No previous research
has been done, to our knowledge, for anxiety levels so high
that may cause dangerous pressures (even in relatively small
crowds). Unexpectedly, we found an improvement in the
overall evacuation time for desired velocities above 8 m/s (and
a crowd size of 225 individuals). That is, the faster-is-slower
effect came to an end at this anxiety level, while a faster-is-
faster phenomenon raised (at least) until a desired velocity of
20 m/s. This unforeseen phenomenon was also achieved for
increasingly large crowds and lower desired velocities.

A detailed examination of the pedestrian’s blocking clusters
showed that the faster-is-faster instance is related to shorter
“lifetimes” of the blocking structures near the exit. The long
lasting structures taking place at the faster-is-slower instance
now break up into short lasting ones. The breakup is most
likely to occur straight in front of the exit.

We mimicked the breakup process of a small piece of the
blocking structure through a minimalistic model. The most
simple model that we could image was a moving pedestrian
between two still individuals. Notwithstanding its simplicity,
it was found to be useful for understanding the connection
between the crowd’s pushing forces and the blocking breakup
process.

The mimicking model for the blocking structure showed
that a balance between the crowd’s pushing forces and the
friction with respect to the neighboring individuals held along
the breakup. Only at the very end of the process was the
pedestrian expelled from the blocking structure.

We concluded from the force balance condition that friction
was the key feature for the faster-is-faster instance to take
place. As the crowd pushing force increases, the compression
between individuals in the blocking structure seems not
enough to provide a slowing down in the moving pedestrian.
Thus, the faster-is-slower instance switches to a faster-is-faster
instance. The latter can be envisaged as a brake failure
mechanism.

We want to stress the fact that, although we investigated
extremely high anxiety situations, faster-is-faster instance may
be present at lower desired velocities if the crowd size is
large enough. We were able to acknowledge the faster-is-faster
phenomenon for desired velocities as low as vd = 4 m/s when
the crowd included 1000 individuals approximately.

It is worth mentioning that the conclusions summarized
above are valid within the context of the social force model.
Researchers are encouraged to extend these results to alterna-
tive models of emergency evacuations and, if possible, carry
out experiments or observational work.
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APPENDIX: A SIMPLE BLOCKING MODEL

1. The dynamic

This Appendix examines in detail a very simple model for
the time delays in the blocking cluster. We consider a single
moving pedestrian stuck in the blocking cluster, as shown in
Fig. 6. The moving pedestrian tries to get released from two
neighboring individuals that are supposed to remain still during
the process. The three pedestrians belong to the same blocking
structure, according to the definition given in Sec. II B. The
equation of motion for the pedestrian in the middle of Fig. 6(a)
reads as

m
dv

dt
= fs + fd − 2fg, (A1)

where fs represents the force due to other pedestrians pushing
from behind, fd represents the moving pedestrian’s own desire,
and fg represents the corresponding tangential friction due to
contact between the neighboring pedestrians. m and v are the
mass and velocity of the moving pedestrian (see caption in
Fig. 6), respectively. The expressions for fd and fg are as
follows:

fd = m

τ
(vd − v),

fg = κ (2r − d) v if 2r − d > 0. (A2)

The granular force fg expressed in (A2) depends only on
the velocity v since the other pedestrians are supposed to
remain still. The magnitude 2r − d is the difference between
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the pedestrian’s diameter 2r and the interpedestrian distance
d. It represents the compression between two contacting in-
dividuals. The other parameters correspond to usual literature
values (see Refs. [3,4]).

The movement equation (A1) expresses the dynamic for
the passing through pedestrian. The characteristic time needed
for the pedestrian to reach the stationary state is

tc = τ

1 + 2κτ

m
(2r − d)

(A3)

and therefore we expect the pedestrian movement to become
stationary after this time. It can be easily checked that tc drops
to less than 0.1 s for compression distances as small as 1 mm.
This means that the moving pedestrian’s velocity will be close
to the stationary velocity if the passing through process scales
to t � tc.

The stationary velocity v∞ can be obtained from Eq. (A1)
and the condition v̇ = 0. Thus,

v∞ = tc

[
fs

m
+ vd

τ

]
. (A4)

This is (approximately) the velocity that the moving pedes-
trian will hold most of the time while trying to get re-
leased from the other individuals. Thus, the time delay
td while passing across the still pedestrians will scale as
v−1

∞ .
Notice from Eqs. (A3) and (A4) that v∞ decreases for

increasing compression values. Also, an increase in the values
of fs or vd will cause the corresponding increase in v∞.
The resulting value for v∞ is a balance between the distance
2r − d and the forces fs or vd . The distance 2r − d, however,
resembles the compression between members of the same
blocking cluster, while the force fs corresponds to individuals
out of the blocking cluster.

2. Force balance

Figure 6(b) shows a schematic diagram for the forces
applied to one of the still individuals. The force f in Fig. 6(b)
represents the repulsive feeling actuating on the still individual
due to the moving pedestrian. The force F is the required
counter force necessary to keep the individual still. That is,
F balances the repulsive feeling f for a specific compression
distance 2r − d (and fixed values of fs and vd ). According to
Sec. II A, the relationship between the compression distance
and F (or f ) is as follows:

2r − d = B ln(F/A) (A5)

for the known values A and B.
The relation (A5) can be applied to the expression (A3) for

computing the characteristic time tc. This means that tc may be
controlled by F and, consequently, it controls the stationary
velocity v∞, according to (A4). Actually, the value of v∞
results from the balance between F and fs (and vd ).

3. Crowd context

The above relations for a single moving pedestrian sliding
between two still individuals should be put in the context of
an evacuation process. These three pedestrians may belong to
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FIG. 9. Time delay (v−1
∞ ) for a moving individual passing between

two still pedestrians, as shown in Fig. 6. The time interval was
measured along 10 m across the still pedestrians. The initial velocity
was vd . The continuous line corresponds to the measured delay for
βvd = 2000 vd and f = A exp[(2r − d)/B] (see text for details).
The dashed line corresponds to the measured delay for βvd = 2000 vd

and f = A exp[(2r − d)/B] + k (2r − d) (see text for details). The
minimum time delay for both lines takes place at vd = 1 m/s.
The maximum time delay for the continuous line takes place at
vd = 3.7 m/s, while for the dashed line takes place at vd = 4.2 m/s.

a “blocking structure,” as defined in Sec. II B. The blocking
structure may be surrounded by a large number of pedestrians
that do not belong to this structure, but continuously push
the structure towards the exit. Therefore, the forces fs and
F are similar in nature and somehow represent the pressure
actuating on the blocking structure from the surrounding
crowd.

The pressure from the crowd depends on the anxiety level
of the pedestrians. It has been shown that, at equilibrium, the
crowd pressure grows linearly with the desired velocity vd and
the number of individuals pushing from behind (see Ref. [23]).
It seems reasonable, as a first approach, that fs and F vary as
βvd for any fixed coefficient β.

The forces fs and F may be replaced by βvd in Eq. (A4)
for the evacuation process scenario, as explained in Sec. IV C.
Thus, the stationary velocity v∞ only depends on the desired
velocity of the pedestrians (and the total number of individu-
als). Figure 9 shows the behavior of the time delay (v−1

∞ ) for a
wide range of desired velocities vd .

The continuous line in Fig. 9 exhibits a local minimum
and a maximum at vd = 1 and 3.7 m/s, respectively. The be-
havioral pattern for vd < 1 m/s corresponds to noncontacting
situations (that is, 2r − d < 0). The characteristic time for
this regime is tc = τ and, thus, the time delay decreases for
increasing values of vd , according to Eq. (A4).

The regime for vd > 1 m/s corresponds to those situations
where the moving pedestrian gets in contact with the two still
individuals. Since the compression distance 2r − d becomes
positive, there is a reduction in the characteristic time tc,
according to Eq. (A3). This reduction actually changes the
value of the stationary velocity v∞, as expressed in (A4). It is
not immediate whether the tc reduction increases or decreases
the velocity v∞. A closer inspection of the v∞ behavioral
pattern is required.

052303-8



BEYOND THE FASTER-IS-SLOWER EFFECT PHYSICAL REVIEW E 96, 052303 (2017)

The computation of the slope for v∞ with respect to vd

gives the following expression:

dv∞
dvd

=
[

1 − 2κB

m
tc

]
v∞
vd

. (A6)

This expression shows a change of sign in the slope of v∞
for increasing values of vd . It can be checked over that
the expression enclosed in brackets is negative for small
compressions, but as tc decreases (due to vd increments), it
becomes positive. The vanishing condition for (A6) is

B ln

(
βvd

A

)
= B − m

2κτ.
(A7)

The last term on the right becomes negligible with respect to B

for the current literature values. Thus, the maximum time delay
(v−1

∞ ) takes place close to vd = 2.7 A/β. The corresponding
compression distance for this desired velocity is 2r − d = B.

4. Remarks

The above computations show two relevant vd values: the
one where a minimum time delay takes place and the one where
the maximum time delay happens. The former corresponds to
vd = A/β or, equivalently, 2r − d = 0. The latter corresponds
to vd = 2.7 A/β or 2r − d = B (approximately).

The forces fs and F are similar in nature for the evacuation
scenario. Therefore, F can be replaced by fs in Eq. (A5) for
the stationary passing through process shown in Fig. 6. The

stationary balance for Eq. (A1) then reads as

Ae(2r−d)/B + mvd

τ
=

[
2 κ (2r − d) + m

τ

]
v∞. (A8)

Accordingly, the time delay reads as

v−1
∞ = 1 + 2κτ

m
(2r − d)

Aτ
m

e(2r−d)/B + vd

. (A9)

Notice from this expression that small increments of 2r − d

produce increasing values of the time delay v−1
∞ if 2r − d < B.

But, further compression increments (that is, increments be-
yond 2r − d > B) reduce the time delay since the exponential
function grows increasingly fast.

The above observations give a better understanding for the
local maximum exhibited in Fig. 9. The positive slope range
for v−1

∞ corresponds to small values of fs [that is, small values
for the exponential function in (A9)], while the negative slope
range (beyond the local maximum) corresponds to high fs

values. Although Fig. 9 is in correspondence with Eq. (A6), the
local maximum does not actually take place at vd = 2.7 m/s
but at vd = 3.7 m/s. This is right since Fig. 9 represents
a complete simulation of the moving pedestrian instead of
the stationary model for the pedestrian at the crossing point
between the still individuals, as expressed in Eq. (A1) and
shown in Fig. 6. Figure 9 also shows in the dashed line the time
delay for individuals with non-negligible elastic compressions
(see caption for details). The local maximum also appears but
for lower time delay values.
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