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Optimal Parameters and
Characteristics of a Three
Degree of Freedom Dynamic
Vibration Absorber
The present study is devoted to the determination of the optimal parameters and charac-
teristics of a three degree of freedom dynamic vibration absorber (3 DOF DVA) for the
vibration reduction of a plate at a given point. The optimization scheme uses simulated
annealing and constrained simulated annealing, which is capable of optimizing systems
with a set of constraints. Comparisons between a 3 DOF DVA and multiple (5) 1 DOF
DVAs show a better performance of the former for vibration reduction. Regarding the
characteristics of the optimal 3 DOF DVA, numerical tests reveal that the absorber is ro-
bust under variations of the observation point and for 10% variations of its mass, stiffness
and damping. From the analysis of parameter changes of the plate, it is found that the
optimal 3 DOF DVA is almost insensitive to a mass change, and sensitive to a change of
Young’s modulus for low frequencies. In this case, a decrease in Young’s modulus causes
a decrease in its effectiveness, and an increase improves it. The study of the effect of the
3 DOF DVA location on its effectiveness reveals that the requirements of closeness of the
absorber to an antinode of the bare primary structure and to the observation point
improve its performance. Additionally, for a rotational mode of the 3-DOF DVA about
some axis, the effectiveness of the absorber at a given frequency can be notably increased
if it is located at a position of the primary system with an in-phase or out-of- phase
motion of the attachment points according to the rotational-mode characteristics of the
3-DOF DVA at this frequency. [DOI: 10.1115/1.4004667]

1 Introduction

To control undesirable high amplitudes of vibration of structural
elements; for example plates, beams or rods, the addition of passive
vibration-reduction mechanisms such as dynamic vibration absorb-
ers (DVAs) constitutes an effective and robust solution. A DVA or,
as referred to by some authors [1], tuned-mass damper (TMD), is
composed of a discrete system, commonly a mass, a spring element
and a damper, attached to the structure whose vibrations are to be
reduced. This device was first proposed by Frahm in 1909 [2], and
since then it has been continuously used for vibration control. The
idea is simple: it consists in using a subsidiary system, the DVA, to
reduce the vibration levels of the selected structure (primary sys-
tem). Then, the vibration amplitude of the primary system is
reduced by an increase in the displacement amplitude in the subsid-
iary system, which can dissipate some of the energy by the damper.
The only requirement to gain a considerable reduction of the vibra-
tion level is that the natural frequency of the DVA has to be equal
or close to the natural frequency of the main system. The effective-
ness of the device is thus guaranteed, but in turn two unwanted
effects appear: (1) the absorber is capable of controlling only one
frequency of the main structure, and (2) its performance is
extremely sensitive to the tuning between the natural frequency of
the DVA and the resonant frequency of the main system. To avoid
this difficulty, several techniques have been proposed to optimize
the parameters of the DVA to minimize the response of the main
system not only in the resonant frequency, but also in a range of
frequencies near it. The seminal work of Ormondroyd and Den
Hartog [3] was the foundation upon which many studies on vibra-
tion absorbers have been done. The model they developed consti-
tutes an efficient method to perform this “broadband” vibration

control. It relies on the existence of “invariant points” (points where
the response of the whole system is independent of the amount of
damping in the DVA) that appear only when the main system has
no damping. Then, it is possible to find an optimum value for the
stiffness and damping constants of the DVA by a parameterization
of the response [4]. However, real systems always have some
damping. Consequently, there exists a necessity to design new cri-
teria to optimize real systems for vibration reduction.

This was the focus of a number of contributions on vibration
absorbers over the last 30 years. Worthy of mention are the works
of Jacquot [5], Thompson [6] and Kitis [7] among others, which
proposed several ways to optimize single degree-of-freedom
(SDOF) systems attached to beams or multiple-degree-of-freedom
(MDOF) systems. More recently, some authors [8,9,10], have
addressed the same problem by extending previous ideas to more
general systems. Due to the possibility of controlling more than one
mode, MDOF DVAs have been proposed over this and previous
decades. Xu and Igusa [11] and Yamaguchi and Harnpornchai [12]
used multiple DVAs to control the vibration amplitude of a SDOF
primary system. Rice [13] showed the design of multiple discrete
vibration absorber systems for broadband applications in structures
modeled using modal data from finite element analysis. Zuo and
Nayfeh [14] proposed an efficient numerical approach to maximize
the minimal damping of modes in a prescribed frequency range for
a general viscous or hysteretic MDOF tuned-mass systems, and
more recently they optimized the stiffness and damping parameters
for multiple tuned-mass dampers (MTDs) by decentralized control
for parallel [15,16], and series [1] systems. On the same lines, Li
and Ni [17] optimized nonuniformly distributed MTDs for vibration
control, and, using simulated annealing, an optimal (parallel) two
(2) DOF DVA was optimized by Febbo and Vera [18] to reduce the
vibration levels of a beam over its first two resonances.

The aim of the present work is to numerically determine the opti-
mal parameters and characteristics of a three (3) DOF DVA for the
reduction of the vibration amplitude of a rectangular plate at a
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given point. The motivation to study a system with rotational as
well as translational DOFs is based on the initial assumption that
rotational DOFs would be very effective to reduce vibrations at
positions of significant bending of the main system (plate). The so-
lution is obtained using the simulated annealing technique and a
constrained version of it, which permits a better adjustment of the
results to the optimization requirements. In order to compare
the effectiveness of the optimal 3 DOF DVA with simpler devices,
the optimization of multiple (5) 1 DOF DVAs is also presented.
Numerical tests on the robustness and effectiveness of the solutions
in response to a parameter change of the plate and absorber are also
carried out. Finally, the last section is devoted to the study of the
effect of the 3 DOF DVA location on its effectiveness. The paper
concludes with a summary of the results.

2 Mathematical Formulation

First, a sketch of the derivation of the equations is given. From
all the possible ways to derive them, Lagrangian formalism is used
here because it permits to model the plate-type structure separately
and then couple it together with the dynamics of the attached sys-
tem using the Lagrange multipliers approach. Figure 1(a) presents
the system under study which consists of a plate (primary or main
system) and a 3 DOF system attached to it. The intervening param-
eters of the 3 DOF system, me, Iex and Iey are, respectively, the
lumped mass and mass moment of inertia in a direction parallel to
the x and y axes; k1, k2, k3, k4, and c1, c2, c3, c4 are the spring and
damper constants and a1, a2, a3, a4 are the distances between the
center of mass and the corners of the rigid mass of the 3 DOF sys-
tem (see Fig. 1(b). The total kinetic and strain energies and the dis-
sipation function of the whole system (plateþ3 DOF system) are:
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where the cij’s are the normal mode amplitudes, xij are the eigen-
frequencies of the primary system and the mij

0s are given by
qh
Ð
X /ij/mndX ¼ dijmij (dij is Kronecker’s d, q is the plate’s mass

density and h its thickness, see Fig. 1(a)). The internal damping of
the plate is assumed to be of viscous type with dij as the modal
damping parameters. Additionally, the transverse displacement of
the plate is represented by w(x, y, t)¼Ri,j

n,n0cij(t)/ij(x,y), where
/ij(x, y) are the normal mode shapes of the selected plate. The sum-
mation is carried out up to the n, n0 normal mode where the first
N¼ n� n0 modes are considered in order of increasing frequencies.
Five restriction functions fl’s have to be imposed for the system of
equations to be complete and solvable. This can be expressed by:

fl ¼
Xn;n0

i;j

cijðtÞ/ijðxl; ylÞ � zlðtÞ ¼ 0; l ¼ 1; :::; 4;

f5 ¼ zm4 � ðzm1 þ zm3 � zm2Þ
(4)

where the first four equations represent the connection of the 3
DOF system to the plate at the points xl, yl, l¼ 1, 2, 3, 4 (see Fig.
1(b)) and the fifth accounts for the rigidity condition of the mass
of the 3 DOF system (rigid solid). Then, the equations of motion
can be obtained by Lagrange’s equations:

d
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where the Qks represent the generalized forces applied at the point
(xf, yf) and the kls are Lagrange’s multipliers. Finally, Lagrange’s
equations of motion yield, after the elimination of the kl

0s, a set of
Nþ 3 coupled linear second-order differential equations in terms
of the new independent set of coordinates q: [q1, … qN, qNþ1,
qNþ2, qNþ3]: [c11, … cnn

0, zm1, zm2, zm3], and the set of general-
ized forces Q: [Q1, … QN, 0, 0, 0]:

M€qðtÞ þ C _qðtÞ þKqðtÞ ¼ Q (6)

Matrices (Nþ 3�Nþ 3) M, C and K are given by:

M ¼
Mp 0

0T M3DOF

� �
; C ¼

Cp þ Csub Cc

CT
c C3DOF

� �
;

K ¼
Kp þKsub Kc

KT
c K3DOF

� �
;

where the (N�N) matrices Mp, Cp and Kp are diagonal matrices
whose elements are mk, 2nkmkxk (nk¼ dk/2mkxk) and mkx2

k
(k¼ 1, 2,…N), respectively. The rest of the matrices, Ksub, Csub,
Kc, Cc and M3DOF, C3DOF, K3DOF are given in Appendix A.

Fig. 1 (a) Plate with a 3 DOF system attached to it. (b) Nomenclature for the coordinates selected to describe the motion of the
3 DOF system
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In order to calculate the displacement amplitude q(t) of the
coupled system, a simple harmonic motion of vector qðtÞ ¼ �qeixt

is imposed. Then, vector �q is obtained by solving

�q ¼ ½�x2Mþ ixCþK��1 ~/ðxf ; yf Þ (7)

where ~/ðxf ; yf Þ ¼ ½/1ðxf ; yf Þ:::/Nðxf ; yf Þ000�T Finally, the dis-
placement of the primary system at the point (xa, ya) is
wðxa; ya; tÞ ¼

PN
k¼1 �qkeixt/kðxa; yaÞ.

In case v 1 DOF systems with parameters ki, ci, i¼ 1…v wish
to be included in the dynamics of the primary system, only a slight
modification of the above formulation is necessary. Then, matri-
ces Mp, Cp, Kp, Ksub, Csub remain the same while Kc, Cc and
M3DOF, C3DOF, K3DOF need to be modified. Finally, the new mat-
rices result: M3DOF ¼ diagðmiÞ; C3DOF ¼ diagðciÞ; K3DOF

¼ diagðkiÞ and

Kc ¼ �k1/ x1; y1ð Þ � k2/ x2; y2ð Þ:::� kv/ xv; yvð Þ½ �;
Cc ¼ �c1/ x1; y1ð Þ � c2/ x2; y2ð Þ:::� cv/ xv; yvð Þ½ �

3 Optimization of the Dynamic Vibration

Absorbers (DVAs)

The optimization of the MDOF systems acting as DVAs is car-
ried out using suitable numerical schemes to solve this high non-
linear global optimization problem. Selecting as objective the
minimization of the response of the primary system at its first
three frequencies of resonance, two alternatives are presented:
multiple (5) 1 DOF DVAs and one 3 DOF DVA, which allow for
a meaningful comparison. The selection of five 1 DOF DVAs is
made arbitrarily since it only intends to provide one possible com-
parison of the 3 DOF DVA with a simple and widely known
system.

To find the parameters of MDOF DVAs is a complex task from
a mathematical and numerical point of view. Den Hartog’s pio-
neering strategy based on the existence of fixed points is one way
to find k and c of a 1 DOF DVA attached to an undamped analo-
gous system. This strategy is called optimal H1 control in the
modern language of vibration control. In the case of a 3 DOF
DVA, it is necessary to find the parameters that minimize an
eight-dimensional objective function whose parameters are: (k1,
k2, k3, k4, c1, c2, c3, c4). The difficulty then, increases consider-
ably. Earlier studies [18] proposed to extend Den Hartog’s ideas
to optimize a 2 DOF DVA. In the same spirit, a reduction of half
the number of variables was obtained and; consequently, of the
time of calculation and complexity of the problem. In this work,
two strategies are implemented for the optimization of a 3 DOF
DVA. The first one applies Den Hartog’s criterion by means of a
simulated annealing technique, as reported in a previous work
[18]. This optimization procedure is called simply SA optimiza-
tion. The second one, which may serve as a test and an alternative
for the first one, addresses directly the eight-dimensional problem
by a constrained simulated annealing algorithm, and is called
CSA optimization.

3.1 Simulated Annealing and Constrained Simulated
Annealing. The method of simulated annealing (SA) was first
proposed by Kirkpatrick et al. [19] based on a previous work by
Metropolis et al. [20]. Numerical optimization for large scale opti-
mization problems demonstrates that SA works efficiently for
combinatorial optimization (the famous traveling salesman prob-
lem [21]) for instance. Other examples that show the versatility
and efficiency of the same scheme are: the designing of complex
electrical circuits to optimize the locations of several hundreds of
them to avoid the interference of the connecting wires [22], or the
optimization of the design of constrained composite sound absorb-
ers [23] (continuous parameters optimization). A brief description
of the method and its implementation for a 2 DOF DVA parame-
ter optimization can be seen in a previous work of the author [18].

Constrained simulated annealing [24] (CSA) is based on simu-
lated annealing that normally does probabilistic descents in the
search space, with probabilities of acceptance governed by a
temperature that is reduced in an exponentially decreasing fash-
ion. Constrained simulated annealing, in contrast, increases the
original search space X 2 Rn by a Lagrange multiplier space
K 2 Rm and does probabilistic ascents in the K space and proba-
bilistic descents in the original variable space. Then, if f(x) is the
objective function of the original problem, and there exists m
equality constrains of the form hi(x)¼ 0, i¼ 1…m, the new
increased objective function to be minimized is proposed to be:
L(x, k)¼ f(x)þRi¼1

m kijhi(x)j which allows to obtain the optimal
xo subjected to the restrictions hi¼ 0; i¼ 1,…, m. A flow dia-
gram of the constrained simulated annealing scheme is shown in
Fig. 2.

The procedure is extracted from Ref. [24] with some modifica-
tions introduced by the author in the trial point generation routine
based on a previous work [18]. For the sake of brevity, the salient
features of the algorithm are shown here. The algorithm starts
generating a starting point (x, k) which can be either user provided
or randomly generated (k¼ {k1, k2,…, km}) is initialized to zero).
Then, the temperature T (control parameter) is set to be high
enough (to be discussed later) so as to accept almost all trail points
(x0, k0). After that, NT, which is the number of iterations at each
temperature required to equilibrate the system is established to be
NT¼ f(20nþm) where f¼ 10(nþm) (see Corana et al. [25]). The
next step is to generate a random trial point (x0, k0) in the neigh-
borhood of (x, k) in the search space S¼X�K using the genera-
tion routine mentioned above. After computing DL, if DL� 0 the
new solution is accepted. Otherwise, the algorithm rejects it unless
the probability transition probDL� rd (0,1), being rd (0,1) a uni-
formly distributed random number in the interval (0,1). The func-
tion probDL consists of two components, depending on whether x
or k is changed:

prob DLð Þ ¼
exp �� L x0; k0ð Þ � L x; kð Þð Þ

T

� �
if x! x0

exp
� L x; kð Þ � L x0; k0ð Þð Þ

T

� �
if k! k0

8>><
>>:

9>>=
>>;

Once the iterations per temperature NT are completed, temperature
T is decreased by its cooling rate and the procedure starts again
with NT¼ 0 for a decreased T. The CSA algorithm stops when the
current temperature is low enough (e.g., T< 10�6). Finally, the
algorithm requires an adjustment of two intervening parameters
(see Corana [25]): the initial temperature T0 and the cooling rate
te. The initial temperature is generated by first randomly generat-
ing 100 points of x and their corresponding neighboring points x0

where each component jxi
0 � xij � 0.001 and then setting

T¼maxx,x0 ,ifjL(x0, 1)� L(x, 1)j, jhi(x)jg. The cooling rate is set to
be 0.8 for all the numerical experiments.

4 Numerical Optimization Results

Appropriate numerical experiments for the determination of the
optimal parameters of a 3 DOF DVA based on SA and CSA are
presented. Five 1 DOF DVAs are also optimized (see Fig. 3) to
compare their performances to the optimized 3 DOF DVA.

The optimization of a 1 DOF DVA attached to a primary sys-
tem has been already discussed by several authors. Since it is not
the aim of this work to propose a rule to optimize systems of this
kind, a traditional optimization scheme is followed based on Den
Hartog’s optimization procedure. This particular optimization pro-
cedure has been implemented by Cheung [10], who extends Den
Hartog’s method and considers a plate as the primary system. As
it can be deduced from his work, the following procedure takes
into account neither the coupling between the DVAs nor the inter-
nal viscous damping in the plate. As a result, tuning ratio (aa) and
damping coefficient (nma) are given by:
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aa ¼
1

1þ l/2
ijðx�; y�Þ
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nma ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l/2

ijðx�; y�Þ
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3
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where /ij(xv, yv) is the modal shape function of the normal mode
at the DVA location. The location of each DVA is schematically
represented in Fig. 3 where the first DVA (1) is located at the cen-
ter of mass of the 3 DOF DVA and the rest of them (2,3,4,5) are
placed at the corners. With these locations, the first DVA (1) is
selected to reduce the vibration amplitude for the first resonance
of the plate, DVA (2) and DVA (4) are set to reduce the third and
DVA (3) and DVA (5) are chosen for the second. Clearly, other
combinations are also possible and it is possible to find which way
is better for each different DVA location. However, it can be
shown (numerically) that the final results are all comparable to
each other.

The optimization of the 3-DOF DVA by SA proposed here is
based on an extension of the method presented by the author [18]
for a 2-DOF DVA. The approach uses Den Hartog’s scheme for
the optimization problem and; as a result, it presents a reduction
of half the number of parameters to be optimized.

On the other side, the optimization by CSA solves the case of
an eight-dimensional optimization problem. Accordingly, a con-
veniently selected objective function which depends on parame-
ters k¼ (k1, k2, k3, k4) and c¼ (c1, c2, c3, c4) is proposed

f ðk; cÞ ¼ W1ðk; cÞ þW2ðk; cÞ þW3ðk; cÞ (8)

where Wpðk; cÞ ¼
Ps1

i¼1 jWðk; c;x ¼ xi; Þj for xpj � d � x
� xpj þ d; ðj ¼ 1; 2; 3Þ. Here, xpj are the first three natural fre-
quencies of the primary system and d is a selected frequency inter-
val (for example 60.1 xp). This means that the objective function
takes into account not only the displacement amplitude at the
three resonances but also many frequency points near them. For
all the cases, 10 points (si¼ 10) are selected in each summation.
This is a compromise solution between calculation time and accu-
racy of the solution. However, there exists a problem with this
objective function since no restriction on the stiffness constant
values of the 3 DOF system (k1, k2, k3, k4) is required. It may then
occur that the absorber has its natural frequencies far away from
the first three resonances of the plate, resulting in a poor optimiza-
tion. For this reason, three restrictions functions, h1, h2, h3 are
added to the objective function to consider this effect. The new
objective function reads

f ðk; cÞ ¼ W1ðk; cÞ þW2ðk; cÞ þW3ðk; cÞ þ
X3

i¼1

kijxð3DOFÞ
i

� ðk; cÞ � xpij (9)

where xpi is the i-th natural frequency of the plate (the first three)
and xi

(3DOF) (k, c) is the i-th proposed natural frequency of the 3
DOF system calculated by the algorithm at each iteration.

4.1 Comparison Between an Optimal 3-DOF DVA and 5
Optimal 1-DOF DVAs. Numerical optimizations (SA and CSA)
are presented for four different locations of the 3 DOF DVA on
the plate. As stated above, the performances of multiple (5) 1
DOF DVAs positioned at the same locations as the 3 DOF DVA

Fig. 2 Flow diagram for the implementation of the constrained simulated anneal-
ing algorithm CSA (see text for initial values of parameters)
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(with the disposition shown in Fig. 3) and with the same total
mass as the 3 DOF DVA are also shown for comparison.

A totally simply supported steel plate of density 7.850� 103

kg/m3, length 2 m, Young modulus 2.051� 101 1 N/m2, height
0.005 m, width 1 m, mass 78.5 kg and damping coefficient 0.01 is
considered for all cases. Thus, the first three natural frequencies of
the undamped plate are: f1¼ 15.19 [Hz], f2¼ 24.30 [Hz] and
f3¼ 39.48 [Hz]. The parameters of the 3 DOF DVA to be opti-
mized are the stiffness and damper constants, i.e., k1, k2, k3, k4 and
c1, c2, c3, c4. Its mass and mass moments of inertia remain the
same for all the numerical experiments, as is usual in practice.
They are chosen to be: me ¼ mp=20 ¼ 3:9250kg, he¼ 0.45 m,
Iex¼ me=12ð Þðh2

e þ ða3 þ a4Þ2Þ ¼ 0:0793 kgm2, Iey ¼ me=12ð Þðh2
e

þða1 þ a2Þ2Þ ¼ 0:1688 kgm2; a1¼ a2¼ 0.28 m; a3¼ a4¼ 0.1 m.
Regarding this selection, it is necessary to clarify some points. In
MDOF absorbers, both the mass of the absorber (as usually done
in 1-DOF DVAs) and its geometric characteristics are usually
specified for the optimization problem. In this case, this means to
select: a1, a2, a3, a4, he, from which the mass moments of inertia
Iex, Iey can be further obtained. Then, it is possible to ask which
criterion must be adopted to propose such values. A reasonable
criterion is to select a1, a2, a3, a4, he in order to make the natural
frequencies of the 3-DOF DVA to be near the first three natural
frequencies of the plate (this was previously adopted in Ref. [18])
and this is the one applied in this work. Certainly, there exist sev-
eral ways to do this. However, and this is also according to the
design philosophy of DVAs we only consider a 3-DOF DVA
whose physical dimensions are comparably smaller than those of
the plate and that also preserves the main characteristics of a 3-
DOF system. In this process, considering the physical dimensions
of the selected plate, the modes of the 3-DOF are predominantly
rotation about the x axis (first mode), translation (second mode)
and rotation about the y axis (third mode). Then, the optimization
procedure has no possibility to change the mode’s main character-
istics and it can only modify the natural frequencies of the
absorber (through k1, k2, k3, k4) and the damping constants).
Naturally, other plate dimensions lead to the selection of a differ-
ent 3-DOF absorber and to other optimization results for which
the present method can perfectly be applied.

The observation point is selected at (xa, ya)¼ (0.8125m,
0.3125m) in order to obtain a nonvanishing displacement ampli-
tude of the compound system. To determine its frequency
response, the plate is excited by a sinusoidal source of variable
frequency (0–50 [Hz]) located at (xf, yf)¼ (0.3m, 0.3m).

The four different locations of the 3 DOF DVA are schemati-
cally shown in Figs. 4(a), 4(b), and 4(c), together with the first
three normal mode shapes of the bare plate. The location of the
center of mass for the four cases are: (1) (xe, ye)¼ (1.0, 0.5); (2)
(xe, ye)¼ (0.5, 0.5); (3) (xe, ye)¼ (0.5, 0.75); (4) (xe, ye)¼ (1.0,
0.75), which are selected in order to determinate how the effec-
tiveness of the 3 DOF DVA changes under a variation of the type
of motion of the plate (in-phase motion, out-of-phase motion) at
the location of the absorber.

Before analyzing the results, it is appropriate to point out gen-
eral aspects of MDOF systems attached to other (primary) sys-
tems. Firstly, if m-DOF systems (m¼ 1, 2, 3,…) are attached to a
primary system, the resulting (compound) system (plate
þ absorber) will have the sum of the degrees of freedom of the
primary structure plus the m-DOFs provided by the added system.
Then, if the MDOF systems have all their natural frequencies
approximately tuned near the resonances of the primary system
and their damping coefficients are not high, the new modes can be
evidenced in a frequency response plot as additional peaks near
the original resonances of the primary system.

These new normal modes, combined with those provided by the
plate, will constitute the normal modes of the compound system
and can be obtained, as well as the natural frequencies of the com-
pound system, using Eq. (6), setting the RHS to zero. Figure 5(a)
shows this case for our simply supported plate with an undamped
(c1¼ c2¼ c3¼ c4¼ 0) 3-DOF system (solid line) with the same
constants given above, and with k1, k2, k3, k4 given by the fourth
row of Table 1 which ensures a proper tuning. When considering
damping in the 3-DOF system, the previous situation changes in
some way. It can be demonstrated that the presence of damping in
the 3-DOF system gradually decreases the peak amplitudes, until
they melt into a single peak of lower frequency than the original
resonance when the damping is sufficiently high, in a similar fash-
ion as it can be observed for heavily-damped 1-DOF absorbers.
Figure 5(a) shows with a dashed dotted line the effect of a
heavily-damped 3-DOF system (c1¼ c2¼ c3¼ c4¼ 1000)
attached to a plate on the frequency response of the compound
system. In brief, it can be said that, whereas the force exerted by
the absorber in the plate is due to the springs in the undamped sit-
uation, in the extreme case of high damping the force is mainly
due to the dampers.

With this in mind, it is easier to analyze the results of the opti-
mization process for the four cases plotted in Figs. 1(a)–1(d). Nu-
merical values of all the optimized parameters for cases [1–4] are
presented in Table 1, as well as the normal-mode characteristics
and natural frequencies of the 3-DOF system. Looking carefully
at those figures, it is possible to conclude that the optimization
results give a similar situation as the one explained above in the
case of high damping of the 3-DOF: the existence of only one
peak near each original resonance of lower amplitude and fre-
quency serves as confirmation.

Fig. 4 First (a), second (b) and third (c) normal mode amplitudes of a totally simply supported (SSSS) rectangular plate; the
four different selected locations [1–4] of the 3 DOF DVA mounted on the plate are also shown (see numerical values in text)

Fig. 3 Localization of five 1 DOF systems acting as DVAs for
comparison with a 3 DOF DVA attached to the plate for vibration
reduction
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Concerning the performances of the optimization results shown
in Figs. 6(a)–6(d), it can be said that both optimizations for the 3
DOF DVA (SA and CSA) give almost the same results for all
cases. Specifically, for case 1 shown in Fig. 6(a), an important
reduction of almost 5 dB for the first two resonances provided by
the 3-DOF DVA is observed. At the third resonance, the reduction
decreases slightly but it is still of 2.0 dB. On the other hand, the
results of the five optimized 1 DOF DVAs (traditional optimiza-
tion) reveal in principle a better reduction at the resonant frequen-
cies of the bare plate. However, two undesirable peaks appear at
both sides of those resonances. Therefore, they cannot be regarded
as a better solution than that given by the 3 DOF DVA at this
location. An exception must be made for frequencies near the
third resonance where those peaks never exceed the amplitude
that produces the optimized 3 DOF DVA and their performances
are comparable.

For the second selected location of the DVAs (Fig. 6(b)), it is
observed that the reduction provided by the 3-DOF DVA is not as
good as that obtained in case 1 for the first resonance. On the con-
trary, for the second and third resonances, the reduction exceeds 5
dB and 4 dB, respectively. The optimization of the five 1 DOF
DVAs gives a similar situation to that of Fig. 6(a): they present
undesirable peaks at both sides of the resonances of the primary
system, despite the fact that they notably reduced the amplitude
for some frequency points in-between. Finally, the last two opti-
mizations in Figs. 6(c) and 6(d) present similar characteristics to
those obtained for the locations analyzed before. The results for
the last selected location (Fig. 1 (d)) deserve some further com-

ments. For the second and the third resonances, the reduction is
very poor for the optimal 3 DOF DVA (less than 2 dB for the sec-
ond, and 1.5 dB for the third).

From all this information, it is interesting to discuss the effect
of the normal-modes characteristics of the 3-DOF system on the
optimization results. Consider; for example, the poor performance
of the absorber for case 1 at the third resonance (Fig. 1(a)). In
order to explain this point, we plot in Fig. 5(b) the phase of the
displacement of the compound system at the attachment points of
the absorber to the plate as a function of excitation frequency.
With dashed dotted lines we indicate the first three resonant fre-
quencies of the compound system which are located at
f1¼ 13.74[Hz], f2¼ 23.42[Hz] and f3¼ 39.33[Hz], respectively.
For f1 it can be observed that the 4 points have the same phase,
clearly indicating an in- phase motion of the points. For the sec-
ond maximum f2, the points (x1, y1) and (x4, y4) on one hand and
(x2, y2) and (x 3, y3) on the other have the same phase, but both
pairs of points are in an out-of-phase motion. Lastly, for the third
maximum f3, it is possible to observe that the phase of the four
pairs of points is approximately the same, revealing an in-phase
motion of all the points. Returning to our problem, the loss of
effectiveness of the 3 DOF system at the third resonance in
Fig. 6(a) can be attributed to the fact that the 3 DOF system is
forced to make an in-phase motion at the points of attachment.
Since this is not the predominant motion of its third mode, as it
can be seen in Table 1, its effectiveness therefore notably
decreases. Following a similar analysis, the other performances
can be analyzed in the same way. We will return to this point in

Table 1 Results of the optimization of a 3 DOF DVA using SA and CSA methods for the four selected positions on the plate. The
natural frequencies and predominant motion for each mode are also shown.

(xe, ye) Method
k1

[N/m] k2 k3 k4

c1

[N seg/m] c2 c3 c4

mode 1
freq [Hz] mode 2 mode 3

(1.0, 0.5) SA 22630 15240 23624 13956 205.89 184.27 348.38 12.06 rot. x transl. rot. Y
CSA 24786 14912 24857 14900 99.51 99.61 99.51 99.31 10.55 22.64 44.69

(0.5, 0.5) SA 24235 17395 24264 16891 337.06 221.27 102.47 194.32 rot. x transl. rot. y
CSA 23933 14537 24129 14435 169.22 169.25 168.07 168.67 10.39 22.29 44.00

(0.5, 0.75) SA 27882 15511 27783 16855 349.95 231.47 349.72 349.48 rot. x transl. rot. y
CSA 24378 14553 24042 14670 169.23 169.610 170.22 169.63 10.43 22.38 44.17

(1.0, 0.75) SA 25820 16636 25560 15974 239.62 209.44 1.51 22.252 rot. x transl. rot. y
CSA 23734 14161 24009 14182 165.32 162.18 165.66 164.70 10.31 22.15 43.73

Fig. 5 (a) Amplitude of the displacement versus excitation frequency of a bare plate (dotted line), a plate with an undamped
3-DOF system attached to it (solid line), and a plate with a heavily-damped 3-DOF system attached to it (dashed dotted line).
(b) Phase of the displacement of the compound system at the attachment points of the optimal 3 DOF DVA to the plate versus
excitation frequency for case 1 (see text)
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Sec. 4.3, where the effect of the location on the effectiveness of
the 3 DOF system is analyzed. Another feature of interest comes
up when the absorber is located near a nodal line of some mode of
the bare plate. In this case, the situation also results in a lack of
effectiveness of the 3-DOF system (similar to that observed for
the 1-DOF absorbers) exhibited for the second resonance of cases
1 and 4. Note also that case 4 has the poorest performance because

it is located farther from the observation point than in case 1 (see
Sec. 4.3 for discussion).

4.2 Study on the Effectiveness and Robustness of the Opti-
mized 3 DOF DVA Under Parameter Change. A thorough
study on the effectiveness and robustness of the optimal 3 DOF

Fig. 6 (a) Amplitude of the displacement versus excitation frequency of a simply supported rectangular plate with five 1 DOF
DVAs and one 3 DOF DVA. The five 1-DOF DVAs are located as shown in Fig. 4, and they change their positions in the same
manner as the 3-DOF DVA. The center of mass of the 3 DOF DVA is located in (a): (xe, ye) 5 (1.0, 0.5); (b) (xe, ye) 5 (0.5, 0.5); (c)
(xe, ye) 5 (0.5, 0.75) and (d) (xe, ye) 5 (1.0, 0.75). In the inset, “bare” indicates for the amplitude of the plate without attached
systems.

Fig. 7 Frequency response for a variation of the observation point for an optimal 3 DOF DVA attached to a SSSS rectangular
plate. Frequencies near the first (a), second (b) and third (c) resonance of the plate. The curves are all normalized with respect
to the amplitude at resonance (of the bare plate) for each frequency and observation point (see text for constants).
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DVA under some variations of the parameters of the plate and
absorber is carried out in this section. The first variation to be an-
alyzed is the change of the observation point. For this study, the
absorber is located at the center of the plate. Since the optimal
values of the 3 DOF DVA were calculated using (xa,
ya)¼ (0.8125, 0.3125), our intention is to see if a variation of the
observation point produces a change on its effectiveness. For that
purpose, several different points on the primary system are
selected considering (xa, ya)¼ (0.8125, 0.3125) as a reference
point and leaving the other parameters of the 3 DOF DVA
unchanged. Away from the center, positions (1a):(xa, ya)¼ (0.25,
0.125), (1b):(xa, ya)¼ (0.5, 0.25) and (1c):(xa, ya)¼ (0.75, 0.375)
are chosen in the main diagonal of the plate. Approaching the
center, position (1d): (xa, ya)¼ (0.875, 0.4375) and the center
itself, (xa, ya)¼ (1.0, 0.5), are selected. The observation points
situated on the rest of plate (other quadrants) can be analyzed tak-
ing into account the symmetry of the mode under consideration.
For example, if point (xas, yas)¼ (1.1875, 0.6875) is observed
(reflection with respect to the center taking (xa, ya)¼ (0.8125,
0.3125) as the starting point) the displacement amplitude of the
primary system results the same for frequencies near the first,
second and third mode of the total system since these modes pres-
ent symmetry with respect to that inversion. The results are
shown in Figs. 7(a), 7(b), and 7(c). To provide a meaningful com-
parison, the frequency response curves are all normalized with
respect to the amplitude at resonance (of the bare plate) for each
frequency and observation point. It can be observed that the

effectiveness of the 3 DOF DVA remains the same for the three
figures. From an optimization viewpoint, it can be then concluded
that the optimal system shows a robust performance for a varia-
tion in the observation point.

The results for a parameter change of the primary system are
shown in Fig. 8(a), where the frequency response curves of the
plate with the optimal 3 DOF DVA located at the center are
depicted. For this variation variation, the mass or Young’s modu-
lus of the primary system is increased or decreased by 10%. The
frequency response curves are all normalized with respect to the
maximum amplitude of the first mode of the bare plate for each
different case (massþ 10%, mass�10%, Eþ 10%, E� 10%). At
first sight, it can be concluded that the behavior for the considered
frequencies is different with the change of the maximum response
peak. This effect is expected since the resonances of the primary
system are changed in the same direction. Near the first and sec-
ond resonances, the effectiveness of the 3 DOF DVA decreases
when a reduction of 10% of Young’s modulus is induced. With an
increase in Young’s modulus, the effectiveness of the 3 DOF
DVA is improved for the first and second resonances. On the other
hand, when the mass is increased or decreased by the same per-
centage, the effectiveness of the 3 DOF DVA is the same for the
three resonances. At the third resonant frequency, there exists
practically no change in the maximum peak reduction for the four
variations.

Finally, the robustness of the 3 DOF DVA for 10% variation of
its mass, stiffness and damping is analyzed. The results, shown in

Fig. 8 (a) Robustness of the optimal 3 DOF DVA attached to a SSSS rectangular plate when the mass or Young’s modulus (E)
of the plate is decreased or increased by 10% compared with the original situation (original). The curves are all normalized with
respect to the maximum amplitude of the first mode of the bare plate for each different case. (b) idem (a) for 10% variations of
the mass, stiffness and damping constants of the optimal 3-DOF absorber.

Fig. 9 Amplitude of the displacement versus excitation frequency of a SSSS rectangular plate with different optimal 3 DOF
DVAs to compare their effectiveness under variations of their locations. The DVA is located in (a) three different positions on
the middle line parallel to the x axis, (b) three different positions on the main diagonal and (c) other three different positions on
the middle line parallel to the y axis (see text for numerical values).
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Fig. 8(b), suggest that the effectiveness of the 3 DOF DVA
remains the same for all the variations regardless of the frequency
under consideration. The major differences between the curves
appear for the first resonance and never exceed 1 dB for the most
dissimilar responses. Thus, it is possible to confirm that the opti-
mal 3 DOF DVA is robust under the above variations.

4.3 Effect of the Location of the 3 DOF DVA on the Opti-
mization Results. The theory [5] of single DOF DVAs mounted
over continuum systems proposes that the effectiveness of a prop-
erly tuned absorber depends basically on two points. The first one
is the closeness of the absorber to an antinode of the correspond-
ing mode and the second one is the closeness of the point of
attachment to the observation point. The aim of this section is to
analyze whether additional requirements can be determined for a
3 DOF DVA having rotational DOFs. To this end, several cases
are studied.

The cases under consideration are divided into three for DVAs
located on the middle line parallel to the x axis (case 1), main di-
agonal (case 2) or the y axis (case 3). Figure 9(a) shows the fre-
quency response curves for an optimal 3 DOF DVA located at
three different positions on the middle line parallel to the x axis.
These are (1x): (xe, ye)¼ (0.75, 0.5), (2x): (xe, ye)¼ (0.5, 0.5),
(3x): (xe, ye)¼ (0.3, 0.5). The results show that the best positions
for vibration reduction at the first resonant frequency are the cen-
ter of the plate and (1x). This is not the case for the second and
third resonances. For the second resonance, the position labeled
(2x) proves to be the best one, followed by (3x) and (1x), and for
the third resonance, (1x) is notably better than the others. To
understand these performances it is necessary to consider not only
the two requirements for single DOF DVAs (explained in the first
paragraph of this section), but also the phase of the displacement
of the compound system at the attachment points of the absorber
to the plate and the modes of the 3-DOF system. Firstly, it can be
observed that the best locations for the first frequency fulfill both
requirements of closeness (of the center of mass of the 3-DOF sys-
tem) to the observation point and closeness to an antinode of the
first mode of the plate. Additionally, the analysis of the phase of
the displacement at the points of attachment for cases: center, Fig.
5(a), (1x), Fig. 10(a), (2x), Fig. 10(b), and (3x) Fig. 10(c), reveals
that the motion of the compound system at the first frequency is
an in-phase motion of all the points for all locations. Then, as it
was previously discussed in Sec. 4.1, this prevents the rotational
characteristics of the first mode of the 3 DOF system (rotation
about the x axis) from having any influence, which results in a
lack of effectiveness. The situation changes completely for the
third resonant frequency, where an out-of-phase motion for cases
1x) and 2x) of points (x1, y1) and (x2, y2) (and (x4, y4) and (x3, y3))
increases significantly the effectiveness the 3 DOF system at these
locations, since the third mode of the 3 DOF system is rotation
about the y axis. This is not the case for the absorber located at the

center of the plate and at location 3x, where an in-phase motion of
all 4 attachment points decreases considerably the absorber’s per-
formance. For the second resonant frequency, the displacement
amplitude of the bare plate has a nodal line passing through x¼ 1.
Thus, a poor performance of the absorber located at the center is
expected.

In Fig. 9(b) the DVA is located in several locations on the main
diagonal of the plate. The locations are: (1d): (xe, ye)¼ (0.3, 0.85),
2d): (xe, ye)¼ (0.5, 0.75), 3d): (xe, ye)¼ (0.75, 0.625). In this case,
the best location occurs for position 3 d) which shows the best
reduction for the three resonances. Again, this can be understood
in terms of the above analysis.

Finally, Fig. 9(c) presents the frequency response for systems
located at (1y): (xe, ye)¼ (1, 0.85), (2y): (xe, ye)¼ (1, 0.75), (3y):
(xe, ye)¼ (1, 0.625) (case 3). The noticeable feature in this case is
that the three locations give similar results with a slightly better
performance of (3y). This is due to the fact that (3y) is the location
that fulfills the requirements of closeness both to an antinode (of
the three normal modes of the bare plate) and to the observation
point. The analysis of the phase of the displacement of the com-
pound system at the points of attachment (not shown here for the
sake of brevity) reveals that none of these three locations are in
places whose phases are according to the rotational or transla-
tional characteristics of the modes of the 3-DOF DVA at the fre-
quencies of interest. This means that; for example, for the third
resonance, the absorber is located in a position with an in-phase
motion of the attachment points for the three cases, preventing the
3-DOF system to rotate about the y axis, which corresponds to its
third mode.

5 Conclusions

In the present work, an analytical and numerical procedure for
the determination of the optimal parameters and characteristics of
a 3 DOF DVA for the vibration reduction at a given point of a
plate is carried out. The numerical optimization scheme uses
simulated annealing (SA) and constrained simulated annealing
(CSA), which is capable of optimizing systems with a set of
equality constraints. These constraints are necessary if a suitable
tuning of the natural frequencies of the absorber to the primary
system is required, as in these cases. Numerical tests reveal that,
for the cases studied, both methods, SA and CSA, give equal
results. The comparison with multiple [5] optimal 1 DOF DVAs
yields that the optimal 3 DOF DVA (CSA) presents a better solu-
tion for vibration reduction for the cases considered.

The variation of the observation point among five different pos-
sibilities shows that the 3 DOF DVA maintains its effectiveness
for vibration reduction over the first three resonant frequencies.
This means that the absorber can be optimized regardless of the
observation point. From the analysis of parameter changes of the
primary system, it results that the optimal 3 DOF DVA is almost

Fig. 10 Phase of the displacement of the compound system at the attachment points of the optimal 3 DOF DVA to the plate ver-
sus excitation frequency. The DVA is located in (a) 1x), in (b) 2x) and in (c) 3x) (see text). Dashed dotted lines indicates the reso-
nant frequencies of the compound system in each case.
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insensitive to a mass change, and it is sensitive to a change of
Young’s modulus for low frequencies (first two frequencies). In
these cases, when Young’s modulus decreases, the effectiveness
is reduced, and when the opposite occurs, the effectiveness
increases as well. Finally, numerical tests on the variation of the
absorber’s parameters reveal that the optimal 3 DOF DVA is ro-
bust for 10% variations in its stiffness, mass and damping.

The effect of location on the effectiveness of the 3 DOF DVA
is thoroughly addressed. From the analysis of the results, it is pos-
sible to state that: (a) the requirements of closeness of the absorber
to an antinode of the bare primary structure and closeness of the

absorber to the observation point improve the effectiveness of the
absorber; (b) for a rotational mode of the 3-DOF DVA about
some axis, the effectiveness of the absorber at a given frequency
can be considerably increased if it is located at a position of the
primary system with an in-phase or out-of phase motion of the
attachment points according to the rotational-mode characteristics
of the 3-DOF DVA at this frequency.

5.1 A Mass, Damping and Stiffness Matrices. The (N�N)
Csub and Ksub matrices and the (N� 3) Cc and Kc rectangular mat-
rices are:

/ xl; ylð Þ ¼ /1 xl; ylð Þ/2 xl; ylð Þ:::/N xl; ylð Þ½ �T

Ksub ¼
X4

l¼1

k1/ xl; ylð Þ/T xl; ylð Þ; Csub ¼
X4

l¼1

c1/ xl; ylð Þ/T xl; ylð Þ;

Kc ¼ �k1/ x1; y1ð Þ � k4/ x4; y4ð Þ � k2/ x2; y2ð Þ þ k4/ x4; y4ð Þ � k3/ x3; y3ð Þ � k4/ x4; y4ð Þ½ �
Cc ¼ �c1/ x1; y1ð Þ � c4/ x4; y4ð Þ � c2/ x2; y2ð Þ þ c4/ x4; y4ð Þ � c3/ x3; y3ð Þ � c4/ x4; y4ð Þ½ �

and the (3� 3) symmetric matrices M3DOF C3DOF and K3DOF are:

M3DOF ¼

mea2
2 þ Iey

� �
a1 þ a2ð Þ2

mea2 a4a1 � a3a2ð Þ � Iey a3 þ a4ð Þ
a1 þ a2ð Þ2 a3 þ a4ð Þ

mea2a3ð Þ
a1 þ a2ð Þ a3 þ a4ð Þ

mea2 a4a1 � a3a2ð Þ � Iey a3 þ a4ð Þ
a1 þ a2ð Þ2 a3 þ a4ð Þ

me a4a1 � a3a2ð Þ þ Iey a3 þ a4ð Þ þ Iex a1 þ a2ð Þ2

a1 þ a2ð Þ2 a3 þ a4ð Þ2
mea3 a4a1 � a3a2ð Þ � Iex a1 þ a2ð Þ

a1 þ a2ð Þ a3 þ a4ð Þ2
mea2a3ð Þ

a1 þ a2ð Þ a3 þ a4ð Þ
mea3 a4a1 � a3a2ð Þ � Iex a1 þ a2ð Þ

a1 þ a2ð Þ a3 þ a4ð Þ2
mea2

3 þ Iex

� �
a3 þ a4ð Þ2

2
666666664

3
777777775

C3DOF ¼
c1 þ c4 �c4 c4

�c4 c2 þ c4 �c4

c4 �c4 c3 þ c4

2
64

3
75;

K3DOF ¼
k1 þ k4 �k4 k4

�k4 k2 þ k4 �k4

k4 �k4 k3 þ k4

2
64

3
75
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