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The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial
interest, over a wide range of conditions, requires the availability of models that are both consistent and
mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are
built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of
EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental
information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules
(QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic
mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility
of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary
parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant
the description of the corresponding binary subsystems. However, the increased flexibility implies the need
for experimental information on ternary systems. This is so, unless we have a method to predict values for
ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental
information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and
Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide
a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters
within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and,
in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to
models that are not of the EOS type.

1. Introduction

Models for thermodynamic properties of multicomponent
mixtures should be flexible and consistent, i.e., they should be
capable of taking advantage to the greatest extent of available
experimental data for binary and higher mixtures, while keeping
an acceptable qualitative behavior beyond the window of
conditions of the experimental data used to tune the model.
Flexibility is a mandatory feature for a thermodynamic model
for asymmetric systems, such as the high-pressure fluid systems
found in technologies that make use of supercritical fluids.

It is generally accepted that a model for multicomponent
mixtures should be able to predict the multicomponent behavior
only from binary contributions. This is justified on the need for
minimizing the experimental effort. Simple equation-of-state
(EOS) models for phase equilibria, such as the Soave-Redlich-
Kwong (SRK) EOS,1 used with conventional quadratic mixing
rules (QMRs), decouple the problem of representing the fluid
properties into two subproblems. On one hand, pure-compound
constants such as the critical pressure, the critical temperature,
and the acentric factor set the pure-compound behavior. On the
other hand, the values for the binary interaction parameters
determine the behavior of binary mixtures. Changes in such
values do not affect the pure-compound behavior. Thus, the
pure-compound vapor pressure curves remain insensitive to the
binary interaction parameters. We run out of degrees of freedom
when modeling ternary and higher mixtures with QMRs, i.e.,
the values for the binary interaction parameters coupled to the
values for the pure-compound constants completely set the
model behavior for ternary and higher mixtures. Models for
multicomponent mixtures should match the assumption of

mixture molar volume invariance (MMVI).2,3 Such an assump-
tion is the basis for a number of tests2 adopted together with
other tests in Professor O’Connell’s project “Standardized
Validation of Physical Property Models” (SVPPM).4 The goal
of the SVPPM project is “to develop standardized tests of
problems and data that can be utilized to discriminate strengths,
weaknesses and inconsistencies of physical properties models
used in chemical process design and simulation”.4 According
to the MMVI constraint, an N-component mixture where a
couple of components i and j become “identical” (through a
thought experiment), should have its composition-dependent
mixture parameter values equal to those of the corresponding
(N - 1)-component mixture where the only component corre-
sponding to the i and j components (of the N-component
mixture) has a concentration equal to the sum of concentrations
of components i and j. When looking for a flexible mixing rule,
i.e., for a flexible multicomponent model, Mathias et al.5

considered the possibility of using cubic mixing rules (CMRs),
but they decided to discard such a choice because of a then
regarded as evident need for ternary parameters that would have
to be fit from experimental information on ternary systems.
Mathias et al.5 finally proposed a flexible pair-based (i.e., based
on binary parameters) mixing rule for multicomponent systems.
If, in the context of CMRs, we found a way of predicting ternary
parameters from binary parameters, we would be able to use
the CMRs for multicomponent systems, fitting the ternary
parameters for all ternary subsystems with experimental infor-
mation available and predicting such ternary parameters for all
ternary subsystems without experimental information available.
The purpose of this work is to define one such prediction
strategy and to submit it to a number of reliability tests. When
fitting ternary parameters in CMRs, we are able, within the
universe of the model, to affect the behavior of the ternary
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system while leaving invariant the description of all correspond-
ing binary subsystems and of the pure compounds. This has
clear practical consequences. We wrote all the previous state-
ments having in mind molecular models, i.e., excluding group-
contribution models. However, what we present in this work
would also be applicable, in a way, to group-contribution
models.

2. Mixing Rules

2.1. Quadratic Mixing Rules (QMRs). The well-known van
der Waals (vdW) quadratic mixing rule (QMR) written for the
energy parameter a of a given equation of state (EOS) is the
following,

a)∑
i)1

N

∑
j)1

N

xixjaji (1)

where

aji ) aji
0uji (2)

uji ) (1- kji) (3)

aij
0 ) (aiaj)

1⁄2 (4)

where N is the number of components, ai and xi are, respectively,
the (always positive) cohesive energy parameter for component
i and the mole fraction in the system for component i, and kji is
the interaction parameter for the (j,i) binary subsystem. Equation
1, written for a binary mixture, gives a quadratic function of
the mole fraction x1. Since, by construction, such a function
satisfies the pure-compound limits, there is only one degree of
freedom left, i.e., the vdW rules provide only one interaction
parameter kji per ji binary, i.e., kij ) kji. Also, kii ) 0.

2.2. Mathias-Klotz-Prausnitz (MKP) Mixing Rules. Math-
ias et al.5 proposed a mixing rule (MKP mixing rule) that has
two degrees of freedom, i.e., a kij parameter (kij ) kji, kii ) 0)
and a lij parameter (lji )-lij, lii ) 0) per binary, both influencing
the mixture energy parameter. The pair-based MKP5 mixing
rule is the following:

a)∑
i)1

N

∑
j)1

N

xixjaji
0(1- kji)+∑

i)1

N

xi(∑
j)1

N

xj(aji
0)1⁄3(lji)

1⁄3)3

(5)

Notice that eq 5 is built as a QMR plus a correction term.
When developing eq 5, Mathias et al.5 paid attention to the need
for flexibility with respect to composition and to the restriction
of invariance2,3 for the mixture parameters. Several recent works,
e.g., refs 6- 12, used eq 5 for modeling asymmetric systems.
Equation 5 is consistent and flexible. The assumption of
“multicomponent system describability from binary parameters”
constrains eq 5, as is the case for vdW quadratic rules, as well
as for more sophisticated mixing rules, such as those that
combine an EOS with an excess Gibbs energy model13 or the
theoretically guided mixing rules of ref 14. Mathias et al.5

arrived at eq 5 after discarding a three-suffix expression, i.e, a
ternionwise additivity form. They did so because of the
limitations of two options that they tested for predicting three-
index ternary parameters from the corresponding three-index
binary parameters.

2.3. Cubic Mixing Rules (CMRs). A mixing rule that is
cubic in composition, as the following one, appears to be a more
natural extension of the vdW rules than eq 5:

a)∑
i)1

N

∑
j)1

N

∑
k)1

N

xixjxkaijk (6)

where

aijk ) aijk
0 uijk (7)

aijk
0 ) (aiajak)

(1⁄3) (8)

uijk ) 1- kijk (9)

For a multicomponent mixture, unary, e.g., u333, binary, e.g.,
u233, and ternary, e.g., u123, three-indices uijk parameters appear
in eq 6, i.e., eq 6 is ternionwise additive. Notice that positive
uijk variables guarantee positive values for the a mixture
parameter.

Equation 6, written for a binary mixture, gives a cubic
function of the mole fraction x1. In this case, there are two
degrees of freedom, i.e., a kiij parameter and a kijj parameter
with kiij ) kiji ) kjii and kijj ) kjij ) kjji. Also kiii ) 0.

2.4. Relationship between Mathias-Klotz-Prausnitz
(MKP) Mixing Rules and CMRs. For a given binary system,
it can be shown that it is always possible to find values for
parameters kiij and kijj (eq 6) from known values of parameters
kji and lji (eq 5) so that eqs 5 and 6 give exactly the same cubic
function of x1. The relationships, for a system of components 1
and 2, are the following:

3a112
0 (1- k112)) a12

0 [l12 + 2(1- k12)]+ a11 (10)

3a122
0 (1- k122)) a12

0 [2(1- k12)- l12]+ a22 (11)

Equations 10 and 11 are linear with respect to all four
interaction parameters k12, l12, k112, and k122. Equations 10 and
11 make it possible to find the binary parameters of the cubic
mixing rule from known binary parameters of the MKP5 mixing
rule or vice versa. We obtained eqs 10 and 11 with the aid of
the computer algebra software package MAPLE,15 which is a
highly developed symbolic programming language. For cor-
relating binary information, e.g., phase equilibria experimental
data, eqs 5 and 6 are indistinguishable. This means that all
applications and results, already available in the literature, for
binary mixtures modeled with MKP mixing rules (which have
been so far only applied to the cohesive parameter) are also
results for the CMRs.

The cubic dependence with respect to mole fraction for eqs
5 and 6, implies that the accepted low-density mole fraction
dependencies for the virial coefficients are not met. Notice that,
when using QMRs in two-parameter EOSs, for both the cohesive
energy parameter and the covolume parameter, with a nonzero
interaction parameter for the covolume parameter, the accepted
form for the composition dependence of the third virial
coefficient will already be violated.16 Besides, Yokozeki17 has
questioned the validity of the generally accepted quadratic
dependence on mole fraction for the second virial coefficient.

2.5. Relationship between QMRs and CMRs or MKP
Rules. For a binary system, it is always possible to find values
for parameters kiij and kijj so that eq 6 (CMR) becomes identical
to eq 1 (QMR). This is because a quadratic function is a
particular case of a cubic function. Moreover, it is possible to
force the kiij and the kijj values to be such that the dependence
of the mixture energy parameter on composition is linear.
Analogous statements are valid for eq 5 when applied to binary
systems. Appendix A provides the general expressions that the
user must set for uijk to recover either a quadratic or a linear
composition dependence. Notice that we recover the quadratic
behavior in eq 5 by setting lji ) lij ) lii ) 0, which, introduced
into eqs 10 and 11, lead to values for parameters k112 and k122

(as functions of k12) corresponding to quadratic mixing rules
for the binary system (1, 2), handled under the cubic mixing
rule formalism (eq 6).
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2.6. Values of the Three-Index Binary Interaction Pa-
rameters kiij and kijj. Appendix B shows that, when using cubic
mixing rules, we should not expect to fit experimental informa-
tion on binary systems using values for the three-index binary
interaction parameters within the range to which we are used,
from our experience with quadratic mixing rules.

2.7. Ternary Parameters in CMRs. If we wrote eq 6
(CMR) for a ternary system, we would observe the appearance
of a ternary kijk parameter, i.e., a parameter for which all three
indices correspond to different compounds. Thus, for a ternary
system, eq 6 provides an additional degree of freedom, i.e., the
kijk parameter. The presence of ternary parameters in equations
such as eq 6 led Mathias et al.5 to conclude that functions of
composition such as that of eq 6 were not an acceptable solution
to the problem of finding flexible and invariant pair-based
mixing rules, because, according to their analysis, such functions
would require the availability of experimental information on
ternary systems to find values for ternary parameters. This at-
first-sight drawback of the presence of ternary parameters would
turn into a strength of the model, if we had a method to predict
values for ternary parameters in the absence of ternary experi-
mental data. We would use such a prediction method for ternary
subsystems with no ternary experimental information available,
while, for ternary subsystems with experimental information
available, we would optimize the value of kijk so as to reproduce
such experimental data, while leaving invariant the representa-
tion by the model of the constituent binary subsystems.

Our problem consists now of finding a consistent expression
for the ternary kijk parameter that relates it to the corresponding
binary three-index parameters, which we could use when ternary
experimental data are lacking. Finding one such expression that
matches the proper limits is the purpose of the present work.
To that end, we will later assume that, for a ternary system,
each of the three constituent binary subsystems has interaction
parameter values so that eqs 5 and 6 are indistinguishable for
such a binary subsystem, i.e., we will assume that, for either of
the three binary subsystems, the interaction parameters match
eqs 10 and 11. In such a case, while the a parameter for the
ternary system is completely defined by eq 5, the a parameter
for the ternary system remains a function of an unknown ternary
kijk interaction parameter for eq 6. We present in this work a
strategy for predicting consistent values for such a kijk parameter.

3. Partial Parameters

The partial cohesive energy parameter is the derivative [∂(na)/
∂nq]T,nj*q, where n is the total number of moles, nk is the number
of moles for component k, and T is the temperature. The
calculation of partial parameters makes it possible to more
thoroughly test whether a proposed composition dependence
for a mixture parameter is invariant (see Section 5). Partial
parameters are much more sensitive to the interaction parameters
than are the parameters of the mixture as a whole. Thus, we
best visualize the effect of the interaction parameters in MKP
(eq 5), QMRs (eq 1), and CMRs (eq 6), by studying the behavior
of the partial parameters rather than the behavior of the
parameters of the mixture as a whole. On the other hand, the
fugacity coefficient of a component in a mixture, for vdW-like
EOSs, depends on partial parameters.18 We regularly compute
the composition of phases at equilibrium through calculations
of fugacity coefficients for all the species present in the
coexisting phases.18 The results are typically very sensitive to
the values for the interaction parameters. Mathias et al.5 tested
the invariance of MKP mixing rules through solubility calcula-
tions. Although such an approach is valid for testing invariance,

we can alternatively test it by computing mixture and partial
parameters, thus avoiding phase equilibria calculations. This is
important when developing new models for mixtures, i.e., we
have the chance of quickly discarding a model, on the grounds
of invariance violations, by just studying the behavior of mixture
and partial parameters, before getting into the great effort of
generating the codes for phase equilibria calculations. Appendix
C presents the expressions for the partial parameters for CMRs,
QMRs, and MKP mixing rules.

4. Expression for Estimating Ternary Interaction
Parameters from Binary Interaction Parameters

Finding a consistent formula for predicting ternary interaction
parameters from binary interaction parameters is not a trivial
matter at first sight. Mathias et al.5 considered a few options,
but they finally discarded them for a number of reasons. More
recently, we made another attempt19 and proposed a preliminary
formula that, although more elaborate than the options that
Mathias et al.5 considered, had to be discarded anyway in this
work for the reasons that we later provide.

The alternative formula that we propose in this work arises
from combining eqs 6 and 5, in a special way. To produce a
more compact final expression, we rewrite eqs 6 and 5,
respectively, as follows:

Acubic ) ∑
m)1

N

xm(∑
n)1

N

xn(∑
p)1

N

xpAm,n,p)) (12)

AMKP ) (∑
i)1

N

xi(∑
j)1

N

xjQi,j))+ (∑
t)1

N

xt(∑ xs
s)1

N

Ms,t
(1⁄3))3) (13)

where the definitions for variables Acubic, Amnp, AMKP, Qij, and
Mst stem easily from comparing eqs 12 and 13 with eqs 6 and
5, respectively. We notice that, for a ternary mixture,

Q1,1 ) a1 Q2,2 ) a2 Q3,3 ) a3 (14)

M11 )M22 )M33 ) 0 (15)

Q21 )Q12 Q31 )Q13 Q32 )Q23 (16)

M21 ) -M12 M31 ) -M13 M32 ) -M23 (17)

A1,1,1 ) a1 A2,2,2 ) a2 A3,3,3 ) a3 (18)

A1,2,1)A1,1,2 A1,3,1)A1,1,3 A2,3,2)A2,2,3 A1,3,2)A1,2,3

A2,1,1)A1,1,2 A3,1,1)A1,1,3 A3,2,2)A2,2,3 A2,1,3)A1,2,3

A2,3,1)A1,2,3

A2,1,2)A1,2,2 A3,1,3)A1,3,3 A3,2,3)A2,3,3 A3,1,2)A1,2,3

A2,2,1)A1,2,2 A3,3,1)A1,3,3 A3,3,2)A2,3,3 A3,2,1)A1,2,3

(19)

We look for an expression relating the three-index ternary
parameter A123 to the three-index binary parameters A112, A122,
A113, A133, A223, A233, i.e., we want to find an equation that would
make it possible to predict ternary parameters by averaging,
somehow, binary parameters. Such an expression should match
the following invariance2,3 constraints:

A123 ) A113 )
A223 when components 1 and 2 become “identical” (20)

A123 ) A112 )
A233 when components 1 and 3 become identical (21)

A123 ) A122 )
A133 when components 2 and 3 become identical (22)
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By expanding eqs 12 and 13 for a binary mixture of
components 1 and 2, and considering that [x2 ) 1 - x1], we
obtain two polynomial functions that are cubic with respect to
x1. By imposing the identity for pairs of polynomial coefficients
corresponding to like powers of x1, we get the following
expressions for Q12 and M12 in terms of A112 and A122:

Q12 )- 1
4

a2 -
1
4

a1 +
3
4

A1,1,2 +
3
4

A1,2,2 (23)

M12 )
1
2

a2 -
1
2

a1 +
3
2

A1,1,2 -
3
2

A1,2,2 (24)

Similarly, for the other two binary subsystems of sytem (1, 2,
3), we write

Q13 )-1
4

a3 -
1
4

a1 +
3
4

A1,1,3 +
3
4

A1,3,3 (25)

M13 )
1
2

a3 -
1
2

a1 +
3
2

A1,1,3 -
3
2

A1,3,3 (26)

Q23 )-1
4

a2 -
1
4

a3 +
3
4

A2,2,3 +
3
4

A2,3,3 (27)

M23 )-1
2

a2 +
1
2

a3 +
3
2

A2,2,3 -
3
2

A2,3,3 (28)

Notice that the system of eqs 23 and 24 is equivalent to the
system of eqs 10 and 11. Again we obtained eqs 23–28 using
Maple.15

By introducing eqs 23–28 into the expression for AMKP of eq
13, we end up setting the variable AMKP in terms of the same
variables that, together with variable A123, completely define
Acubic of eq 12. Notice that, even in the case where we define
the variables Qij and Mij according to eqs 23–28, the value, at
set composition, of AMKP will differ from the value for Acubic

for ternary and higher mixtures.
To find an expression for A123, we impose, for an equimolar

ternary mixture, the identity between AMKP and Acubic, i.e.,

[AMKP )Acubic]ternary equimolar mixture (29)

After introducing eqs 23–28 into eq 13, we solved eq 29 for
A123 using Maple.15 The result is eq 30.

A123 ) - 1
6

a2 -
1
6

a3 -
1
6

a1 +
1
4

A1,1,3 +
1
4

A1,3,3 +

1
4

A2,2,3 +
1
4

A2,3,3 +
1
4

A1,1,2 +
1
4

A1,2,2 +
1
6(1

2
a3 -

1
2

a1 +

3
2

A1,1,3 -
3
2

A1,3,3)
(2⁄3)(-1

2
a2 +

1
2

a3 +
3
2

A2,2,3 -
3
2

A2,3,3)
(1⁄3)

+

1
6(1

2
a2 -

1
2

a1 +
3
2

A1,1,2 -
3
2

A1,2,2)
(2⁄3)(1

2
a2 -

1
2

a3 -
3
2

A2,2,3 +

3
2

A2,3,3)
(1⁄3)

+ 1
6(1

2
a3 -

1
2

a1 +
3
2

A1,1,3 -
3
2

A1,3,3)
(1⁄3)(-1

2
a2 +

1
2

a3 +
3
2

A2,2,3 -
3
2

A2,3,3)
(2⁄3)

+ 1
6(-1

2
a2 +

1
2

a1 -
3
2

A1,1,2 +

3
2

A1,2,2)
(2⁄3)(-1

2
a3 +

1
2

a1 -
3
2

A1,1,3 +
3
2

A1,3,3)
(1⁄3)

+ 1
6(-1

2
a2 +

1
2

a1 -
3
2

A1,1,2 +
3
2

A1,2,2)
(1⁄3)(-1

2
a3 +

1
2

a1 -
3
2

A1,1,3 +

3
2

A1,3,3)
(2⁄3)

+ 1
6(1

2
a2 -

1
2

a1 +
3
2

A1,1,2 -
3
2

A1,2,2)
(1⁄3)(1

2
a2 -

1
2

a3 -
3
2

A2,2,3 +
3
2

A2,3,3)
(2⁄3)

(30)

Notice that the MKP variables Qij and Mst do not appear in
eq 30 because we replaced them by expressions 23–28. We also
observe that all three-index variables that appear on the right-

hand side of eq 30 (A112, A122, A113, A133, A223, and A233) are
binary variables.

We find in eq 30 a recipe to predict ternary constants (A123),
of cubic mixing rules (eq 6), from binary constants (A112, A122,
A113, A133, A223, and A233) characteristic of the three correspond-
ing binary subsystems. This was the goal of this work.

We can summarize the procedure we used to generate eq 30
as follows. We forced the match between two expressions
invariant with respect to composition. Both expressions are
equivalent for binary systems. One of them is pair-based (eq
13), while the other one is ternion-based (eq 12). A key step
was to rewrite, for the binary subsystems, the pair-based
expression in terms of the constants of the ternion-based
expression (eqs 23–28). The whole process led to an equation
for a three-index ternary variable as a function of three-index
binary variables and of pure-compound variables (eq 30).

When setting the “equimolar mixture” constraint in eq 29,
we avoid imposing on the model any unsubstantiated hierarchy
among the components of the ternary system. Therefore, the
equimolar option is the best, in comparison to other options
that could be chosen, for the ternary mixture composition, when
setting a connection between CMRs and MKP rules.

Equation 30 satisfies constraints 20–22. We illustrate it for
the case of constraint 21 in Appendix D. Matching constraints
20–22 is a very stringent test. From looking at eq 30, we notice
that A123 does not depend exclusively on the binary parameters
A112, A122, A113, A133, A223, and A233 but also on the pure-
compound parameters a1, a2, and a3.

If we use eq 30 for all three-index ternary parameters in eq
6, we obtain an equation that we could classify as a para-
metrically pair-based equation, since all the three-index interac-
tion parameters entering eq 30 are, in such a case, ultimately
binary. However, it seems that it would be improper to classify
the combined eqs 6 and 30 as a pairwise additive model. The
dependence on just binary parameters is not the only distin-
guishing feature of a pairwise additive model. The words
“pairwise additive” imply a summation of terms, each one
consisting of a product of two variables times a binary
coefficient. Certainly, such a mathematical structure does not
correspond to the combined eqs 6 and 30.

It is interesting to realize that, while Mathias et al.5 proposed
eq 13 as an alternative solution to the lack of an expression
with the properties of eq 30, eq 13 is partially the genesis of eq
30, which, very likely, we would not have been able to propose
had eq 13 of Mathias et al.5 not been available.

Equation 30 might look complicated at first sight. However,
since it gives the variable A123 as an explicit function (of pure-
compound and binary parameters), A123 becomes easy to
evaluate. Actually, we can rewrite eq 30 in a slightly more
compact way, as we show it in eq D-1 of Appendix D. We
generated eq 30 without resorting to distance parameters such
as those defined in ref 20 within the context of a pair-based
model. The way distance parameters were defined in ref 20 was
questioned in the literature.21 We can always calculate parameter
A123 using eq 30, i.e., the function of multiple variables
(parameters) that eq 30 sets is always defined in the domain of
the real numbers.

For dealing, using eq 6, with multicomponent systems, we
would rewrite eq 30 by replacing indices (1, 2, 3) by (i, j, k).
We would then use the resulting equation at (i, j, k) values
corresponding to all possible combinations, with (i * j, i * k,
j * k), available to the considered multicomponent system.
Among all values of (Aijk)i * j,i * k,j * k thus obtained, we would
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keep only those corresponding to subternary systems without
experimental information available.

To fix ideas, for a multicomponent system, the computation
of interaction parameters for the cubic mixing rules of eq 6
should be done according to the following steps:

(a) Fit the three-index binary parameters kiij and kijj from
experimental information of all binary subsystems, and calculate
the binary variables that appear on the right-hand side of eq
30, from the following equation:

Aijk ) aijk ) aijk
0 uijk ) (aiajak)

(1⁄3)(1- kijk) (31)

(b) Use, for the ternary subsystems without ternary experi-
mental data available, eq 30 to predict the values for the three-
index ternary variables Aijk, and calculate the three-index ternary
interaction parameters kijk from the following equation:

kijk ) 1-
Aijk

(aiajak)
(1⁄3)

(32)

(c) Fit the values for the three-index ternary parameters kijk

for ternary systems with known ternary experimental information
using such ternary experimental data.

The application of the strategy corresponding to steps (a)-(c)
implies taking advantage to the greatest extent possible of
available experimental data for binary and ternary systems.

Notice that we have derived eq 30 to satisfy the need for an
expression to predict ternary constants while meeting the
invariance constraint, i.e., we did not derive eq 30 to force
CMRs (eq 6) to produce similar phase equilibrium results to
those of the MKP mixing rules (eq 5), at any arbitrary
composition condition for ternary and higher mixtures. In spite
of this, if the user had strong reasons to believe, for a specific
ternary subsystem, in phase equilibrium results obtained using
the MKP mixing rules, he/she could disregard eq 30 and fit the
ternary parameter of the CMRs so as to match the MKP results,
or at least some of the features of the MKP results. In such a
case, the MKP results would be used as if they corresponded
to experimental data. This choice would make sense only if the
binary subsystems were modeled with MKP binary interaction
parameters equivalent to the binary three-index parameters of
the CMRs (see eqs 10 and 11).

In Appendix E we show, on one hand, that the present
approach does not necessarily have to be limited to the case of
mixture parameters of EOSs. Otherwise, we can apply it to other
composition-dependent properties. On the other hand, we assess
in Appendix E the extent to which the use of a ternary parameter
improves the description of a ternary real system. The property
we consider in Appendix E is the excess molar volume (υE),
which we describe with equations analogous to eqs 12 and 13
but adapted to the case of υE. For this property, we also derive
in Appendix E an equation analogous to eq 30. From comparing
experimental data and model calculations, we verify in Appendix
E that the model flexibility does increase because of the use of
a cubic composition dependence having ternary parameters
available for fitting ternary information. To assess the consis-
tency of eq 30, we study in the next section the limits that eq
30 meets and submit eq 30 to a number of tests.

5. Consistency Assessment of Equation 30

5.1. Invariance of Equation 30. Equation 30 satisfies
constraints 20–22, i.e., when a couple of components become
identical, we get the proper binary value for variable A123 (see
Appendix D). If all compounds are identical, then we get for

A123 a value equal to a1 ()a2 ) a3), i.e., the proper pure-
compound limit.

5.2. Value of k123 Parameter at Zero Values for All
Three-Index Binary kijk Parameters. When setting all Aijk

variables on the right-hand side of eq 30 as equal to aijk
0 (eq 8),

we always got, for variable A123, a value equal to a123
0 , while

performing a test in a numerical way. In other words, a
numerical test, where we set arbitrary random values on
variables a1, a2, and a3, and also set zero values for all binary
three-index kijk parameters, for all variables on the right-hand
side of eq 30 defined according to eq 31, we got, from eqs 30
and 32, a zero value for parameter k123. This is the desired
behavior for eq 30. However, we did not find a general
demonstration for such behavior. Nevertheless, because of our
extensive numerical test, it seems that eq 30 meets, at any
condition, the desired limit of a zero k123 parameter when we
set to zero all three-index binary kijk parameters.

5.3. Further Testing of Equation 30. We further test eq
30, in several ways, in Appendix F, where we numerically verify
that the mixing rules, cubic with respect to mole fraction of eq
6 coupled to eq 30, which predicts ternary three-index param-
eters from binary three-index parameters, are invariant.2,3 The
tests in Appendix F are based on computed rather than
experimental data. This is appropriate for our goals. The
computed data correspond to a ternary system with highly
asymmetric binary subsystems. We performed all tests that
confirm the invariance of eq 6 coupled to eq 30 under conditions
where it is impossible for quadratic mixing rules to describe
the chosen binary subsystems and the corresponding ternary
system.

6. Remarks and Conclusion

In this work, we propose the use of cubic mixing rules
(CMRs, eq 6) for modeling the thermodynamic properties of
multicomponent fluid mixtures. CMRs set a dependence on
composition that is cubic with respect to the mole fractions of
the chemical species present in the mixture, i.e., CMRs are
ternionwise additive. The appearance of three-index ternary
parameters in CMRs implies the possibility of describing
properties that are nonpairwise-additive. This is a clear advan-
tage over models limited by the pairwise-additivity constraint,
except when we lack experimental information for one or more
ternary subsystems of the multicomponent system that we want
to describe. To circumvent this limitation, we derived eq 30,
which makes it possible to predict values for three-index ternary
parameters of CMRs from the values of the three-index binary
parameters that characterize the three binary subsystems cor-
responding to the ternary parameter to be predicted. We assessed
the performance of eq 30 by paying attention to fundamental
invariance restrictions that consistent models must meet.2,3 We
submitted eq 30 to a number of tests in this work that made it
possible to verify the invariant character of CMRs coupled to
eq 30. The three-index ternary parameters available to CMRs
make it possible to influence the model behavior for ternary
systems without affecting the model description of the corre-
sponding binary subsystems. We have illustrated this in Ap-
pendix E for a real ternary system. Table 1 summarizes our
modeling recommendations for multicomponent systems under
varying scenarios with regard to availability of experimental
information. We developed eq 30 for the cohesive energy
parameter of two-parameter PVT equations of state, with eq 8
as a combining rule, as our case study. However, the derivations
could be easily adapted to the case of combining rules different
from that of eq 8, and also to the cases of the mixture covolume
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parameter of EOSs and of other parameters of multiparametric
EOSs. Moreover, in the future, other researchers could use this
work as a starting point in their search for equations alternative
to eq 30, for predicting ternary constants from binary constants,
while keeping the basic invariance properties of eq 30. Ad-
ditionally, the strategy we used in this work for dealing with
ternionwise additive expressions for mixture parameters can be
extended to models for mixture properties such as the excess
Gibbs energy, third virial coefficients, excess molar volume
(Appendix E), etc., for multicomponent systems. In other words,
after focusing on the particular context within which we derived
eq 30, we should widen our perspective by considering the
implications of the approach here proposed, i.e., rather than a
particular model for a given mixture parameter or mixture
property, what we have proposed here is a modeling approach,
of general applicability, that maximizes the use of available
experimental information. Finally, we should mention that the
computer algebra software package MAPLE15 was of great help
during the development of this work.

Appendix A: General Expressions for uijk to Recover
Quadratic and/or Linear Composition Dependencies

Quadratic Case. Let us set the following expression for uijk,
which influences eq 7 of the text:

uijk ) uijk,Q )
aij + aik + ajk

3aijk
0

(A-1)

where aij is defined in eq 2 of the text. After introducing eq
A-1 into eq 7 of the text, we get

aijk )
aij + aik + ajk

3
(A-2)

Equation A-1 implies that the ternary interactions become
decoupled into binary interactions, as eq A-2 shows. Combining
eq A-2 with eq 6 of the text and considering the following
constraint,

∑
l)1

N

xl ) 1 (A-3)

we obtain

a)∑
i)1

N

∑
j)1

N

∑
k)1

N

xixjxk[aij + aik + ajk

3 ])∑
l)1

N

∑
m)1

N

xlxmalm

(A-4)

Thus,

a)∑
i)1

N

∑
j)1

N

∑
k)1

N

xixjxkaijk
0 uijk,Q )∑

l)1

N

∑
m)1

N

xlxmalm (A-5)

where uijk,Q is defined in eq A-1. In conclusion, if we define uijk

according to eq A-1, we exactly recover a quadratic mixing
rule. Let us study the possible cases for uijk as given by eq A-1,
i.e., for uijk,Q. If components i, j and k are identical, then

uijk,Q ) uiii,Q )
aii

aiii
0
) 1 (when i, j, and k are “identical”)

(A-6)

If components i and j are identical but different from component
k, then

uijk,Q ) uiik,Q

)
aii + 2aik

3aiik
0

) ujjk,Q

)
ajj + 2ajk

3ajjk
0

(if i is identical to j) (A-7)

By renaming index k to j in eq A-7, and from the considerations
we made just after we introduced eq 6 of the text, we get

uiij,Q )
aii + 2aij

3aiij
0

) uiji,Q ) ujii,Q (A-8)

By switching indices on eq A-8 and considering that aij is
symmetric, we get

ujji,Q )
ajj + 2aij

3aijj
0

) ujij,Q ) uijj,Q (A-9)

From eqs 2 and 3 of the text, aij depends on kij. Hence, eqs A-8
and A-9 establish how the binary three-index parameters uiij

and uijj must relate to kij if the cubic mixing rule, eq 6 of the
text, has to reproduce exactly a quadratic behavior for the binary
subsystem of components i and j.

Combining eqs A-8 and A-9, we obtain

3aiij
0 uiij,Q - aii ) 3aijj

0 uijj,Q - ajj (A-10)

As is also the case for eqs A-8 and A-9, eq A-10 shows that
the binary three-index parameters uiij and uijj are not mutually
independent, if the binary subsystem of components i and j has
actually a quadratic behavior, which is formally represented as
a cubic behavior. To fix ideas, we will write eqs A-8–A-10 for
the specific case of i ) 1 and j ) 2. From eq A-8,

Table 1. Recommendations Involving the Cubic Mixing Rules (CMRs) and the MKP Mixing Rules for Modeling the Behavior of a
Multicomponent System under Varying Scenariosa

no. of ternary subsystems
with experimental

information available comment comment comment

all eq 6 (CMR) should be used. All
ternary parameters should be fit
from experimental information.

eq 30 (A123 from binary
parameters) could but should not
be used.

eq 5 (MKP) could but should
not be used because of its lack
of ternary parameters.

none eq 6 (CMR) coupled to eq 30
(A123 from binary parameters)
could be used. Also eq 5 (MKP)
could be used.

some eq 6 (CMR) should be used.
Ternary parameters should be fit
for those ternary subsystems
with ternary experimental
information available.

eq 30 should be used to predict
all ternary parameters
corresponding to ternary
subsystems lacking experimental
ternary informaiton

eq 5 (MKP) could be used but
should not be used because of
its lack of ternary parameters.

a Note: The MKP mixing rule and the CMR are indistinguishable for binary systems. They both provide two interaction parameters per binary.
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u112,Q )
a11 + 2a12

3a112
0

)
a1 + 2(a1a2)

1⁄2(1- k12)

3(a1a1a2)
(1⁄3)

) 1- k112,Q

(A-11)

Notice that eq A-11 is the same that we get by setting l12 ) 0
in eq 10 of the text. The reason is that the MKP mixing rule
(eq 5 of the text) recovers the quadratic rule when we set lij )
0 for every ij pair in the system.

Solving eq A-11 for k112,Q, we get,

k112,Q ) 1-
(a1 ⁄ a2)+ 2(a1 ⁄ a2)

(1⁄2)(1- k12)

3(a1 ⁄ a2)
(2⁄3)

) 1-
R12 + 2R12

(1⁄2)(1- k12)

3R12
(2⁄3)

(A-12)

By switching indices, we get

k221,Q ) k122,Q

) 1-
(a2 ⁄ a1)+ 2(a2 ⁄ a1)

(1⁄2)(1- k12)

3(a2 ⁄ a1)
(2⁄3)

) 1-
R12

-1 + 2R12
(-1⁄2)(1- k12)

3R12
(-2⁄3)

(A-13)

where

R12 ) a1 ⁄ a2 (A-14)

We can draw a number of conclusions from eqs A-12 and
A-13. If the ratio R12 is 1, and if k12 ) 0, then k112,Q ) 0 and
k122,Q ) 0. If k12 ) 0 and R12 * 1, then k112,Q * 0 and k122,Q *
0. In other words, if a1 is not equal to a2, a zero two-index
interaction parameter (k12 ) 0), used for the (1, 2) quadratic
binary system, corresponds to nonzero three-index interaction
parameters under the formalism of cubic mixing rules, set to
exactly reproduce the quadratic rules for the (1, 2) system. If
k12 and R12 do not depend on temperature, then k112,Q and k122,Q

are also temperature-independent. In general, a1 and a2 depend
on temperature in such a way that R12 also depends on
temperature (e.g., in the SRK EOS1). In such a case, k112,Q and
k122,Q become temperature-dependent both for the case of a
temperature-dependent k12 and for the case of a temperature-
independent k12.

From combining eqs A-12 and A-13, we obtain the relation-
ship that k112,Q and k122,Q must meet, i.e., a constraint involving
parameters k112 and k122 when they give a quadratic rule behavior
when using the cubic rule formalism:

3R12
(2⁄3)(1- k112,Q)-R12

2R12
1⁄2

)

3R12
-2⁄3(1- k112,Q)-R12

-1

2R12
-1⁄2

(A-15)

Notice that we could have obtained eq A-15 also from eq A-10.
Linear Case. Let us set the following expression for uijk

uijk ) uijk,L )
ai + aj + ak

3aijk
0

(A-16)

After introducing eq A-16 into eq 7 of the text, we get

aijk )
ai + aj + ak

3
(A-17)

Equation A-16 implies that the ternary interactions become
decoupled into unary contributions, as eq A-17 shows. Com-
bining eq A-17 with eq 6 of the text, we get

a)∑
i)1

N

∑
j)1

N

∑
k)1

N

xixjxk[ai + aj + ak

3 ])∑
l)1

N

xlal (A-18)

Thus,

a)∑
i)1

N

∑
j)1

N

∑
k)1

N

xixjxkaijk
0 uijk,L )∑

l)1

N

xlal (A-19)

where uijk,L is defined by eq A-16. In conclusion, if we define
uijk according to eq A-16, we exactly recover a linear mixing
rule. For a binary system, from eq A-16, we have

uiij,L )
2ai + aj

3aiij
0

)
2(ai ⁄ aj)+ 1

3(ai ⁄ aj)
(2⁄3)

(A-20)

uijj,L )
ai + 2aj

3aijj
0

)
(ai ⁄ aj)+ 2

3(ai ⁄ aj)
(1⁄3)

(A-21)

Equations A-20 and A-21 imply that, if we take the linear rule
to the cubic formalism, we will in general have nonzero three-
index interaction parameters that will be temperature-dependent,
for temperature-dependent ai and aj. On the other hand, if ai )
aj, then both kiij,L ) 0 and kijj,L ) 0.

In this Appendix, we have shown that cubic mixing rules
comprise the quadratic and linear mixing rules as particular
cases. Moreover, the cubic formalism makes it possible to
average the properties of linear, quadratic, and cubic binary
subsystems making up a multicomponent system (original
quadratic rules can average properties of linear and quadratic
binary subsystems).

Important equations in this Appendix are eqs A-12, A-13,
A-20, and A-21, which tell us how we must define the three-
index interaction parameters for recovering, respectively, a
quadratic or a linear behavior for a given binary subsystem.

Appendix B: Values of the Three-Index Binary
Interaction Parameters kiij and kijj

Figure B1 shows values for the three-index binary interaction
parameters kiij and kijj for cubic mixing rules, which make eq 6
become identical to the quadratic mixing rule (QMR, eq 1) as
functions of the interaction parameter kij for QMRs and of the
ratio of pure-compound energy parameters. Consider, for
instance, a binary mixture of components A and B such that
the ratio aA/aB equals 0.001. Suppose that we model such a
mixture using quadratic mixing rules with kAB ) 0.4. Figure
B1 tells us that we would obtain exactly the same behavior by
modeling the system using cubic mixing rules (eq 6) with kAAB

) -0.298244397 and kABB ) -2.459824439. Notice that these
values differ significantly from 0.4. Thus, when using cubic
mixing rules, we should not expect to fit experimental informa-
tion on binary systems using values for the three-index binary
interaction parameters within the range to which we are used,
from our experience with quadratic mixing rules. Figure B1 also
shows that, at kAB ) 0, the equivalent three-index parameters
are, in general, different from zero. It is also clear, from Figure
B1, that the interaction parameters for cubic mixing rules
(CMRs) equivalent to those for quadratic mixing rules (QMRs)
are highly dependent on the ratio of pure-compound parameters.

Appendix C: Expressions of Partial Parameters

C.1. Partial Parameters of CMRs. The expression for the
partial parameter [∂(na)/∂nq]T,nj*q () ajq) corresponding to the
CMRs of eq 6) is the following:
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aq )-2a+ 3∑
l)1

N

∑
m)1

N

xlxmalmq (CMR) (C-1)

Notice that the variable a in the first term of the right-hand
side of eq C-1 comes from eq 6. From eq C-1, the partial molar
parameter aj1 when component 1 is infinitely diluted in com-
ponent 2 (binary mixture) is the following:

a1|x1f0 ) a1
∞ )

-2a2 + 3a122 )-2a2 + 3a122
0 (1- k122) (CMR) (C-2)

At the other concentration limit, we have:

a2|x2f0 ) a2
∞ )-2a1 + 3a112 )

-2a1 + 3a112
0 (1- k112) (CMR) (C-3)

From eqs C-2 and C-3, we see that, for a binary mixture of
components 1 and 2, the infinite dilution partial parameter
[∂(na)/∂n1]T,n2,x1f0 depends on k122 but not on k112, while the
partial parameter [∂(na)/∂n2]T,n1,x2f0 depends on k112 but not on
k122. In other words, for a binary system, a given binary
parameter controls the mixing rule behavior at one of the infinite
dilution limits, independently from the other binary parameter.
This is an interesting property of eq 6.

C.2. Partial Parameters of QMRs. The partial molar
parameters corresponding to quadratic mixing rules (QMRs, eq
1) have the following expression:

aq )-a+ 2∑
l)1

N

xlaql (QMR) (C-4)

Notice that a in the first term of the right-hand side of eq C-4
comes from eq 1. From eq C-4, for a binary mixture, we write
the expressions for the partial parameters at both infinite dilution
limits.

a1|x1f0 ) a1
∞ )-a2 + 2a12 )-a2 + 2a12

0 (1- k12) (QMR)

(C-5)

a2|x2f0 ) a2
∞ )-a1 + 2a21 )-a1 + 2a12

0 (1- k12) (QMR)

(C-6)

From eqs C-5 and C-6, it is clear that both QMR infinite dilution
partial molar parameters depend on k12, and thus, we have no
independent control on their values.

C.3. Partial Parameters of MKP Mixing Rules. The
expression of the partial parameter for component q, corre-
sponding to the MKP mixing rule (eq 5), is the following:

aq )-∑
i)1

N

∑
j)1

N

xixjaji + 2∑
l)1

N

xlaql +

{-3∑
i)1

N

xi(∑
j)1

N

xj(aji
0)1⁄3(lji)

1⁄3)3

+∑
i)1

N

3xi(aqi
0 )1⁄3(lqi)

1⁄3 ×

(∑
j)1

N

xj(aji
0)1⁄3(lji)

1⁄3)2

+ (∑
j)1

N

xj(ajq
0 )1⁄3(ljq)

1⁄3)3} (C-7)

Appendix D: Verification of Constraint 21 for Equation
30

Constraint 21 of the text is the following:

A123 ) A112 ) A233

when components 1 and 3 become identical (21)

We can rewrite eq 30 of the text as follows:

A123 )-(1 ⁄ 6)a1 - (1 ⁄ 6)a2 - (1 ⁄ 6)a3 + (1 ⁄ 4)A233 +
(1 ⁄ 4)A223 + (1 ⁄ 4)A122 + (1 ⁄ 4)A113 + (1 ⁄ 4)A133 + (1 ⁄ 4)A112 +

(-1 ⁄ 6)U13
(1⁄3)U23

(2⁄3)+(-1 ⁄ 6)U23
(1⁄3)U13

(2⁄3) +

(1 ⁄ 6)U12
(1⁄3)U13

(2⁄3)+(1 ⁄ 6)U13
(1⁄3)U12

(2⁄3) +

(-1 ⁄ 6)U12
(1⁄3)U23

(2⁄3)+(1 ⁄ 6)U23
(1⁄3)U12

(2⁄3) (D-1)

where

U12 ) [(1 ⁄ 2)a1 - (1 ⁄ 2)a2 + (3 ⁄ 2)A122 - (3 ⁄ 2)A112]

(D-2)

U13 ) [(1 ⁄ 2)a1 - (1 ⁄ 2)a3 + (3 ⁄ 2)A133 - (3 ⁄ 2)A113]

(D-3)

U23 ) [(1 ⁄ 2)a2 - (1 ⁄ 2)a3 + (3 ⁄ 2)A233 - (3 ⁄ 2)A223]

(D-4)

Notice that

U12 )-U21 (D-5)

U13 )-U31 (D-6)

U23 )-U32 (D-7)

If components 1 and 3 become identical, then

a3 ) a1 (D-8)

A233 )A211 )A112 (D-9)

A223 )A221 )A122 (D-10)

A113 )A111 ) a1 (D-11)

A133 )A111 ) a1 (D-12)

Introducing eqs D-8–D-12 into eqs D-3, D-4, and D-1, we get

U13 ) 0 (D-13)

U23 )U21 )-U12 (D-14)

A123 )-(1 ⁄ 6)a1 - (1 ⁄ 6)a2 - (1 ⁄ 6)a1 + (1 ⁄ 4)A112 +
(1 ⁄ 4)A122 + (1 ⁄ 4)A122 + (1 ⁄ 4)a1 + (1 ⁄ 4)a1 + (1 ⁄ 4)A112 + 0+

0+ 0+ 0+ (-1 ⁄ 6)U12
(1⁄3)(-U12)

(2⁄3)+(1 ⁄ 6)(-U12)
(1⁄3)U12

(2⁄3)

(D-15)

which gives

A123 ) (1 ⁄ 6)a1 - (1 ⁄ 6)a2 + (1 ⁄ 2)a112 + (1 ⁄ 2)A122 -
(1 ⁄ 6)U12 + (-1 ⁄ 6)U12 (D-16)

Introducing the expression D-2 into eq D-16, we obtain

A123 )A112 (D-17)

Equation D-17 verifies constraint 21 for eq 30 of the text.

Appendix E: Study of the Excess Molar Volume of the
Ternary System Isobutyl Alcohol (1) + Ethanol (2) +
2-Methylpentane (3)sEffect of Ternary Parameters

Muñoz et al.22 measured excess molar volumes at 298.15 K
for the system isobutyl alcohol (1) + ethanol (2) + 2-methyl-
pentane (3) and for all three corresponding binary subsystems
over the whole composition range. They smoothed their data
using an empirical Cibulka-Redlich-Kister equation (eq 3 in
ref 22) with 16 fitting parameters. Such a smoothing-interpolat-
ing data-treatment equation is useful to generate high-quality
pseudo-experimental data.

In this Appendix, we model the excess molar volume (υE)
for this system using eqs 12 and 13 adapted to the case of υE.
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Our purpose here is to assess the extent to which the use of a
ternary parameter improves the description of this ternary real
system, i.e., to evaluate the magnitude of the increase in model
flexibility associated to the use of a cubic composition
dependence.

We adapt eq 12 to the case of υE as follows:

υE ) ∑
m)1

N

∑
n)1

N

∑
p)1

N

xmxnxpAm,n,p
E (E-1)

where the variables Am,n,p
E are independent from composition

and are functions of temperature only, at low pressure (as is
the case for the data of ref 22). Equation E-1 is generally
applicable to multicomponent systems. We first notice that

A111
E )A222

E )A333
E ) 0 (E-2)

Notice that relationships 19 of the text apply also to variables
Am,n,p

E of eq E-1.
We fit the constants of eq E-1 for all three binary subsystems

of system isobutyl alcohol (1) + ethanol (2) + 2-methylpentane
(3) from the smoothed data of ref 22. By “smoothed data”, we
mean pseudo-experimental data generated from eq 3 in ref 22.
Table E1 presents the values we obtained for the three-index
binary constants of system (1, 2, 3).

At 298.15 K, the systems [isobutyl alcohol (1) + ethanol (2)]
and [ethanol (2) + 2-methylpentane (3)] have only positive

excess volumes while the system [isobutyl alcohol (1) +
2-methylpentane (3)] has an excess volume curve that changes
sign from positive to negative when going from low to high
isobutyl alcohol (1) concentration. This is shown in Figure E1,
which presents both the experimental data and a solid line
corresponding to eq E-1 used with the values for A113

E and A133
E

of Table E1. It would have been impossible to describe the
experimental data of Figure E1 by using a multiple summation
of degree less than 3 in mole fraction, as would have been the
case of a quadratic composition dependence. Thus, for the
system here studied, the minimum required complexity level
for the composition dependence is the one of eq E-1, among
all possible multivariate polynomial functions of composition.
The case of Figure E1 illustrates the flexibility associated to
the use of a cubic composition dependence.

We adapt eq 13 to the case of the excess molar volume (υE)
as follows:

υE )∑
i)1

N

∑
j)1

N

xixjQi,j
E +∑

t)1

N

xt(∑
s)1

N

xs(Ms,t
E )(1⁄3))3

(E-3)

Q11
E )Q22

E )Q33
E ) 0 (E-4)

M11
E )M22

E )M33
E ) 0 (E-5)

Notice that relationships 16 and 17 of the text apply also to
variables Qi,j

E and Ms,t
E of eq E-3.

Equation E-3 is a MKP-like expression for the excess molar
volume. For binary mixtures, we obtain an absolute equivalence
between eqs E-1 and E-3, for system (1, 2), if the parameters
relate as follows:

Q1,2
E ) (3

4)(A112
E +A122

E ) (E-6)

M1,2
E ) (3

2)(A112
E -A122

E ) (E-7)

Relationships analogous to eqs E-6 and E-7 are obtained for
systems (1, 3) and (2, 3) by renaming indices. Table E2 presents
the parameter values that make eqs E-1 and E-3 equivalent for
the binary subsystems of the system isobutyl alcohol (1) +
ethanol (2) + 2-methylpentane (3).

Figure B1. Three-index binary interaction parameters for cubic mixing rules
(CMRs, eq 6) making eq 6 become identical to the quadratic mixing rules
(QMRs, eq 1), as functions of the interaction parameter kij for QMRs, for
two different values for the ratio of pure-compound energy parameters.

Table E1. Excess Volume Binary Three-Index Parametersafor the
Binary Subsystems of System Isobutyl Alcohol (1) + Ethanol (2) +
2-Methylpentane (3)

isobutyl alcohol (1) +
ethanol (2)

isobutyl alcohol (1) +
2-methylpentane (3)

ethanol (2) + 2-
methylpentane (3)

A112
E ) 0.03360461971 A113

E ) -0.2403780601 A223
E ) 0.3153459826

A122
E ) 0.07963218110 A133

E ) 0.4470022964 A233
E ) 0.5826767275

a The units are cm3/mol for all six parameters.

Figure E1. Excess molar volume for the binary system IBA (1) +
2-methylpentane (3) as a function of mole fraction of IBA (1) at 298.15 K.
IBA (1) stands for isobutyl alcohol (1). Markers: smoothed experimental
data (eq 3 of ref 22). Solid line: eq E-1 at N ) 2 and parameters A113

E and
A133

E from Table E1.
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By following a procedure analogous to that which led us to
eq 30 of the text, we find an expression for parameter A123

E .
The result is the following:

4A123
E )A112

E +A122
E +A113

E +A133
E +A223

E +A233
E + [A122

E -

A112
E ](1⁄3)[A133

E -A113
E ](2⁄3) + [A122

E -A112
E ](2⁄3)[A133

E -A113
E ](1⁄3) +

[A112
E -A122

E ](2⁄3)[A233
E -A223

E ](1⁄3) + [A112
E -A122

E ](1⁄3)[A233
E -

A223
E ](2⁄3) + [A113

E -A133
E ](2⁄3)[A223

E -A233
E ](1⁄3) + [A113

E -

A133
E ](1⁄3)[A223

E -A233
E ](2⁄3) (E-8)

Equation E-8 makes it possible to predict the ternary
parameter A123

E from binary three-index parameters. It comes
from imposing the equality between eqs E-1 and E-3 for an
equimolar ternary mixture, with binary parameters of eq E-3
given by eqs E-6 and E-7. By introducing the parameters of
Table E1 into eq E-8) we obtain A123

E ) 0.1691. This is a
predicted value for parameter A123

E . Figure E2 shows the excess
molar volume for the ternary system IBA (1) + ethanol (2) +
2-methylpentane (3) as a function of mole fraction of 2-meth-
ylpentane (3) at 298.15 K and at varying ethanol (2)/IBA (1)
ratios. IBA (1) stands for isobutyl alcohol (1). The solid lines
correspond to eq E-1 with binary three-index parameters from
Table E1 and with the ternary parameter A123

E calculated from
eq E-8 (A123

E ) 0.1691). We observe some overprediction of
the excess molar volume when the concentrations of com-
ponents 1 and 2 are similar. We also generated a figure
analogous to Figure E2, but for the case of the MKP-like eq
E-3 with parameters from Table E2. Such a figure (not shown)
was indistinguishable from Figure E2. Thus, in this case, eq
E-1 coupled to eq E-8 is indistinguishable from eq E-3. For
eq E-3, it is impossible to improve the model performance

once the binary parameters have been set at the values of
Table E2. In contrast, we can use again eq E-1, but now
ignoring eq E-8, i.e., fitting parameter A123

E against the ternary
data, having the guarantee that the description of the binary
subsystems remains invariant, i.e., remains determined only
by the parameter values of Table E1. Figure E3 is analogous
to Figure E2 but with the ternary parameter A123

E fit to the
ternary experimental data, i.e., set as A123

E ) -0.15. We
observe in Figure E3 a significant improvement in the
description of the excess molar volume. In conclusion, it is
clear for this case that the model flexibility does increase
because of the use of a cubic composition dependence with
ternary parameters available for fitting ternary information.
This is a confirmation of what we expected from our
experience in the manipulation of mathematical expressions,
i.e., since the binary subsystems are insensitive to parameter
A123

E , the process of freely fitting parameter A123
E , so as to

match ternary experimental data, can only lead to an
improvement of the model performance.

It is important to stress that, although eq 3 in ref 22 is very
accurate for the system isobutyl alcohol (1) + ethanol (2) +
2-methylpentane (3), the information that such an equation
contains cannot be extended to multicomponent systems, since
it lacks the invariance property. On the other hand, eq E-1 gives
an invariant excess molar volume. This is also the case for eq
E-3, which lacks parameters that could be fit from ternary
information while leaving invariant the description of the
corresponding binary subsystems.

Notice that we could define a model for the excess Gibbs
energy (gE) of multicomponent systems analogous to the excess
volume model of eq E-1. For a multicomponent system, the
parameters of the ternary subsystems could be predicted, when
calculating gE, from an equation analogous to eq E-8, but used
for the parameters of the ternion-based gE model. The avail-
ability of a ternary parameter for a gE model should make

Table E2. Excess Volume Parameter Valuesa for Equation E-3
Equivalent to Parameters in Table E1

isobutyl alcohol (1) +
ethanol (2)

isobutyl alcohol (1) +
2-methylpentane (3)

ethanol (2) + 2-
methylpentane (3)

Q1,2
E ) 0.08492760060 Q1,3

E ) 0.1549681772 Q2,3
E ) 0.6735170326

M1,2
E ) -0.06904134204 M1,3

E ) -1.031070535 M2,3
E ) -0.4009961173

a The units are cm3/mol for all six parameters.

Figure E2. Excess molar volume for the ternary system IBA (1) + ethanol
(2) + 2-methylpentane (3) as a function of mole fraction of 2-methylpentane
(3) at 298.15 K and at varying ethanol (2)/IBA (1) ratios. IBA (1) stands
for isobutyl alcohol (1). Markers: smoothed experimental data (eq 3 of ref
22). Solid lines: eq E-1 with binary three-index parameters from Table E1
and ternary parameter A123

E calculated from eq E-8 (A123
E ) 0.1691 cm3/

mol).

Figure E3. Excess molar volume for the ternary system IBA (1) + ethanol
(2) + 2-methylpentane (3) as a function of mole fraction of 2-methylpentane
(3) at 298.15 K and at varying ethanol (2)/IBA (1) ratios. IBA (1) stands
for isobutyl alcohol (1). Markers: smoothed experimental data (eq 3 of ref
22). Solid lines: eq E-1 with binary three-index parameters from Table E1
and ternary parameter A123

E fit to the ternary experimental data (A123
E )-0.15

cm3/mol).
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possible the description of topologically complex gE surfaces,
as the one shown in Figure 2b of ref 23.

Appendix F: Additional Testing of Equation 30

To further test the performance and properties of eq 30 of
the text, we will consider a set of three compounds and the
associated binary subsystems and ternary system. An important
requirement here, for testing invariance, is that we set values
on parameters kiij and kijj for each binary subsystem so that eq
6 does not reduce to eq 1, i.e., values that guarantee that the
dependency on mole fraction is not simpler than cubic.

F.1. Pure Components Considered for Testing Equa-
tion 30. Table F1 shows the pure-compound properties. We
chose the properties so that highly asymmetric binary sub-
systems would be generated. For this study, we computed, at
333.13 K, the energetic parameters a1, a2, and a3 according to
the Soave-Redlich-Kwong (SRK) equation of state (EOS).1

F.2. Interaction Parameters Considered for Testing Eq-
uation 30. Table F2 presents the interaction-parameter values
for system (1, 2) that we used in this study and the resulting
values for the partial parameters at both concentration ends. We
considered three cases: quadratic behavior (eq 1) with a zero
interaction parameter, quadratic behavior (eq 1) with nonzero
interaction parameter, and cubic (eq 6) (or equivalent MKP, eq
5) behavior with nonzero interaction parameters.

Table F2 shows the values for the partial parameters aj1 and
aj2 at both infinite dilution limits, i.e., aj1

∞ and aj2
∞, for the three

cases that we considered. (R1nz/z)1,2 is the ratio of the infinite
dilution partial molar energy parameter for component 1 for
QMRs at k12 ) 0.23 over the same property at k12 ) 0 [(R1nz/

z)1,2 ) aj1,k12)0.23
∞,QMR /aj1,k12)0

∞,QMR]. (R2nz/z)1,2 gives an analogous result
but for component 2 [(R2nz/z)1,2 ) aj2,k12) 0.23

∞,QMR /aj2,k12)0
∞,QMR]. Notice that

increasing k12 from zero to 0.23 implied a simultaneous
modification of the values for aj1

∞ and aj2
∞, i.e., QMRs do not

make it possible to independently control either of the infinite
dilution limits. We set the value of k12 ) 0.23 so that a
significant departure from the values of aj1

∞ and aj2
∞ at k12 ) 0

would occur. This is clear from the values of (R1nz/z)1,2 and (R2nz/

z)1,2, which Table F2 reports. (R1cubic/nz)1,2 is analogous to (R1nz/

z)1,2 but compares instead cubic rules to QMRs with nonzero
interaction parameter [(R1cubic/nz)1,2 ) aj1,sys12

∞,CMR/aj1,k12)0.23
∞,QMR ]. We set

the cubic interaction parameters at values such that one of the
infinite dilution ends is identical to the corresponding end for
QMRs with nonzero interaction parameters [(R1cubic/nz)1,2 )
1.00], while a significant difference takes place at the other end
[(R2cubic/nz)1,2 ) aj2,sys12

∞,CMR/aj2,k12)0.23
∞,QMR ) 0.77]. Thus, the values for

aj1
∞ and aj2

∞ of Table F2 for cubic rules (or for equivalent MKP
rules), i.e., aj1,sys12

∞,CMR and aj2,sys12
∞,CMR, can never be reproduced by

QMRs.
Figure F1 shows both the mixture energy parameter and the

partial molar energy parameters as functions of the mole fraction
of component 1 for system (1, 2) at 333.13 K, for QMRs with
zero (QMRz) and nonzero (QMRnz) interaction parameters and
for cubic mixing rules (CMRs). All parameter values are those
from Table F1 and Table F2. The differences between the T
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Table F1. Properties of Pure Compounds Considered in Appendix
Fa

compound Tc/K Pc/Pa
acentric
factor

a/[(cm6 Pa)/
mol2] (SRK EOS

at 333.13 K)

1 304.21 7 383 000 0.2236 3.425969E+11
2 658.00 1 820 000 0.5764 1.345094E+13
3 900.95 458 309 1.7371 2.202698E+14

a Tc ) critical temperature, and Pc ) critical pressure.
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different mixing rules are not clearly noticeable if we look at
the mixture energy parameter (a) curves. The distinction is more
clear for the curves corresponding to the partial molar parameters
at the infinite dilution ends. For QMRs with a nonzero
interaction parameter (QMRnz), parameters aj1

∞ and aj2
∞ are less

than the corresponding values at k12 ) 0. The CMR aj2
∞ is less

than aj2
∞ for QMRs, while, because we imposed it, aj1

∞ is the
same for CMRs and QMRs with k12 ) 0.23 (QMRnz).
Regardless of the k12 value used for QMRs, it is impossible for
QMRs to simultaneously reproduce the values for aj1

∞ and aj2
∞

that Figure F1 shows for CMRs. Thus, Figure F1 illustrates the
higher flexibility of CMRs with respect to QMRs.

Table F3 is analogous to Table F2 and applies to the system
(1, 3). The value 0.28 for k13 within QMRs implies a significant
departure from the situation where k13 is set to zero. We specially
notice this when component 3 is infinitely diluted in component
1 [(R3nz/z)1,3 ) aj3,k13)0.28

∞,QMR /aj3,k13)0
∞,QMR ) 0.71]. Also, the parameter

values for CMRs imply a significant departure from QMRs with
k13 ) 0.28 at one of the infinite dilution limits [(R3cubic/nz)1,3 )
aj3,sys13

∞,CMR/aj3,k13)0.28
∞,QMR ) 0.70] and no departure at all at the opposite

end, because we imposed it [(R1cubic/nz)1,3 ) aj1,sys13
∞,CMR/aj1,k13)0.28

∞,QMR

) 1].
Figure F2 is analogous to Figure F1 but for the system (1,

3). This figure corresponds to Table F3. Although Table F3
shows significant differences among QMRs with zero k13, QMRs
with nonzero k13, and CMRs, these are hard to see in Figure F2
because of the wide variation ranges for both the mixture energy
parameter and the partial molar energy parameters.

Figure F3 shows the energy parameter and the partial molar
energy parameters for system (2, 3) at 333.13 K as a function
of the mole fraction of component 2. Table F4 gives the
interaction parameters for this system. For QMRs, significant
differences take place when changing k23 from 0 to -0.43. CMR
interaction parameter values are such that aj2

∞ is the same as
that for QMRs with k23 ) -0.43, while the difference is very
important for aj3

∞. Also, in this case, there is no value for k23

used for QMRs that is able to reproduce the behavior depicted
in Figure F3 for CMRs.

F.3. Tests for Equation 30. The pure-compound and
interaction parameter values in Tables F1–F4 make it possible
to perform a number of tests on eq 30, as follows. T
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Figure F1. Energy parameter and/or partial molar energy parameters as
functions of mole fraction of component 1 for system (1, 2) at 333.13 K.
QMRz ) quadratic mixing rules (QMRs) with zero interaction parameters.
QMRnz ) QMRs with a nonzero interaction parameter (k12 ) 0.23). CMR
) cubic mixing rules. All parameters are those of Tables F1 and F2.
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F.3.1. Quadratic Limit. The relevant interaction parameter
values for this test, among all values that Tables F2, F3, and
F4 show, are k12 ) 0.23, k13 ) 0.28, and k23 ) -0.43.

MKP rules (eq 5) give the quadratic limit if lij is set equal to
zero in eq 5 for all ij pairs (Mst ) 0 in eq 13). Cubic mixing
rules also give the quadratic limit if, as we state in Appendix
A, we define aijk as follows (for all possible (i, j, k) combina-
tions):

aijk
quad )

aij + aik + ajk

3
)Aijk

quad (A-2a)

where aij corresponds to eq 2. We will verify for the system (1,
2, 3), when considered quadratic, whether, when using eq A-2a T
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Figure F2. Energy parameter and/or partial molar energy parameters as
functions of mole fraction of component 1 for system (1, 3) at 333.13 K.
QMRz ) quadratic mixing rules (QMRs) with zero interaction parameters.
This figure also shows curves for QMRs with a nonzero interaction
parameter (k13 ) 0.28) and curves for cubic mixing rules. All parameters
are those of Tables F1 and F3.

Figure F3. Energy parameter and/or partial molar energy parameters as
functions of mole fraction of component 2 for system (2, 3) at 333.13 K.
QMRz ) quadratic mixing rules (QMRs) with zero interaction parameters.
QMRnz ) QMRs with a nonzero interaction parameter (k23 )-0.43). CMR
) cubic mixing rules. All parameters are those of Tables F1 and F4.
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for calculating the binary parameters A112, A122, A113, A133, A223,
and A233, we get the right value for A123 from eq 30. Such a
right value is the same as the value that eq A-2 gives when the
indices have values 1, 2, and 3. Table F5 shows that indeed eq
30 gives a result equal to that of eq A-2 when applied to the
ternary system. Therefore, eq 30 used with eq 6 consistently
gives a quadratic behavior for multicomponent mixtures when
all binary subsystems behave quadratically. In a previous
preliminary work19 that had the same goals as this work, we
proposed a prediction strategy for parameter A123 that was more
elaborate than the options that Mathias et al.5 considered before
discarding a mixing rule such as eq 6. However, we discarded
in this work our former strategy19 because it did not give a
quadratic behavior for multicomponent mixtures when all binary
subsystems behaved quadratically

F.3.2. Invariance. Now, considering that the ternary system
(1, 2, 3) behaves according to the cubic mixing rules of eq 6,
let us make component 3 become increasingly similar to
component 2, as a parameter p changes from zero to 1, such
that, at p ) 0, the system parameters are those of Table F1 for
the pure compounds and those of Tables F2–F4 for the three-
index binary parameters kijk, while, at p ) 1, component 3 has
become identical to component 2. Let as impose a transition,
between the two extreme situations, linear with respect to p as

Table F6 shows. Notice, from Table F6, that, at p ) 1, k113

becomes equal to k112, k133 becomes equal to k122, and, finally,
k223 and k233 become equal to k222, i.e., equal to zero.

F.3.2.1. Invariance of Parameters. Figure F4 shows the
evolution of the binary Aijk parameters and of the ternary A123

parameter in the range from zero to 1 for parameter p. We
generated Figure F4 using the parameters of Table F6 and eq
31 for the binary Aijk parameters and of eq 30 for A123. We
observe that, at p ) 1, A233 becomes equal to A223 and to A222,
i.e., to a2; A133 becomes equal to A122; A113 becomes equal to
A112; and the ternary parameter A123 becomes equal to A122. This
is a verification of the invariance of eq 30, i.e., eq 30 gives the
right binary value for the ternary parameter A123 when two
components become identical. Notice that Figure F4 also shows
that the pure-compound parameter A333 becomes equal to the

Table F5. Verification of the Quadratic Limit for Equation 30a

from Table F1 from eq 2

a11 ) 0.342596920700000000000 × 1012 a12 ) 1652946231060.2352737
a22 ) 0.13450937280000000000 × 1014 a13 ) 6254631304683.5483505 (*)
a33 ) 0.22026981160000000000 × 1015 a23 ) 77837665377366.552505

from Tables F2, F3, and F4
k12 ) 0.23, k13 ) 0.28, k23 ) -0.43

from (*) and eq A-2 for the ternary case: A123 ) 0.28581747637703445376 × 1014 (***)
note: this result comes from using eq A-2 only once, with indices 1, 2, and 3

from eqs (*) and eq A-2 for all binary parameters
A1,1,2 ) 0.12161631276068235158 × 1013 A1,3,3 ) 0.77593024736455698900 × 1014

A1,2,2) 0.55856099140401568491 × 1013 A2,2,3 ) 0.56375422678244368337 × 1014 (**)
A1,1,3 ) 0.42839531766890322337 × 1013 A2,3,3 ) 0.12531504745157770167 × 1015

from (*), (**), and eq 30: A123 ) 0.28581747637703445377 × 1014

note: this result [which is equal to (***)] comes from using eq A-2 six times, always with two (out of three) indices having equal values.

a The interaction parameters are dimensionless. All other variables in this table have units [(cm6 Pa)/mol2].

Figure F4. Evolution of the ternary parameter A123 (eq 30) as component
3 increases its degree of similarity with respect to component 2 in a linear
fashion. This process takes place as p changes from zero to 1. At this limit,
component 3 becomes identical to component 2. All parameters are those
of Table F6. Binary variables A112, A122, A113, A133, A223, and A233 are
calculated from eq 31 at T ) 333.13 K.

Figure F5. Cubic mixing rules (eq 6): ratio of energy parameter of the
ternary system (1, 2, 3) over the energy parameter of the binary system (1,
2) as a function of mole fraction of component 2 in the ternary system.
Evolution as component 3 increases its degree of similarity with respect to
component 2 in a linear fashion. This process takes place as p changes
from zero to unity. At this limit, component 3 becomes “identical” to
component 2. All parameters are those of Table F6. Binary variables A112,
A122, A113, A133, A223, and A233 are calculated from eq 31 at T ) 333.13 K.
Mole fraction for component 1 ) x1 ) 0.7. a123 ()A123) is from eq 30.
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pure-component parameter A222 at p ) 1, according to the
equation for a3 as a function of p of Table F6.

F.3.2.2. Invariance of the Coupled Equations 6 and 30.
Figure F4 illustrates a situation of parametric invariance where
the system composition does not play a role. On the other hand,
Figure F5 shows how eq 30 behaves when coupled to eq 6,
i.e., in Figure F5 we observe the performance of the coupled
equations in a situation where the (variable) system composition
has an influence. In other words, Figure F5 tests the invariance
of the cubic mixing rules (eq 6) when combined with eq 30,
used for predicting ternary interactions. Figure F5 shows the
ratio of the energy parameter calculated as a function of x2, at
T ) 333.13 K, for system (1, 2, 3) at x1 ) 0.7 (aternary) over the
energy parameter calculated for the binary system (1, 2) at x1

) 0.7 (x2 ) 0.3) (abinary). Notice that abinary is a constant in
Figure F5. Both energy parameters are calculated using cubic
mixing rules (eq 6), with eq 30 used for the calculations for the
ternary mixture. The parameters are those of Table F6. We
observe that, as component 3 becomes more similar to com-
ponent 2, i.e., as p goes from zero to 1, the ratio of mixture
energy parameters approaches 1, regardless of the relative
concentrations of components 2 and 3 in the system. Figure F5
thus reflects the invariance of eq 6 (cubic mixing rules) coupled
to eq 30 (recipe for A123). We should observe such invariance
also in the behavior of the partial molar parameters.

F.3.2.3. Invariance of Partial Molar Parameters. Figure
F6 shows, for a ternary mixture of components 1, 2, and 3 at
set composition, the evolution of the partial molar parameters
as component 3 becomes increasingly similar to component 2.
For reference, we included the curve for the energy parameter
(a) for the mixture. We observe that the partial parameter for
component 3 tends to the partial parameter for component 2 as
p approaches 1. Thus, Figure F6 also verifies the invariance of
the coupled eqs 6 and 30.

Finally, we show in Figure F7 four parametric curves, where
the varying parameter is again parameter p for which we again
covered the range from zero to 1. A given curve in the figure
shows the partial molar parameter of component 3 plotted
against the partial molar parameter of component 2. For
reference, Figure F7 also shows the identity line where aj2 equals
aj3. We indicate in Figure F7 the location of the curve end points
corresponding to p ) 0 and to p ) 1. We observe that, for a
given curve, the end point of p ) 1 is located on the identity
line where aj2 equals aj3. Consider, for instance, the mixtures
with composition x1 ) 0.1, x2 ) 0.3, and x3 ) 0.6 and
composition x1 ) 0.1, x2 ) 0.6, and x3 ) 0.3. Both mixtures
have the same concentration of component 1. When, at p ) 1,
component 3 becomes identical to component 2, both end points
become coincident. This means not only that aj2 equals aj3 but
also that the values of aj2 ()aj3) are the same for both mixtures,
i.e., they are independent from the relative concentrations of
components 2 and 3. Figure F7 is, therefore, also indicative of
the invariance of eq 6 coupled to eq 30. Notice in Figure F7
that the mixtures with compositions x1 ) 0.7, x2 ) 0.2, and x3

) 0.1 and x1 ) 0.7, x2 ) 0.1, and x3 ) 0.2 also show the

behavior we have just described for the mixtures with x1 ) 0.1.
The end point at p ) 1 is different for the pair of curves of x1

) 0.7 with respect to the pair at x1 ) 0.1, as expected.
We conclude that the mixing rules that are cubic with respect

to mole fraction of eq 6 coupled to eq 30, which predicts ternary
three-index parameters from binary three-index parameters, are
invariant.2,3 Figures F4–F7 are consistent with this conclusion.

F.4. Similarities and Differences between the MKP Mix-
ing Rules and the CMRs When Applied to the System of
Components (1, 2, 3). To fix ideas, we will compare calculation
results for the MKP and CMRs when the binary subsystems
are equivalent for both mixing rules. For the ternary system of
components (1, 2, 3), and using the three-index binary param-
eters of Tables F2–F4 and the pure-compound parameters of
Table F1, we calculate parameters A112, A122, A113, A133, A223,
and A233 from eq 31, then parameter A123 from eq 30, and solve
eq 31, for k123. The result is k123 ) -2.135341083. For this
value of k123, Figure F8 compares the cubic mixing rules (eq 6)
and the MKP (eq 5) mixing rule. Figure F8 corresponds to a
ternary mixture of components 1, 2, and 3 at x3 ) 1/3 and at
varying concentrations for components 1 and 2. A given curve,
with the exception of the “Mixt.” curve, corresponds to the ratio
of the partial molar-parameter value given by the cubic rules
over the value given by the MKP rule, for a given component.
The Mixt. curve is analogous to the other curves, but it involves
the mixture energy parameter. The left end of Figure F8

Table F6. Equations for a Linear Transition Where Component 3 Becomes Increasingly Similar to Component 2 as Parameter p Goes from
Zero to Unity

a1 ) 0.3425969207 × 1012 [(cm6 Pa)/mol2] (Table F1)
a2 ) 0.1345093728 × 1014 [(cm6 Pa)/mol2]
a3 ) [(1 - p)0.2202698116 × 1015 + p a2] [(cm6 Pa)/mol2]
k112 ) 0.1506635459 (Table F2)
k122 ) -0.4113706603
k113 ) (1 - p)(-0.3732233339 × 10-1) + pk112 (Table F3)
k133 ) (1 - p)(-2.040359061) + p k122

k223 ) (1 - p)(-1.344415570) + p (0.) (Table F4)
k233 ) (1 - p)(-0.4447156812) + p (0.)

Figure F6. Cubic mixing rules (eq 6): evolution of the partial molar energy
parameters, at constant composition, for system (1, 2, 3), as component 3
increases its degree of similarity with respect to component 2 in a linear
fashion. This process takes place as p changes from zero to unity. At this
limit, component 3 becomes “identical” to component 2. All parameters
are those of Table F6. Binary variables A112, A122, A113, A133, A223, and A233

are calculated from eq 31 at T ) 333.13 K. x1 ) 0.5, x2 ) 0.1, x3 ) 0.4;
a123 ()A123) is from eq 30.
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corresponds to a mixture where component 1 is infinitely diluted
in a binary mixture of components 2 and 3. For these two last
components, we observe that the corresponding ratios equal 1
at x1 ) 0. This reflects the fact that the values of the interaction
parameters of Table F4 for the binary (2, 3) system are
equivalent for the MKP and the cubic rule. This is also the
reason for the unity value at x1 ) 0 for the Mixt. ratio. The
right end of Figure F8 corresponds to a binary mixture of
components 1 and 3 where component 2 is infinitely diluted.
For an equimolar ternary mixture (x1 ) x2 ) x3 ) 1/3), we
observe that the Mixt. ratio equals 1. We imposed this condition
when deriving eq 30, which led to the k123 value that we used

in Figure F8. This figure illustrates the fact that the MKP rules
(eq 5) and the cubic mixing rules (eq 6), coupled to eq 30, are
different models that have some common features: they are
identical for binary mixtures, and for ternary equimolar mixtures
they give the same mixture value for the energy parameter but
not for the partial parameters. For the specific case of Figure
F8, we observe that the partial molar parameters have values
of the same order of magnitude for both models, since all ratios
are in the order of 1. An essential difference between the MKP
rule and the CMRs is that, while the MKP rule is limited by its
pair-based nature, the ternionwise-additive CMRs can be used
in a parametrically pair-based mode (eq 6 with eq 30) or with
three-index ternary parameters fit from ternary experimental
information, i.e., in a ternionwise-additivity mode. We can also
use CMRs in a hybrid mode for multicomponent systems, i.e.,
with ternary parameters fit against experimental information for
some of the ternary subsystems, as well as with ternary
parameters predicted from eq 30 for the ternary subsystems
without experimental information available.

Notice that, in Figure F8, the differences between the MKP
rules (eq 5) and the cubic mixing rules (eq 6), coupled to eq
30, correspond to a ternary system that has an exacerbated
asymmetry. In contrast, for the real ternary system of Appendix
E, we found no differences between a MKP-like model for the
excess molar volume and a CMR-like model coupled to an
equation analogous to eq 30 for predicting ternary interaction
parameters.

Figure F9 is analogous to Figure F8. The difference is that
we generated Figure F9 without using eq 30 for predicting k123.
The value for k123 in Figure F9 is k123 ) -1. The purpose of
Figure F9 is to illustrate the case of a system where we do not
impose the match of eq 29. Figure F9 shows a result that one
would obtain from fitting experimental data available for the
ternary system, i.e., Figure F9 corresponds to a situation where
we would not need to predict the value for k123 using eq 30 or
other prediction strategy. We observe, when comparing Figures
F8 and F9, that the changes are significant for components 1

Figure F7. Cubic mixing rules (eq 6), parametric plot: evolution of the
partial molar energy parameter for component 3 as a function of the partial
molar energy parameter of component 2, for system (1, 2, 3), at four different
overall mixture compositions, as component 3 increases its degree of
similarity with respect to component 2 in a linear fashion. This process
takes place as p changes from zero to 1. At this limit, component 3 becomes
identical to component 2. All parameters are those of Table F6. Binary
variables A112, A122, A113, A133, A223, and A233 are calculated from eq 31 at
T ) 333.13 K. a123 ()A123) is from eq 30.

Figure F8. Comparison between the MKP mixing rule (eq 5) and the cubic
mixing rules (eq 6) coupled to eq 30 for predicion of ternary parameters:
k123 ) -2.135341083; T ) 333.13 K; system (1, 2, 3); x3 ) 1/3. All
parameters are those of Tables F1–F4.

Figure F9. Comparison between the MKP mixing rule (eq 5) and the cubic
mixing rules (eq 6): k123 ) -1.0; T ) 333.13 K; system (1, 2, 3); x3 ) 1/3.
All parameters are those of Tables F1–F4. Equation 30 was not used to
generate this figure.
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and 2, but not for component 3, i.e., for the component that is
never at infinite dilution under the constraints of both figures.
We also notice in Figure F9 that, for the ternary equimolar
mixture, the mixture parameter obtained using the cubic
mixing rule does not equal the value for the MKP rules. This
is a consequence of not having used eq 30 in the generation
of Figure F9.
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