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Abstract

We present a next-to-leading order (NLO) computation of the full set of polarized
and unpolarized electroweak semi-inclusive DIS (SIDIS) structure functions, whose
knowledge is crucial for a precise extraction of polarized parton distributions. We
focus on the phenomenology of the polarized structure functions for the kinematical
conditions that could be reached in an Electron-Ion-Collider.

We show that the NLO corrections are sizeable, particularly in the small-x range.
We test the sensitivity of these structure functions on certain quark distributions and
compare it to the situation of inclusive DIS and electromagnetic SIDIS.
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1 Introduction

Understanding how the nucleon spin is composed of the angular momenta and spins of its con-
stituents (quarks and gluons) has been a defining question in hadron structure for a long time.
Since it was found that little of the proton spin is carried by the quarks and anti-quarks spins, sev-
eral experiments have measured with increasing precision observables which are sensitive to quark
and gluon polarizations in the nucleon. Such experimental progress was matched by advancements
in theoretical precision and phenomenological analyses of data [1].

The spin structure of a nucleon can be described by the (anti)quark and gluon polarized parton
distribution functions (pPDFs), defined by

∆fj(x,Q
2) ≡ f+

j (x,Q
2) − f−

j (x,Q
2), (1)

where f+
j (x,Q

2) (f−
j (x,Q

2)) denotes the distribution of a parton j with positive (negative) helicity
in a nucleon with positive helicity, as a function of momentum fraction x and scale Q. Its first
momentum, that is to say the integral ∆f 1

j (Q
2) ≡

∫ 1

0
∆fj(x,Q

2)dx, directly measures the spin
contribution of the parton j to the proton spin.

The most complete global fit includes all available data taken in spin-dependent deep inelastic
scattering (DIS), semi-inclusive DIS (SIDIS) with identified pions and kaons, and proton-proton
collisions. They allow us to extract sets of pPDFs consistently at next-to-leading order (NLO) in
the strong coupling constant along with estimates of their uncertainties [2, 3].

Unlike unpolarized PDF fits, where a clear separation of different quark flavours is possible
by the use of inclusive charged-current DIS data, differences in polarized quark and anti-quark
distributions are determined exclusively from SIDIS data and hence require knowledge of the
hadronization mechanism, encoded in non-perturbative fragmentation functions (FFs). Pion FFs
are rather well known, but uncertainties for kaon FFs are much larger. Significant progress on the
quality of fits of FFs is expected once data from B factories and the LHC become available.

Despite the impressive experimental and theoretical progress made in the last years, many
fundamental questions related to the proton spin structure still remain unanswered. One of the
main problems is that present fixed-target experiments suffer from their very limited kinematic
coverage in x and Q2. The kinematic range could be extended in an Electron-Ion Collider (EIC),
whose set-up is being currently considered [4], and thus SIDIS measurements would allow us
to extract ∆u, ∆ū, ∆d, ∆d̄, ∆s, and ∆s̄ with much higher precision. Furthermore, this new
collider would present the opportunity to perform DIS and SIDIS measurements via charged and
neutral electroweak currents, which permits to access polarized electroweak structure functions
[5] that depend on various combinations of polarized quark PDFs and provide an effective way of
disentangling different quark flavours.

Experimentally, one has access to the asymmetries, which depend on both the polarized an
unpolarized structure functions (gi and Fi, respectively). The unpolarized SIDIS structure func-
tions are well known at next-to-leading order (NLO) in perturbative Quantum-Chromodynamics
(QCD) [6, 7], as well as the electromagnetic polarized ones [7]. However, polarized SIDIS structure
functions for charged current and Z boson exchange are only known to leading-order accuracy
(LO) [8]. In general, a LO calculation only captures the main features but does not provide a
quantitative description of the process. It is then necessary to know the NLO QCD corrections
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to both the unpolarized and polarized structure functions in order to extract reliable information
on the parton distribution functions.

In this work we present a NLO computation of both polarized and unpolarized SIDIS structure
functions. We focus on the electroweak ones, which are particularly useful to achieve a full flavour
separation. The paper is organized as follows. In section 2 we establish the definition of electroweak
(un)polarized structure functions and present their LO expressions. In section 3 we explain the
main features of the computation of the structure functions at NLO, focusing on the new results
for the polarized case. In section 4 we present some phenomenological results and analyse the
relevance of the NLO description of polarized SIDIS. Finally, we present our conclusions in section
5.

2 SIDIS electroweak structure functions

In this section we establish the definition of the electroweak structure functions at lowest order
in perturbation theory. We focus, in this and the following sections, on the semi-inclusive case,
leaving some comments on the totally inclusive DIS to Appendix B. For more details on DIS
notation, we refer to [9].

In lowest-order perturbation theory of electroweak interactions, the cross section for the scat-
tering of polarized leptons on polarized nucleons and the consequent observation of a hadron H
in the final state, can be expressed in terms of the product of a leptonic and a hadronic tensor as

dσH

dx dy dz
=

2π y α2

Q4

∑

j

ηjL
µν
j WH,j

µν , (2)

where x and y denote the usual DIS variables, −q2 = Q2 = Sxy, x = Q2/(2P · q) (q being
the electroweak current four-momentum, and S the center-of-mass energy squared of the lepton-
nucleon system) and z = PH · P/P · q the scaling variable representing the momentum fraction
taken by the hadron H †. For neutral-current (NC) processes, the sum runs over j = γ, Z and
γZ, representing photon and Z exchange and the interference between them respectively, while
for charged-current (CC) processes the interaction occurs only via the exchange of a W boson
(j = W ). The tensor Lµν is associated with the coupling of the exchanged boson to the leptons,
and the hadronic tensor WH

µν describes the interaction of the appropriate electroweak currents with
the target nucleon and the subsequent hadronization of partons into H . The factors ηj denote the
ratios of the corresponding propagators and couplings to the photon propagator and coupling as

ηγ = 1; ηγZ =

(

GFM
2
Z

2
√
2πα

)(

Q2

Q2 +M2
Z

)

; ηZ = η2γZ ; ηW =
1

2

(

GFMW

4πα

Q2

Q2 +M2
W

)2

. (3)

The unpolarized and polarized SIDIS structure functions (FH
i and gHi respectively) are defined

†We point out that we concentrate here in the current fragmentation region, and thus cuts over the z variable
must be imposed (typically, z > 0.1). For a description of this process in the target fragmentation region, see Ref.
[10].
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in terms of the hadronic tensor [9]

WH,j
µν =

(

−gµν +
qµqν
q2

)

FH,j
1 (x, z, Q2) +

P̂µ P̂ν

P · q FH,j
2 (x, z, Q2)− iǫµναβ

qαP β

2P · q FH,j
3 (x, z, Q2)

+ iǫµναβ
qα

P · q

[

Sβ gH,j
1 (x, z, Q2) +

(

Sβ − S · q
P · q P β

)

gH,j
2 (x, z, Q2)

]

+
1

P · q

[

1

2

(

P̂µ Ŝν + Ŝµ P̂ν

)

− S · q
P · q P̂µ P̂ν

]

gH,j
3 (x, z, Q2)

+
S · q
P · q

[

P̂µ P̂ν

P · q gH,j
4 (x, z, Q2) +

(

−gµν +
qµqν
q2

)

gH,j
5 (x, z, Q2)

]

, (4)

where P and S denote the nucleon momentum and spin four-vectors respectively and P̂ , Ŝ are

P̂µ = Pµ −
P · q
q2

qµ , Ŝµ = Sµ −
S · q
q2

qµ . (5)

The spin-averaged SIDIS cross section for e±N scattering and the subsequent production of a
hadron H in the current fragmentation region, for Q2 ≫ M2 (where M is the mass of the nucleon),
is given in terms of the unpolarized structure functions by

dσH,i

dx dy dz
=

2πα2

x y Q2
ηi

[

[

1 + (1− y)2
]

2xFH,i
1 ∓

[

1− (1− y)2
]

xFH,i
3 + (1− y) 2FH,i

L

]

, (6)

where i corresponds to NC or CC. The longitudinal structure function is defined as FH
L = FH

2 −
2 xFH

1 and vanishes at lowest order according to the Callan-Gross relation [11]. ηNC = 1, while
ηCC = (1±λ)2ηW (ηW defined in Eq. (3)), where λ = ±1 represents the electron/positron helicity.
(For incoming neutrinos, it is ηCC = 4ηW instead.) Here and in what follows, the sign ± refers to
the lepton charge.

The NC structure functions can be obtained as the sum of the photon, Z, and interference
contributions:

FH,NC
1,L = FH,γ

1,L − (geV ± λgeA) ηγZ FH,γZ
1,L + (geV

2 + geA
2 ± 2 λ geV geA) ηZ FH,Z

1,L (7)

and
xFH,NC

3 = −(geA ± λ geV ) ηγZ xFH,γZ
3 + [2 geV geA ± λ (geV

2 + geA
2)] ηZ xFH,Z

3 , (8)

with geV = −1
2
+ 2 sin2 θW , geA = −1

2
.

For the case of a polarized target, the difference ∆σ of cross sections for the two nucleon
helicity states is

d∆σH,i

dx dy dz
=

8πα2

x y Q2
ηi

[

[

1 + (1− y)2
]

x gH,i
5 ±

[

1− (1− y)2
]

x gH,i
1 + (1− y) gH,i

L

]

, (9)

where again i corresponds to NC or CC and where gHL = gH4 − 2xgH5 . Like FL, the latter vanishes
at leading order. The NC spin dependent structure functions are

gH,NC
1 = ±λ gH,γ

1 − (geA ± λgeV ) ηγZ gH,γZ
1 + (2 geV geA ± λ(geV

2 + geA
2)) ηZ gH,Z

1 ,

gH,NC
5,L = −(geV ± λgeA) ηγZ gH,γZ

5.L + (geV
2 + geA

2 ± 2λ geV geA) ηZ gH,Z
5,L . (10)
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In the quark-parton model, at leading-order, contributions to the SIDIS structure functions
Fi and gi can be expressed in terms of the quark (p)PDFs and the hadron FFs. In the NC case,
these functions are

[

FH,γ
1 , FH,γZ

1 , FH,Z
1

]

=
1

2

∑

q

[

e2q , 2 eq g
q
V , g

q
V
2 + gqA

2
]

(q DH
q + q̄ DH

q̄ ) ,

[

FH,γ
3 , FH,γZ

3 , FH,Z
3

]

=
∑

q

[0, 2 eq g
q
A, 2 g

q
V gqA] (q D

H
q − q̄ DH

q̄ ) ,

[

gH,γ
1 , gH,γZ

1 , gH,Z
1

]

=
1

2

∑

q

[

e2q , 2 eq g
q
V , g

q
V
2 + gqA

2
]

(∆q DH
q +∆q̄ DH

q̄ ),

[

gH,γ
5 , gH,γZ

5 , gH,Z
5

]

=
∑

q

[0, eq g
q
A, g

q
V gqA] (∆q̄ DH

q̄ −∆q DH
q ) . (11)

where eq is the fractional electric charge of the quark, gqV = ±1
2
− 2eq sin2 θW , and gqA = ±1

2
, with

the + sign for up-type quarks and the − sign for down-type quarks. In the CC case, since the W
boson interacts only with certain flavours, we have (assuming four active flavours):

FH,W−

1 = uDH
d + d̄ DH

ū + s̄ DH
c̄ + cDH

s ,

FH,W−

3 = 2(uDH
d − d̄ DH

ū − s̄ DH
c̄ + cDH

s ),

gH,W−

1 = ∆uDH
d +∆d̄ DH

ū +∆s̄ DH
c̄ +∆cDH

s ,

gH,W−

5 = −∆uDH
d +∆d̄ DH

ū +∆s̄ DH
c̄ −∆cDH

s . (12)

For W+ exchange, one should replace u ↔ d and s ↔ c.

3 Next-to-leading order

Assuming factorization, the polarized SIDIS structure functions gH,V
1,5,L

‡ at a factorization scale µF

can be expressed as convolutions of non-perturbative pPDFs ∆fk(x, µ
2
F ) and FFs DH

j (z, µ
2
F ) with

short-distance coefficients ∆Cjk,V
1,5,L(x, z, µ

2
F ), which can be evaluated in perturbation theory. At

next-to-leading-order (NLO) in the strong coupling constant αs these read

gH,V
i (x, z, Q2) =

1

2

∑

qa,qb

∆ξqai

{

∆CV
oi
DH

qb
(z, Q2)∆qa(x,Q

2) +
αs(Q

2)

2π

[

DH
qb
⊗∆Cqq,V

i ⊗∆qa

+DH
g ⊗∆Cgq,V

i ⊗∆qa +DH
qb
⊗∆Cqg,V

i ⊗∆g
]

(x, z, Q2)
}

. (13)

where we fix all scales equal to Q. The sum runs over all contributing partonic channels. That
means, for V = γ, γZ, Z,

qa = qb = u, d, s, c, ū, d̄, s̄, c̄ (14)

if we consider four active flavours, while for V = W− only

qa(qb) = u(d) , d̄(ū) , s̄(c̄) , c(s) (15)

‡V standing for γ, Z, γZ or W±.
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are considered. For V = W+, one should replace u ↔ d and s ↔ c. The factor ∆ξqai takes the value
∆ξqa1 = 1 for every qa, while it reads ∆ξqa5 = ∆ξqaL = 1 if qa refers to a quark and ∆ξqa5 = ∆ξqaL = −1
for qa representing an anti-quark. In Eq. (13) ⊗ denotes the usual convolution:

(D ⊗ C ⊗ f)(x, z, Q2) =

∫ 1

x

dy

y

∫ 1

z

dω

ω
D(ω)C(

x

y
,
z

ω
,Q2) f(y) . (16)

According to equations (11) and (12), which represent the leading-order term of Eq. (13), the
coefficients ∆CV

oi
can be written as

∆CV
o1

= λV
V ; ∆CV

o5
= λV

A ; ∆CV
oL

= 0 , (17)

with

λγ
V = e2q , λγ

A = 0 , λγZ
V = 2eqg

q
V , λγZ

A = −2eqg
q
A , (18)

λZ
V = gqV

2 + gqA
2 , λZ

A = −2gqV g
q
A , λW

V = −λW
A = 2 .

In order to calculate the NLO coefficients ∆Cjk,V
i , we must take into account the one-loop

corrections to the partonic process V + qa → qb, the real emission V + qa → qb + g and the box
contribution V + g → qb + q̄b. The first two channels contribute to the case with jk = qq, and
the last one to jk = qg. The coefficient ∆Cgq

i is obtained from the real emission, considering that
the gluon is the hadronizing parton. At the intermediate stages of the computation divergences
appear. In order to regularize them we use dimensional regularization [12, 13], i.e., we work in a
d-dimensional space, with d = 4− 2ǫ. All quarks are considered massless.

Once the matrix element of each channel jk has been computed, one must obtain the spin
dependent amplitude

∆
∣

∣M jk
∣

∣

2

µν
=

1

2

[

∣

∣

∣
M jk

+

∣

∣

∣

2

µν
−

∣

∣

∣
M jk

−

∣

∣

∣

2

µν

]

, (19)

defined in terms of the amplitudes for partons whose polarization is parallel(+) or anti-parallel(−)
to that of the target. The calculation of each term in Eq. (19) requires projection onto definite
helicity states of the incoming particles. It is then necessary to make use of the relations

u(p, λ)ū(p, λ) =
1 + λ γ5

2
/p (20)

for incoming quarks with helicity λ (a similar expression is obtained for anti-quarks) and

εα(p, λg) ε
∗
β(p, λg) =

1

2(1− ǫ)

[

−gαβ +
pα ηβ + pβ ηα

p.η

]

+
1

2
i λg ǫαβρσ

pρ ησ

p.η
(21)

for incoming gluons with helicity λg, where η is an arbitrary light-like momentum, provided that
p.η 6= 0. The terms independent of λ and λg in equations (20) and (21) respectively contribute
only to the unpolarized amplitude (since they cancel out when subtracting the two terms in Eq.
(19)). In the last case, the averaging of gluon spins in d dimensions should be performed by
dividing by the d− 2 = 2(1− ǫ) possible spin orientations, as has been made explicit in Eq. (21).
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Once the NLO ∆
∣

∣M jk
∣

∣

2

µν
has been computed, we can obtain each one of the coefficients ∆Cjk,V

i

as the finite part of the partonic structure function, defined by

gjki =
1

4π

∫

dΓ P̃ µν
i ∆

∣

∣M jk
∣

∣

2

µν
, (22)

where dΓ is the d-dimensional phase-space and the projectors P̃ µν
i are

P̃ µν
1 = −i ǫµνρσ

qρ pσ
2 p · q , P̃ µν

L =
4 x2

Q2
pµ pν , P̃ µν

5 =
1

2(1− ǫ)

[

−gµν + P̃ µν
L

]

. (23)

The functions gjki contain collinear divergences, that appear as poles in ǫ (at NLO, simple poles
in ǫ). We factorize these divergences using the MS scheme, i.e., removing the quantities

g̃qqi (x, z) = ∆Coi

[

−1

ǫ
+ γE − log(4π)

]

[∆fqq(x)δ(1− z) + Pqq(z)δ(1 − x)],

g̃qgi (x, z) = ∆Coi

[

−1

ǫ
+ γE − log(4π)

]

∆Pqg(x) δ(1− z),

g̃gqi (x, z) = ∆Coi

[

−1

ǫ
+ γE − log(4π)

]

Pgq(z) δ(1− x), (24)

where Pjk and ∆Pjk are the unpolarized and polarized LO Altarelli-Parisi splitting functions [14]
and γE = 0, 5772... is the Euler constant. The quantity ∆fqq is defined below in Eq. (31). The

finite functions obtained after factorization are the coefficients ∆Cjk
i .

The main feature of the calculation described above is the correct use of γ5 and the Levi-Civita
tensor appearing in equations (20) and (21), which is not straightforward in d 6= 4 dimensions.
For our calculations we use the original prescription of ‘t Hooft and Veltman [13], afterwards
systematized by Breitenlohner and Maison [15] (HVBM scheme), which is the most reliable and
consistent scheme [15, 16].

In the HVBM scheme explicit definitions for γ5 and ǫµνρσ are given. In particular,

γ5 =
i

4!
ǫµνρσ γµγνγργσ , (25)

and the ǫ-tensor is regarded as a genuinely four-dimensional object with its components vanishing
in all unphysical dimensions. The d-dimensional Minkowski space is then explicitly divided into
two subspaces, a four-dimensional one and a (d−4)-dimensional one, each of them equipped with
its metric tensor, g̃ and ĝ respectively. The Dirac matrices are also split into a four-dimensional
and a (d− 4)-dimensional part:

γµ = γ̃µ + γ̂µ . (26)

Each part satisfies the usual anticommutation relation.

As defined above, the γ5 anticommutes with γ̃µ but commutes with γ̂µ. As a result, besides
the usual scalar products p′ ·p′ (p′ being the moment of the outgoing parton), products p̂′ · p̂′ show
up in calculations, with p̂′ the (d − 4)-dimensional component of the momentum p′. Every time

6



this type of products appear, the two-particle phase space in Eq. (22) must be used in the less
integrated form [17]

dΓ =
1

8π
(4π)ǫ

−ǫ

Γ(1− ǫ)

∫ sz(1−z)

0

d(p̂′
2
) (p̂′

2
)−(1+ǫ). (27)

For those terms which are independent of p̂′
2
the integration is trivial and one recovers the result

of [6].

When computing the amplitudes, γ5 matrices are present not only due to the helicity projectors,
but also because of the weak interaction vertex. With the definition of γ5 given in the HVBM
scheme, it is important to consistently define the couplings with the quiral fields. It is shown in
Ref. [18] that the correct W− vertex is obtained through the symmetrization

γµ (1− γ5) → 1

2
(1 + γ5) γ

µ (1− γ5) = γ̃µ (1− γ5) . (28)

Analogously, the Z vertex is obtained by

γµ(gqV − gqA γ5) = γµ (gqV − gqA) + gqA γµ (1− γ5) → γµ (gqV − gqA) + gqA γ̃µ (1− γ5) . (29)

Finally, an important property of the HVBM prescription for γ5 is that it leads to helicity
non-conservation at the qqg vertex in d dimensions, expressed by a non-vanishing difference of
unpolarized and polarized d-dimensional LO quark-to-quark splitting functions,

∆P d=4−2ǫ
qq (x)− P d=4−2ǫ

qq (x) = 4CF ǫ (1− x) . (30)

As it is discussed in [19], this result entails some disagreeable consequences, such as non-conser-
vation of the flavour non-singlet axial current and an incorrect result for the O(αs) correction to
the Bjørken sum rule. It is then customary to slightly modify the definition of the MS scheme in
the polarized case and define the quantity

∆fqq(x) = ∆Pqq(x) + 4CF ǫ(1− x) (31)

to be removed in Eq. (24).

We present now the NLO coefficients ∆Cjk
i . All the traces have been computed with the

program Tracer [20], which masters most of the intricacies of HVBM scheme. All results are
given in the MS scheme, as defined above. Here, µIS

F = µFS
F = µF is made, with µIS

F and µFS
F the

initial state and final state factorization scales respectively. For the sake of brevity we suppress
in the following results the argument (x, z) of the coefficient functions. For i = 1,

∆Cqq,V
1 = Cqq,V

1 − λV
V CF 2 (1− x) (1− z), (32)

∆Cqg,V
1 = λV

V

1

2

{

δ(1− z)

[

∆P̃qg(x) log

(

Q2

µ2
F

1− x

x

)

+ 2 (1− x)

]

+∆P̃qg(x)

[

1

(1− z)+
+

1

z
− 2

]}

, (33)

∆Cgq,V
1 = Cgq,V

1 − λV
V CF 2 (1− x) z; (34)
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for i = 5

∆Cqq,V
5 =

λV
A

λV
V

Cqq,V
1 , ∆Cqg,V

5 = λV
A

[

∆Cqg,V
1

λV
V

−∆Pqg(x)2
1− z

z

]

, ∆Cgq,V
5 =

λV
A

λV
V

Cgq,V
1 ; (35)

and finally, the longitudinal coefficients are

∆Cqq,V
L =

λV
A

λV
V

Cqq,V
L , ∆Cqg,V

L = 0, ∆Cgq,V
L =

λV
A

λV
V

Cgq,V
L . (36)

The functions Cjk
i are the unpolarized coefficients and are shown in Appendix A. The factors λV

A

and λV
V are given in Eq. (19). The quantity ∆P̃qg is defined for simplicity as

∆P̃qg(x) = 2∆Pqg(x) = 2 x− 1. (37)

Finally, the coefficients ∆Cjk
4 can be obtained as

∆Cjk,V
4 = ∆Cjk,V

L + 2x∆Cjk,V
5 . (38)

We note that the results for the electromagnetic case (∆Cjk,γ
i ) are in agreement with those of

Ref. [7].

Finally, we make some comments on the unpolarized case. It is convenient to define

(F1,F2,F3) = (2F1, F2/x, F3) (39)

and
FL = F2 − F1 = FL/x, (40)

and thus, the structure functions can be written at NLO as

F
H,V
i (x, z, Q2) =

∑

qa,qb

ξqai

{

CV
oi
DH

qb
(z, Q2) qa(x,Q

2) +
αs(Q

2)

2π

[

DH
qb
⊗ Cqq,V

i ⊗ qa

+DH
g ⊗ Cgq,V

i ⊗ qa +DH
qb
⊗ Cqg,V

i ⊗ g
]

(x, z, Q2)
}

, (41)

with
CV

o1
= λV

V ; CV
o3

= −λV
A ; CV

oL
= 0. (42)

The factor ξqai takes the value ξqa1 = 1 for every qa, while it is ξqa3 = ξqaL = 1 if qa refers to a quark
and ξqa3 = ξqaL = −1 for qa representing an anti-quark.

The computation of these coefficients is similar to the polarized ones. In this case, the spin-
averaged amplitude must be used, and the projectors are

P µν
L =

8 x2

Q2
pµ pν , P µν

1 =
1

1− ǫ

(

−gµν +
1

2
P µν
L

)

, P µν
3 = i ǫµνρσ

qρ pσ
p · q . (43)

The same care as in the polarized case must be taken when dealing with the γ5 matrices present
in the weak vertices. All NLO MS coefficient functions Cjk,V

i are collected in Appendix A.
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Figure 1: CC spin dependent SIDIS structure functions gπ
−,W−

1 , gπ
−,W−

5 , and gπ
−,W−

4 /(2x), at
Q2 = 100GeV2 for the z-bin z = 0.2 − 0.4. The dashed lines show the LO results (the one for

gπ
−,W−

4 /(2x) coincides with that for gπ
−,W−

5 ), while the solid curves are NLO. For comparison, we

also show the electromagnetic gπ
−,γ

1 .

4 Structure functions at an EIC

In this section we analyse the relevance of the NLO corrections to the SIDIS structure functions
we have computed. We focus on the CC case, i.e. the interaction via a W− boson, since it allow
us to achieve a full flavour separation. These functions will be accessible in a future EIC, whose
characteristics can be found in Ref. [4]. We will study the behaviour of the structure functions for
an energy scale of Q2 = 100GeV2, for which the x-range foreseen is approximately 4.10−3 < x < 1
(see Fig. 7.16 of Ref. [4]). We will consider four bins in the hadronic z variable, with 0.1 < z < 0.8
and rely on the DSS fragmentation functions set of [21].

In Fig. 1 we show the spin dependent structure functions gπ
−,W−

1 , gπ
−,W−

5 , and gπ
−,W−

4 /(2x), at
Q2 = 100GeV2 for the bin z = 0.2−0.4, using the DSSV set of pPDFs [3]. Results are shown both
at LO (dashed) and NLO (solid). It is important to mention that NLO pPDFs are used also at
LO, in order to pick up only the effect of the corrections introduced by the NLO coefficients. One
observes that the NLO results differ from the LO description, particularly in the small-x range. At
x = 0.002, for instance, the discrepancies are of about 34% for g1 and 15% for g4/(2x) (these being
larger than those for g5 for all x). Thus, the NLO description is crucial for a precise extraction of
the pPDFs in the small-x region, which is particularly interesting since it could be measured at

the EIC with unprecedented precision. For comparison, we also show the electromagnetic gπ
−,γ

1 ,
for which the NLO corrections are more moderated (below 15% in the mentioned x value).

In Fig. 2 we present the prediction for the NLO SIDIS structure functions gH,W−

1 with H =

9
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Figure 2: CC spin dependent structure function gH,W−

1 for H = π±, K± at Q2 = 100 GeV2 for
four different z-bins.
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Figure 3: CC spin dependent structure function gH,W−

5 for H = π±, K± at Q2 = 100 GeV2 for
four different z-bins.

π±, K± for the four z-bins considered. In all cases, the DSSV set of pPDFs where used. We can
understand the behaviour of these structure functions, at least qualitatively, by considering the
behaviour of pPDFs and FFs, taking into account that only the four channels of Eq. (15) must
be considered, as is discussed next.
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Figure 4: Left: CC and electromagnetic spin dependent SIDIS structure functions gK
−,W−

1 (green)

and gK
−,γ

1 (red) for z = 0.2− 0.4. We present the results obtained using DSSV pPDFs set (solid)
and all pPDFs of DSSV set except for ∆s̄, taken from DNS set (dashed). Right: The same, for

CC spin dependent SIDIS structure functions gK
−,W−

1 for z = 0.2− 0.4 (green) and DIS structure
function gW

−

1 (violet).

We focus now on the π− case. The production of this hadron in the final state is mostly due
to the hadronization of a quark d (between 30% and 46%) or a quark ū (between 28% and 41%).
This means that the quark present in the initial state must be a quark u or d̄ respectively. Thus,
the behaviour of the structure function is dominated by that of the ∆u and ∆d̄ pPDFs, the first of
them being positive for all x-range, and the last one negative. Given that the grater contribution

is that of the u channel, the π− structure function gπ
−,W−

1 is always positive. For π+, however, at

low x contributions from ∆d̄ and ∆s̄ (negative both) are larger and so gπ
+,W−

1 becomes negative.

On the other hand, given the magnitude of the fragmentation functions in DSS set§, the K−

production for low z is dominated by the hadronization of a quark c̄ (around 60%), meaning that

the process is initiated by an s̄ quark. Thus, the shape of gK
−,W−

1 is practically that of the ∆s̄
distribution, with a sign change in the DSSV set around x ∼ 0.02. For 0.4 < z < 0.6 the c̄ and ū
hadronization probabilities are comparable, and for 0.6 < z < 0.8 the last one is even larger, but

cancellations between ∆u and ∆d̄ occur such that the behaviour of gK
−,W−

1 remains very similar
to that just described.

In Fig. 3 we show the prediction for the SIDIS structure functions gH,W−

5 at NLO. By looking
at Eq. (12) we can note that the main difference for these structure functions with respect to the
previous discussion relies in the fact that these ones depend on (−∆u), ∆d̄ and ∆s̄, all of them
basically negative for all x-range (except for ∆s̄ that is positive for large x, but that effect is not

noticeable). That explains why gH,W−

5 is negative for all hadrons considered (H = π±, K±) and
for all x values.

§The same being valid for other sets of FFs [22].
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Figure 5: Left: CC and electromagnetic spin dependent structure functions gπ
−,W−

1 (green) and

gπ
−,γ

1 (red) respectively, calculated using DSSV pPDFs set (solid) and DSSV set except for ∆u,
which is taken from DNS set (dashed). In both cases, we use z = 0.1− 0.2. Right: The same for

CC spin dependent SIDIS structure functions gπ
−,W−

1 for z = 0.1 − 0.2 (red) and DIS structure
function gW

−

1 (violet).

As it was explained above, the gK−,W−
1 structure function behaviour is closely related to the

∆s̄ distribution. Thus, one can expect it to be sensitive to a small change in that pPDF. We show

in the left hand side of Fig. 4 the CC and electromagnetic structure functions gK
−,W−

1 (green) and

gK
−,γ

1 (red) calculated with the DSSV set of pPDFs (solid) and the same result after modifying
only the ∆s̄ distribution according to the one in the DNS set [23] (dashed), as a way to emphasize
the sensitivity of the observable on that flavour. We note large discrepancies between both sets
of pPDFs in the CC case, and even observe a region in which they have opposite signs, unlike the
electromagnetic case, for which the difference between both sets is much smaller. In the last case,
the presence of an s̄ quark in the initial state implies (at LO) the hadronization of an s̄ quark,
but its FF into a K− hadron is almost negligible. The sensitivity of gK−,W−

1 is also stronger than
that of the DIS structure function gW

−

1 for some x-ranges as it can be observed in the right hand
side of Fig. 4.

Similarly, one can expect the gπ
−,W−

1 structure function to be particularly sensitive to a varia-
tion of ∆u. We show in the left hand side of Fig. 5 the CC and electromagnetic spin dependent

structure functions gπ
−,W−

1 (green) and gπ
−,γ

1 (red) respectively, calculated using DSSV pPDFs
set (solid) and DSSV set with the exception of ∆u, taken from DNS set (dashed). By comparing
these two plots, we can note that in fact the CC SIDIS structure function is much more sensitive
to ∆u than the electromagnetic one, and thus better flavour separation can be achieved from such
measurement.

We also compare in the right hand side of Fig. 5 the CC spin dependent SIDIS structure

functions gπ
−,W−

1 for z = 0.2 − 0.4 (red) and DIS structure function gW
−

1 (violet) obtained using
DSSV pPDFs set (solid) and DSSV set with the exception of ∆u, taken from DNS set (dashed).
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The sensitivity of these functions on ∆u are similar, but one can still profit from the larger
structure function in the SIDIS case.

5 Conclusions

We have computed the next-to-leading order QCD corrections to the complete set of polarized
semi-inclusive electroweak structure functions in a consistent scheme.

We have performed a phenomenological study of possible measurements in an EIC. The NLO
corrections are found to be important in the small-x range, the kinematical region of particular
interest at a high energy collider.

We analysed the sensitivity of SIDIS CC structure functions on different pPDFs, and showed
that they provide an excellent tool to disentangle the full set of flavour spin dependent distributions
with an unprecedent precision by including the electroweak polarized SIDIS structure functions.
In particular, we explicitly show that the structure function gK−,W−

1 is sensitive to the very poorly
known ∆s̄ distribution while the function gπ−,W−

1 is particularly sensitive to ∆u.
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A Unpolarized SIDIS Coefficient Functions

Here we list all unpolarized coefficients Cjk,V
i for SIDIS as introduced in Section 3. To keep the

expressions as short as possible we define

P̃qq(ξ) =
1

CF

Pqq , P̃qg(ξ) = 2Pqg(ξ) , P̃gq(ξ) =
1

CF

Pgq(ξ) ,

L1(ξ) = (1 + ξ2)

(

log(1− ξ)

1− ξ

)

+

, L2(ξ) =
1 + ξ2

1− ξ
log ξ . (44)

In what follows, we always suppress the argument (x, z) of the coefficient functions. All results
presented here are given in the MS scheme.
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The unpolarized coefficients Cjk,V
i for SIDIS are

Cqq,V
1 = λV

V CF

[

− 8 δ(1− x)δ(1− z)

+δ(1− x)

[

P̃qq(z) log

(

Q2

µ2
F

)

+ L1(z) + L2(z) + (1− z)

]

+δ(1− z)

[

P̃qq(x) log

(

Q2

µ2
F

)

+ L1(x)− L2(x) + (1− x)

]

+2
1

(1− x)+

1

(1− z)+
− 1 + z

(1− x)+
− 1 + x

(1− z)+
+ 2(1 + x z)

]

, (45)

Cqg,V
1 = λV

V

1

2

[

δ(1− z)

[

P̃qg(x) log

(

Q2

µ2
F

1− x

x

)

+ 2x(1− x)

]

+P̃qg(x)

{

1

(1− z)+
+

1

z
− 2

}

]

, (46)

Cgq,V
1 = λV

V CF

[

P̃gq(z)

(

δ(1− x) log

(

Q2

µ2
F

z(1− z)

)

+
1

(1− x)+

)

+z δ(1− x) + 2(1 + x− x z)− 1 + x

z

]

; (47)

Cqq,V
L = λV

V 4 CFxz, (48)

Cqg,V
L = λV

V 4 x(1 − x), (49)

Cgq,V
L = λV

V 4 CFx(1− z); (50)

Cqq,V
3 = −λV

A

[

Cqq,V
1

λV
V

− CF 2 (1− x) (1− z)

]

, (51)

Cqg,V
3 = −λV

A

[

Cqg,V
1

λV
V

− 2Pqg(x)
1 − z

z

]

, (52)

Cgq,V
3 = −λV

A

[

Cgq,V
1

λV
V

− CF 2 (1− x) z

]

. (53)

We note that all our results in Eqs. (45) - (53) are in agreement with Refs. [6, 7] .

B Unpolarized and polarized DIS Coefficient Functions

For the sake of completeness, we present the NLO unpolarized and polarized DIS strucutre func-
tions, F V

i and gVi respectively. These, can be expressed as convolutions of non-perturbative
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(p)PDFs with short-distance coefficients (Cj,V
1,3,L(x,Q

2) in the unpolarized case and ∆Cj,V
1,5,L(x,Q

2)
in the polarized one). At NLO, these read

F
V
i (x,Q

2) =
1

2

∑

qa

ξqai

{

CV
oi
qa(x,Q

2) +
αs(Q

2)

2π

[

Cq,V
i ⊗ qa + Cg,V

i ⊗ g
]

(x,Q2)

}

, (54)

gVi (x,Q
2) =

1

2

∑

qa

∆ξqai

{

∆CV
oi
∆qa(x,Q

2) +
αs(Q

2)

2π

[

∆Cq,V
i ⊗∆qa +∆Cg,V

i ⊗∆g
]

(x,Q2)

}

.

(55)
All the relevant factors have been introduced in section 3.

The unpolarized coefficients are

Cq,V
L = λV

V CF 2 x,

Cq,V
1 = λV

V CF

{

log

(

Q2

µ2
F

)

P̃qq(x) + δ(1− x)

(

−9

2
− π2

3

)

+L1(x)− L2(x)−
3

2

1

(1− x)+
+ 3

}

,

Cq,V
3 = −λV

A

[

Cq,V
1

λV
V

− CF (1− x)

]

,

Cg,V
L = λV

V 2 x (1− x),

Cg,V
1 = λV

V

1

2

{

P̃qg(x)

[

log

(

Q2

µ2
F

1− x

x

)

− 1

]

+ 2x(1− x)

}

,

Cg,V
3 = 0; (56)

and the polarized ones,

∆Cq,V
L =

λV
A

λV
V

Cq,V
L

∆Cq,V
1 = Cq,V

1 − λV
V CF (1− x),

∆Cq,V
5 =

λV
A

λV
V

Cq,V
1 ,

∆Cg,V
L = 0,

∆Cg,V
1 = λV

V

1

2

{

∆P̃qg

[

log

(

Q2

µ2
F

1− x

x

)

− 1

]

+ 2(1− x)

}

,

∆Cg,V
3 = 0 , (57)

with L1(x), L2(x) and P̃jk defined in Eq. (44) and ∆P̃jk defined in Eq. (37).

All our results are in agreement with Refs. [6, 17, 24, 25].
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