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modified this localization. Colocalization of RabA2 with 

ArfA1 and a Golgi marker indicates that RabA2 localizes 

in Golgi stacks and the trans-Golgi network. Our results 

suggest that RabA2 is part of the vesicle transport events 

required to maintain the integrity of the membrane during 

IT progression.
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Introduction

Nitrogen can be incorporated into ecosystems as the result 

of biological interactions, such as the root endosymbio-

sis established between legume plants and diazotroph soil 

bacteria called rhizobia. This specific interaction is initi-

ated by the exchange of molecular signals between plants 

and rhizobia, triggering two independent genetic programs 

in the root, the organogenesis of the nodule and the infec-

tion, in which bacteria transverse the epidermis to reach the 

dividing cortical cells. The infection is a highly controlled 

process that allows the selection of the specific symbiotic 

partner and the exclusion of pathogens. Once bacteria reach 

the nodule, they are allocated into specialized membrane 

surrounded intracellular compartments, the symbiosomes, 

where they convert  N2 to molecules that can be incorpo-

rated into the plant metabolism (Oldroyd and Downie 

2008).

In most legumes, perception of molecular signals from 

rhizobia produces changes in the cytoskeleton and the reor-

ientation of the root hair polar growth to form a curl that 

entraps the attached rhizobia forming an infection focus 

(Esseling et  al. 2003). Radial expansion of these infec-

tion foci forms an infection chamber, from which rhizobia 
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are internalized via a tubular structure called the infec-

tion thread (IT) (Jones et  al. 2007; Fournier et  al. 2015). 

The IT is an inward growing structure derived from the 

infection chamber membrane, where occupying rhizobia 

reproduce by clonal divisions (Fournier et al. 2008, 2015; 

Murray et al. 2011). Elongation of the IT through the root 

hair requires transport of plant plasma membrane compo-

nents, cell wall material and specialized matrix proteins 

by an active traffic of vesicles to the growing IT tip (Tim-

mers et al. 1999; Gage 2004; Fournier et al. 2008, 2015). 

ITs continue elongating toward the cortical cells and reach 

nodule primordia, where bacteria are internalized to form 

symbiosomes and differentiate into nitrogen fixing bac-

teroids (van Brussel et  al. 1992; Timmers et  al. 1999). In 

the last years, genes encoding proteins involved directly 

or indirectly in the formation and/or progression of the IT 

have been reported, mainly related to cytoskeleton rear-

rangement, such as Nck-associated protein 1 (NAP1), 

121F-specific p53 inducible RNA (PIR1) and Actin-related 

protein complex 1 (ARPC1), which promote actin nuclea-

tion acting via the Suppressor of cAMP receptor defect/

WASP family verprolin-homologous protein (SCAR/

WAVE) complex (Yokota et al. 2009; Miyahara et al. 2010; 

Hossain et  al. 2012; Fournier et  al. 2015). More recently, 

Qiu et al. (2015) identified a new SCAR protein, SCARN 

(SCAR for Nodulation), which is required for formation of 

ITs and their progression to the root cortex. In addition, a 

nodule pectate lyase is also required for IT formation, pre-

sumably locally degrading the plant cell wall to allow ini-

tiation of ITs (Xie et al. 2012). However, the knowledge of 

the molecular mechanisms that mediate cytoskeleton rear-

rangements and traffic of vesicles involved in plasma mem-

brane and cell wall remodeling is still very limited.

GTPases are key components of the vesicle transport 

system that allows the sorting and delivery of molecules to 

different cellular compartments, including endomembrane 

trafficking, membrane recycling, endocytosis and exocyto-

sis. They act as molecular switches that fluctuate between an 

inactive guanosine diphosphate (GDP)—bound form and an 

active guanosine triphosphate (GTP)—bound state, regulat-

ing vesicle budding from a donor membrane, vesicle trans-

port, tethering and fusion to a target membrane (Grosshans 

et  al. 2006). These events are required not only for house-

keeping functions, but also for polar cell growth, such as 

pollen tube elongation and root hair development (Jones 

et al. 2002; Preuss et al. 2004; Surpin and Raikhel 2004; de 

Graaf et  al. 2005). Polar growth and vesicle trafficking are 

also required for early stages of root nodule symbiosis, when 

actively growing root hairs change their growth axis, curl and 

entrap the bacteria, but also at later stages during formation 

of the symbiosome membrane. Monomeric GTPases are 

included in the RAS superfamily, which is subdivided into 

five main families: Ras, Rab, Arf, Ran and Rho. Participa-

tion of GTPases in symbiosis was first established in soybean, 

where it was shown that two Rab proteins are required for 

the formation of the symbiosome membrane (Cheon et  al. 

1993). Later on, a Rab from M. truncatula was shown to be 

required for maturation of the symbiosome (Limpens et  al. 

2009). Other GTPases belonging to the Rop (Rho of Plants) 

subfamily of RAS GTPases have also been associated to the 

nodulation process (Ke et  al. 2012; Kiirika et  al. 2012). In 

a previous work, we have reported that knockdown of the 

monomeric GTPase RabA2 from common bean (Phaseolus 

vulgaris) impaired not only root hair formation and growth, 

but also preinfection events of symbiosis (Blanco et al. 2009). 

Silencing of RabA2 by RNAi prevented root hair curling, IT 

formation and the induction of early nodulin-encoding genes, 

thus RabA2 RNAi roots did not form nodules. RabA2 was 

localized to moving vesicles in the periphery of root hairs. In 

response to rhizobia, when the polar growth of root hairs is 

reoriented to entrap rhizobia, RabA2 vesicles concentrated at 

the tip of root hairs, where the new axis of growth is estab-

lished. These evidences reveled a connection between vesi-

cle trafficking associated to polar growth and early molecu-

lar and morphological changes associated to nodulation, 

providing evidence to the hypothesis that vesicle movement 

acts upstream of the nodulation signaling pathway (Esseling 

et al. 2003). Due to the severe phenotype produced by RabA2 

RNAi post-transcriptional silencing, it was not possible to 

evaluate by this genetic approach the role of RabA2 in down-

stream events, such as IT formation and elongation. In addi-

tion, overexpression of a wild type form of RabA2 did not 

reveal any noticeable phenotype, possible due to the post-

translational regulation of the protein (Blanco et al. 2009). In 

this work, we generated transgenic roots that constitutively 

express mutated forms of RabA2 with single point substi-

tutions in amino acids that are known to participate in the 

hydrolysis of GTP and the GDP/GTP exchange. Both muta-

tions affected root hair growth, as well as progression and 

integrity of ITs. As a consequence of this aberrant infection, 

nodule development was impaired. Translational fusion to 

fluorescence proteins revealed that wild type RabA2, but not 

its mutated forms, localized to Golgi mobile vesicles associ-

ated to the plasma membrane and surrounding the growing 

IT in epidermal cells. Together, these results suggest that 

RabA2 is a shared component of molecular mechanisms that 

govern polar growth and is required to maintain the integrity 

of the IT.
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Materials and methods

Plant growth, transformation and inoculation with R. 

etli

The Rhizobium etli strains SC15, as well as CFNX5 

expressing the fluorescent protein DsRed, were previously 

reported (Aguilar et al. 2004; Battaglia et al. 2014). Com-

posite plants of common bean (Phaseolus vulgaris) acces-

sion NAG12 were obtained by transformation with Agro-

bacterium rhizogenes strain K599, as previously reported 

(Bond and Gresshoff 1993; Blanco et  al. 2009). Roots 

were transformed with the control p35S:GFPGUS+ (GFP 

GUS), p35S:FLAG-RabA2wt, p35S:FLAG-RabA2Q64L 

or p35S:FLAG-RabA2S26N. Plants were grown in MLR-

350HT growth chambers (Sanyo Electric) at 28 °C with 

day/night cycles of 16 h/8 h and 80% humidity. Transgenic 

roots were inoculated with R. etli strains 5 days after trans-

plantation to acrylic boxes (Peltzer Meschini et al. 2008).

Site directed mutagenesis

Mutations were introduced in the RabA2 open reading 

frame cloned in the pTOPO-TA vector. The Gene Tailor 

Site-Directed Mutagenesis kit (INVITROGEN, Carlsbad, 

CA) and the specific primers described in Supplemen-

tary Table  1 (RabA2 Q64L F mutagenesis, RabA2 S26N 

F mutagenesis and RABA2 R mutagenesis) were used 

according to manufacturer’s recommendations.

Cloning

Vector constructs for plant transformation were obtained 

using Gateway technology (INVITROGEN) and confirmed 

by sequencing. For overexpression constructs, the open 

reading frame of  RabA2wt,  RabA2Q64L and  RabA2S26N were 

amplified by PCR using RabA2 OE F and RabA2 OE R 

(Supplementary Table 1), cloned into the pENTR/D-TOPO 

vector and recombined into the destination vector p35S:HF-

GATA (Mustroph et al. 2009). For subcellular localization, 

translational fusions of  RabA2wt,  RabAQ64L and  RabA2S26N 

to the C-terminal end of GFP under the control of p35S 

were generated by recombination of pENTR/D-TOPO vec-

tors with pMDC43 (Curtis and Grossniklaus 2003; Blanco 

et al. 2009). The p35S:GFP vector was used as a control of 

free GFP signal, which was distributed in the nucleus and 

the cytoplasm of root hairs.

Infection thread and polar growth phenotypic analysis

Bright-field and epifluorescence imaging were used for 

root hair and infection thread phenotypic analysis with 

an Olympus IX51 inverted microscope (OLYMPUS 

CORPORATION, Center Valley, PA). Root hair length and 

density were analyzed as described by Blanco et al. 2009, 

using plants grown in agar-Fahraeus acrylic boxes. Root 

hair deformation and IT formation were measured in lateral 

hairy roots of 1 cm of length in composite plants at 48 h 

after infection (HAI) and 10 days after infection (DAI) with 

R. etli CFNX5 expressing DsRed, respectively.

Nodule phenotypic analysis

The nodule phenotypic analysis was performed in several 

transgenic roots of at least ten composite plants. Three 

completely independent experiments were carried out at 

different times. The number of nodules per root developed 

in composite plants expressing each construct was recorded 

during the first 25 DAI with the SC15 R. etli strains. Nod-

ule diameter was measured at 18 DAI with R. etli SC15 

strain. Dry weight was measured as previously described 

by Zanetti et  al. 2010 using at least eight plants per con-

struct. Statistical significance analysis was performed by 

unpaired two-tailed Student t tests.

Immunoblot analysis

Proteins were extracted from root tissue of individual com-

posite plants with sample buffer 3× and separated by 12% 

SDS–PAGE (Sambrook and Russel 2001). After trans-

fer to nitrocellulose membranes, the blots were incubated 

with anti-FLAG horseradish peroxidase (HRP)-conjugated 

monoclonal antibody (1:500; Sigma-Aldrich) as previously 

described (Zanetti et  al. 2010) for detection of FLAG-

RabA2 proteins or with an anti-GFP JL-8 polyclonal anti-

body (1:2500, BD living color) and a goat anti-rabbit con-

jugated to HRP as secondary antibody (1:3000, BIORAD, 

Hercules, CA) for detection of the GFP-RabA2 fusion.

Quantitative RT-PCR assays

Total RNA extraction from composite plant roots, cDNA 

synthesis and reverse transcription followed by quantita-

tive PCR (RT-qPCR) analysis were performed as described 

(Peltzer Meschini et  al. 2008). For quantitative measure-

ments of endogenous RabA2 transcripts, a forward primer 

that binds to the coding region of RabA2 (qRabA2 F) and 

a primer that binds to the 3′ untranslated (UTR) region 

(qRabA2 R) were used, whereas for measurement of the 

transgenic RabA2 transcripts, a combination of RabA2 F 

and a primer that binds to the 3′UTR of the ocs gene (OCS 

3′ R) was used. All primers used in RT-qPCR experiments 

are listed in the Supplementary Table  1. A PCR reaction 

using RNA as template before cDNA synthesis was per-

formed to verify the absence of genomic DNA contami-

nation. The transcript level of each analyzed gene was 
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normalized with the relative transcript level of the refer-

ence gene Elongation factor 1α (EF1α). At least two bio-

logical replicates were performed per condition.

Subcellular localization

For localization analyses, p35S:GFP-RabA2wt, p35S:GFP-

RabA2Q64L, p35S:GFP-RabA2S26N or p35S:GFP were used 

(Blanco et  al. 2009). One of the ArfA1 genes from Med-

icago truncatula (Medtr1g086480) was amplified using 

the primers ArfA1f and ArfA1r (Supplementary Table 1). 

The amplified fragment was cloned in pENTR/D-TOPO 

and recombined in pK7RWG2 to express ArfA1 fused to 

RFP in the C terminus (ArfA1-RFP). Sequencing of the 

entry construct verified that the fragment corresponds to 

the ArfA1e gene. The molecular markers G-rk CD3-967 

and ER-rk CD3-959 were used to label the Golgi appara-

tus (G-rk CD3-967 is based on the cytoplasmic tail and 

transmembrane domain of the soybean α-1,2-mannodidase 

I fused to mCherry) and the endoplasmic reticulum (ER-

rk CD3-959 encodes a chimeric protein containing the 

signal peptide of the wall-associated kinase 2 and the ER 

retention signal at the N and C termini of the mCherry 

protein, respectively) (Nelson et  al. 2007). The pCMU-

LE marker of late endosome is a fusion between mCherry 

and MtRAB5A2 (Ivanov and Harrison 2014). All these 

constructs were introduced in Agrobacterium tumefaciens 

CV3101 and used to agroinfiltrate Nicotiana benthamiana 

leaves as previously described (Battaglia et al. 2014).

Microscopic observations

Nodule tissue was processed as described in Zanetti et al. 

2010. Sections of 1–2 μm were stained with 0.04% tolui-

dine blue and examined with an Olympus IX51 inverted 

microscope (OLYMPUS CORPORATION). Ultrathin sec-

tions of 70  nm were stained with uranyl acetate and lead 

citrate, and analyzed with a JEM 1200 EX II (JEOL, Tokio, 

Japan) transmission electron microscope. Confocal micros-

copy for subcellular localization analysis and observation 

of ITs were performed on N. benthamiana leaves or root 

segments of wild type and transgenic roots of common bean 

with an inverted SP5 microscope (LEICA MICROSYS-

TEMS, Wetzlar, Germany) using a ×20 or a ×63 objec-

tive (numerical aperture of 0.5). GFP, RFP, mCherry and 

DsRed were excited using 488  nm (GFP) and 543  nm 

(RFP, mCherry and DsRed) lasers and emissions were col-

lected between 500 and 550 nm (GFP), 600–660 nm (RFP), 

584–660 nm (mCherry) and 578–626 nm (DsRed). Images 

were processed with the LAS Image Analysis software 

(LEICA MICROSYSTEMS).

Results

Composite plants expressing  RabA2Q64L or  RabA2S26N 

are affected in root hair growth and deformation 

in response to rhizobia

In order to evaluate the role of RabA2 during IT forma-

tion, GTP-locked and GDP-bound mutant variants of 

RabA2 were generated by directed mutagenesis in spe-

cific amino acid residues that affect either the hydrolysis of 

GTP  (RabA2Q64L) or the ability to exchange GDP by GTP 

 (RabA2S26N) (Zheng et al. 2005; Chow et al. 2008). These 

RabA2 versions were expressed in common bean roots as 

translational fusions to the FLAG epitope under the con-

trol of the CaMV35S promoter (Supplementary Fig. S1a). 

This promoter is active in roots and at different stages of 

nodule development in common bean (Estrada-Navarrete 

et al. 2006, 2007). Composite plants, whose roots are trans-

genic and the aerial tissue is wild type, were obtained by 

Agrobacterium rhizogenes mediated transformation. In our 

hands, this transformation method produced a high pro-

portion of transgenic roots (90–95%) in Mesoamerican 

accessions (Rípodas et  al. 2013; Battaglia et  al. 2014) as 

revealed by the use of the GFP fluorescent marker, which 

is consistent with the transformation efficiencies previously 

reported by Estrada-Navarrete et  al. (2006). Reverse tran-

scription followed by quantitative PCR (RT-qPCR) using 

a primer combination designed to specifically detect the 

mRNA transcribed from the transgene and immunoblot 

analyses using antiFLAG antibodies confirmed the expres-

sion of RabA2 mutated forms in transgenic roots. On the 

other hand, a combination of primers that specifically 

detect the mRNA produced from the endogenous RabA2 

gene revealed that expression of the FLAG-RabA2 mutated 

forms did not affect the transcript levels of the endogenous 

RabA2 gene (Supplementary Fig. S1b–d).

Considering that the post-transcriptional silencing of 

RabA2 by RNAi produced severe defects in polar growth 

of the root hair, we questioned whether expression of 

the mutated forms of this protein also affected root hair 

formation and elongation, as well as the curling of root 

hairs in response to rhizobia inoculation. Roots express-

ing  RabA2Q64L and  RabA2S26N exhibited shorter root 

hairs, with reductions of 27 and 23% in root hair length, 

respectively, as compared with control roots expressing 

GFP GUS (Fig.  1a). In addition, root hair density was 

reduced by 29% in  RabA2S26N, whereas no significant 

effect was detected in hairy roots expressing the GTP-

locked  RabA2Q64L variant (Fig.  1b). Attachment of 

rhizobia to the root hair surface produces a change in 

the direction of polar growth, forming a characteristic 

curl in the tip of the actively growing root hair. This curl 

entraps the bacteria colony between two layers of cell 



Plant Mol Biol 

1 3

wall, a step required for initiation of the IT (Catoira et al. 

2001). Measurement of root hair deformation 48 h after 

inoculation (HAI) with Rhizobium etli in  RabA2Q64L or 

 RabA2S26N hairy roots revealed a significant reduction 

of 29.5 and 38.7%, respectively, as compared with GFP 

GUS control plants (Fig. 1c). These results reinforce the 

importance of RabA2 in root hair polar growth and pre-

infection steps of root nodule symbiosis.

Fig. 1  Expression of  RabA2Q64L and  RabA2S26N affects root hair 

growth and nodulation. Length (a), density (b) and deformation of 

root hairs in response to rhizobia (c) were measured on GFP GUS, 

 RabA2Q64L and  RabA2S26N roots. Measurements were taken on 

at least ten independent transgenic roots from eight GFP GUS, 

 RabA2Q64L or  RabA2S26N composite plants. Deformation was deter-

mined as the percentage of root hairs that presented a curled tip 48 

HAI with R. etli. Bars represent the mean and SE of three biologi-

cal replicates (n ≥ 20 for each condition analyzed). Asterisks indicate 

statistical significance according to Student t test with P < 0.05. More 

than 200 root hairs per construct were used for each measurement. 

The average number of nodules per root was scored between 0 and 25 

DAI with R. etli strain SC15 on more than 10 independent transgenic 

roots from at least seven composite plants for each condition analyzed 

(d). Error bars represent SE of two biological replicates with n ≥ 70. 

Asterisks indicate differences between  RAbA2Q64L or  RabA2S26N 

and GFP GUS roots that were statistically significant (Student t test 

P < 0.05). The nodule diameter was measured at 18 DAI with R. etli 

in transgenic roots from GFP GUS,  RAbA2Q64L and or  RabA2S26N 

composite plants (e). Bars represent the mean and SE of three bio-

logical replicates, n ≥ 30 for each condition tested. Asterisks indicate 

statistical significance (Student t test P < 0.05). f–h Pictures of nod-

ules developed at 18 DAI with R. etli in transgenic roots from GFP 

GUS (f),  RabA2Q64L (g) or  RabA2S26N (h). Arrowheads point to the 

nodules. Note that lenticels were present only in nodules of GFP GUS 

composite plants. Bars 1 mm
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Expression of  RabA2Q64L and  RabA2S26N impairs 

nodulation

In order to investigate the effect of the expression of 

the mutated forms of RabA2 in the development of 

nitrogen fixing nodules, we performed a time-course 

nodulation analysis on composite plants that express 

 RabA2Q64L,  RabA2S26N or GFP GUS. At 10 days after 

inoculation (DAI) with R. etli strain SC15,  RabA2Q64L 

and  RabA2S26N roots presented a significant reduction 

of approximately 70 and 50% in the number of nodules, 

respectively, as compared to GFP GUS roots, and these 

differences were maintained at later time points (Fig. 1d). 

Nodules formed in both  RabA2Q64L and  RabA2S26N roots 

were significantly smaller than those developed in GFP 

GUS control roots (Fig.  1e–h). The majority of these 

small nodules was pale and without lenticels, whereas 

those developed in control roots presented the pink color 

characteristic of mature nodules that express leghemo-

globin (Fig.  1f–h). These phenotypic observations sug-

gest that nitrogen fixation can be compromised in nod-

ules formed in roots expressing the mutant versions of 

RabA2. This is further supported by the lower dry weight 

of shoots in  RabA2Q64L and  RabA2S26N as compared with 

that of GUS GFP composite plants (Supplementary Fig. 

S2).

Small nodules formed in roots expressing the mutated 

variants of RabA2 were partially infected. Whereas most 

cells of the central tissue were infected with rhizobia in 

control GFP GUS nodules, only few cells were occupied by 

rhizobia in  RabA2Q64L nodules (Fig.  2a, b). On the other 

hand, the central tissue of  RabA2S26N nodules contained a 

high proportion of cells that presented irregular shape and, 

although many of these cells were infected, they were not 

fully occupied with symbiosomes (Fig.  2c and Supple-

mentary Fig. S3). To evaluate whether the symbiosomes 

formed in  RabA2Q64L and  RabA2S26N contained fully dif-

ferentiated bacteroids, transmission electron microscopy 

of ultrathin nodule section was performed. Symbiosomes 

formed in GFP GUS control plants were normal, contain-

ing one or more bacteroids surrounded by an intact sym-

biosome membrane and embedded in a dense cytoplasm 

(Fig. 2d), as previously reported by Cermola et al. (2000). 

In contrast, nodules formed in  RabA2Q64L and  RabA2S26N 

roots presented signs of disintegrated and/or merged sym-

biosome membranes and bacteria released in the cytoplasm 

(Fig.  2e, f). Symbiosome membrane disintegration and 

merging was previously observed in old senescent nodules 

as well as in young nodules formed by ineffective strains 

of R. etli (Cermola et al. 2000). Our observations suggest 

that miss-regulation of RabA2 produces defects in the for-

mation of the symbiosome membrane or that the partially 

Fig. 2  Cytological characterization of  RabA2Q64L and  RabA2S26N 

nodule sections. a–c Light micrographs of semi-thin sections of the 

central tissue of nodules formed in GFP GUS (a),  RabA2Q64L (b), 

and  RabA2S26N (c) composite plants at 21 DAI with R. etli. Sections 

were stained with 0.04% toluidine blue. Bars 50 µm. d–f Transmis-

sion electron microscopy of ultrathin sections of GFP GUS (d), 

 RabA2Q64L (e) and  RabA2S26N (f) nodules at 21 DAI with rhizobia. 

CW cell wall, B bacteroids, SM symbiosome membrane, DZ disinte-

gration zone, HBG poly-β-hydroxy butyrate granules. Note the disin-

tegrated membrane of the symbiosome pointed by the arrow labeled 

as SM in e. d–f Bars = 1 µm
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infected nodules observed in  RabA2Q64L and  RabA2S26N 

roots are senescing earlier than the control ones.

RabA2Q64L and  RabA2S26N expressing roots are affected 

in IT progression and maintenance of IT integrity

IT progression initiates from the infection chamber by a 

switch from radial to polar growth (Fournier et  al. 2015). 

Considering the function of monomeric GTPases in vesi-

cle trafficking associated to cell wall and plasma membrane 

remodeling, we hypothesized that alterations on RabA2 

regulation might affect IT formation or elongation. To 

visualize the progression of the infection events, we used 

a R. etli strain that constitutively expresses the fluorescent 

protein DsRed. The density of ITs observed at 5 DAI was 

not significantly different between  RabA2Q64L,  RabA2S26N 

and control GFP GUS roots; however, a 20% reduction in 

IT density was observed in  RabA2Q64L roots (Fig.  3a). In 

order to assess the IT progression towards cortical cells, we 

quantified and classified ITs as elongated ITs ending in the 

root hair, ending in the epidermal cell layer (in the same 

epidermal cell producing the root hair or adjacent cells of 

the epidermis) or reaching the cortex and releasing bacteria 

within the dividing cortical cells, as previously described 

by Zanetti et  al. (2010) and illustrated in Fig.  3c. Muta-

tions of RabA2 impaired IT progression, since only 27 

and 33% of the ITs formed on  RabA2Q64L and  RabA2S26N 

roots reached the cortex, respectively, a statistically sig-

nificant difference (Student t test P < 0.05) compared with 

the 61% of these infection events recorded in control GFP 

GUS roots (Fig.  3b). This result indicates that progres-

sion of the infection toward the dividing cells in the cor-

tex is severely compromised by the expression of RabA2 

mutated forms. Interestingly, some ITs showed premature 

release of bacteria (burst) into the cytoplasm of the root 

hair cells (Fig. 4). These abnormal ITs were observed only 

in roots expressing the mutant forms of RabA2, and not in 

the GUS GFP roots (Table  1). Abnormal ITs represented 

15 and 18% of the total recorded ITs (n > 50) in  RabA2Q64L 

and  RabA2S26N roots, respectively. In these abnormal infec-

tion events, the bacteria were released into the epidermal 

infected cells (Fig.  4a–e), a phenotype that was already 

observed in legume mutants with defects in rhizobial infec-

tion (Yokota et  al. 2009; Qiu et  al. 2015). Occasionally, 

some of these abnormal infection events that had released 

bacteria in the root hair cell were able to extend toward epi-

dermal cells adjacent to the root hair (Fig. 4f) or progressed 

and released the bacteria in the nodule primordia (Fig. 4g).

RabA2 colocalizes in Golgi vesicles with ArfA1

We have previously shown that common bean RabA2 

localizes in mobile vesicles that travels around the mem-

brane in root hairs (Blanco et al. 2009). In order to establish 

the identity of these vesicles, we used a series of molecu-

lar markers associated to subcellular compartments of the 

secretory pathway, which were transiently coexpressed 

with GFP-RabA2 in Nicotiana benthamiana leaf epidermal 

cells by agroinfiltration. We observed partial colocaliza-

tion between GFP-RabA2 and markers of Golgi and late 

endosome (Fig. 5, Supplementary Video 1). In contrast, the 

marker of endoplasmic reticulum labeled a different group 

of vesicles that RabA2. ArfA1, a monomeric GTPase of 

the Arf family, has been studied in different organisms and 

its localization in Golgi and trans-Golgi vesicles has been 

amply documented (Pimpl et al. 2000; Takeuchi et al. 2002; 

Xu and Scheres 2005; Stefano et al. 2006; Robinson et al. 

2011). We observed localization of both GTPases in mobile 

Fig. 3  Expression of  RabA2Q64L and  RabA2S26N affects progression 

of ITs. a The number of ITs per cm of root developed at 7 DAI was 

quantified using a strain of R. etli expressing DsRed in at least ten 

independent composite plants. Bars represent the mean and the SE 

of two biological replicates (n ≥ 35 for each condition). b Percentage 

of ITs that ended in the root hair (RH), the epidermis or reached the 

cortex. More than 150 ITs were recorded in at least ten independent 

roots. c Fluorescence microscopy images representing the different IT 

categories: end in root hair (RH) when the IT does not reach the body 

of the trichoblast (superior panel), end in epidermis as the ITs that 

growth toward the interior of the cell to reach the body of the tricho-

blast that originated the infected RH or expand to adjacent cells in the 

epidermis (middle panel) and reach cortex as the normal expanded 

infection events (inferior panel)
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vesicles and, to certain extent, in the plasma membrane 

and the cytoplasm, as expected considering the regulatory 

cycle of GTPases (Fig.  5, Supplementary Video 2). The 

strong colocalization observed between these two proteins 

suggests that RabA2 might be associated to the membrane 

of vesicles that form the Golgi stack and the trans-Golgi 

network.

Miss-regulation of RabA2 activity affects 

the subcellular localization of RabA2

In order to analyze RabA2 subcellular localization during 

IT progression and whether mutations in RabA2 affected 

that localization, we generated composite plants express-

ing GFP-RabA2wt, GFP-RabA2Q64L or GFP-RabA2S26N 

translational fusion proteins and inoculated them with 

the R. etli strain expressing DsRed. As shown in Fig.  6, 

GFP-RabA2WT localized in moving vesicles near the root 

hair membrane and around the IT, surrounding the signal 

of fluorescent bacteria (Fig. 6a-c and Supplementary Video 

3). GFP-labeled vesicles were also detected around the 

nucleus and in cytoplasmic bridges connecting the plasma 

and the IT membranes (Supplementary Fig. S4). These 

punctate structures were not observed when the mutant 

variants of RabA2 were expressed (Fig.  6d-i and Supple-

mentary Video 4). Instead, the fluorescence signal in the 

GFP-RabA2Q64L or GFP-RabA2S26N transgenic roots was 

dispersed in the root hair cell, consistent with a cytoplas-

mic localization (Fig.  6d, g). Infections produced in roots 

expressing GFP-RabA2Q64L or GFP-RabA2S26N showed the 

same defects in IT progression observed in  RabA2Q64L and 

 RabA2S26N roots, indicating that the presence of the fluo-

rescent protein did not affect the negative effect produced 

by the expression of the mutated variants of RabA2. These 

results indicate that miss-regulation of RabA2 activity 

affects its subcelullar localization during IT progression 

and is consistent with the established role of Rab proteins 

in membrane trafficking associated to polar growth.

Discussion

This work shows a connection between a monomeric 

GTPase that is involved in vesicle trafficking and the pro-

gression and maintenance of the integrity of ITs, a key step 

on the establishment of nitrogen-fixing symbiosis. RabA2 

was previously implicated in the polar growth of root hairs 

Fig. 4  Abnormalities of IT formation in  RabA2Q64L and  RabA2S26N 

roots. a–c Abnormal IT formed in a  RabA2Q64L root showing fluores-

cent rhizobia in the cytoplasm of a root hair at 7 DAI with a strain of 

R. etli expressing DsRed. Images obtained under white light (a), fluo-

rescence (b) or merged (c) are shown. Arrows point to the tips of a 

ramified IT. Bars 10 μm. d–g Examples of ITs with rhizobia released 

into the cytoplasm of root hairs. Most of these infections aborted 

in the root hair (d, e), but some progressed to the epidermis (f) or 

reached cortical cells (g). Arrowheads indicate root hairs with bacte-

ria released in the cytoplasm. Bars 50 μm

Table 1  Expression of  RabA2Q64L and  RabA2S26N generates abnor-

mal ITs

a ITs were classified 5 DAI with a R. etli strain expressing DsRED 

(n > 50)

Root hair Epidermis Dividing cortex/

nodule primor-

dia

Aberrant ITsX100/Total  ITsa

 GFP GUS 0 0 0

 RabA2Q64L 10 1 4

 RabA2S26N 14 2 2
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and the curling that entrap bacteria at a pre-infection stage 

of the symbiosis (Blanco et al. 2009). Taken together, the 

results presented here suggest that the molecular machin-

ery that is part of the IT formation and elongation during 

symbiosis is the same that participates of polar growth 

processes, such as root hair or pollen tube elongation. Pro-

posed roles for vesicle transport in IT formation are related 

to sorting and delivering of the membrane and cell wall 

materials required for IT progression.

Mutations in amino acids that are involved in the regu-

lation of the RabA2 protein affected the progression of 

the infection events, but did not alter the total number of 

infections initiated in the root hairs (Fig. 3a, b). This phe-

notype points toward a role of RabA2 during elongation 

Fig. 5  RabA2 colocalizes with ArfA1 at Golgi/trans-Golgi stacks. 

Subcellular localization of GFP-RabA2 and molecular markers of 

endoplasmic reticulum (ER), ArfA1 (Golgi and trans-Golgi), late 

endosome (LE) and Golgi stacks in epidermal cells of N. benthami-

ana. GFP, RFP and Cherry fluorescence was visualized by confocal 

microscopy. Bars 10 µm. Panels at the right correspond to a magnifi-

cation of the area indicated by white rectangles
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and maintenance of IT integrity, which is supported by 

the localization of the protein around this tubular struc-

ture (Fig.  6a–c). The protein with the highest sequence 

similarity to RabA2 in Arabidopsis thaliana is localized 

in the trans-Golgi compartment, possibly participating in 

the trafficking to the plasma membrane and the early endo-

cytic pathway (Chow et al. 2008). The protein localizes at 

the margins of the Arabidopsis cell plate and seems to be 

required for cell division. The mutant versions S26N and 

Q71L (equivalent to the  RabA2S26N and  RabA2Q64L muta-

tions used in this work) changed their location to the cyto-

sol, and in the first case, also to the Golgi. Previously, we 

have shown that vesicles labeled by RabA2 accumulated 

in the tip of the root hairs during normal growth and after 

re-directioning produced by perception of rhizobia (Blanco 

et  al. 2009). Here, we show that the protein localizes in 

mobile vesicles around the ITs and in cytoplasmic bridges 

that connect the plasma membrane with the IT membrane 

(Fig. 6 and Supplementary Fig. S4). Based on colocaliza-

tion experiments with a Golgi molecular marker and the 

ArfA1 protein, we propose that vesicles labeled by GFP-

RabA2 belong to the Golgi/trans-Golgi network (Fig.  5). 

The strong colocalization of RabA2 and ArfA1 in the cyto-

plasm and in punctuates structures can indicate that they 

would be part of a GTPase cascade in a particular group 

of vesicles of the Golgi/trans Golgi. The partial colocaliza-

tion with the late endosome/multivesicular bodies marker 

is in agreement with the previous results obtained for 

Fig. 6  GFP-RabA2 localizes around the IT. Confocal microscopy of 

root hairs with an IT on GFP-RabA2wt (a–c), GFP-RabA2Q64L (d–f) 

and GFP-RabA2S26N (g–i) roots inoculated with R. etli expressing 

DsRed at 8 DAI. Bars 10 µm. Images correspond to fluorescence of 

GFP (a, d, g, j), DsRed (b, e, h, k) or the merge of visible, GFP and 

DsRed channels (c, f, i, l). Autofluorescence control was performed 

with a wild type root inoculated with the same R. etli strain express-

ing DsRed and fluorescence was scored with the same parameters 

used to visualize transgenic roots (j–l). Arrows in a indicate moving 

vesicles. Bars 10 μm
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ArfA1 from barley and RabF2 in onion cells (Böhlenius 

et  al. 2010). However, this result has been interpreted as 

a transitory state produced as a consequence of the transi-

tion of vesicles from early endosomes to multivesicular late 

endosomes (Robinson et al. 2011).

Subcellular localization of RabA2 depends on the GTP 

hydrolysis and GDP/GTP exchange, since mutations that 

affect these activities produce a change in the RabA2 sub-

cellular localization (Fig. 6; Chow et al. 2008). In the case 

of Rab proteins, localization to the vesicle membranes is 

associated to the attachment of a geranylgeranyl group to 

a couple of cysteines in the C-terminus of the protein, and 

the binding of a GDP dissociation inhibitor (GDI). Dis-

placement of GDI to expose the lipid is partially linked to 

the cycle of nucleotide hidrolysis (Grosshans et al. 2006). 

Thus, mutations that affect the GDP/GTP cycle result in a 

change of localization, as it has been reported for Rab pro-

teins, as well as for monomeric GTPases of the Arf fam-

ily (Xu and Shceres 2005; Limpens et al. 2009; Speth et al. 

2009; Böhlenius et al. 2010). The negative effect of muta-

tions that alters the hydrolysis of GTP and the GDP/GTP 

exchange can be related to the misslocalization observed for 

these mutants. On the other hand, GDP-locked versions are 

unable to interact with Rab effectors and GTP-locked vari-

ants interefere with progression of Rab cascades (Gross-

hans et al. 2006), altering in both cases the normal function 

of monomeric GTPases as molecular switches. Both the 

lack of switching between an active and inactive forms and/

or the misslocalization of mutated proteins might explain 

the deffects in rhizobial infection and nodule formation 

observed in roots expressing  RabA2S26N and  RabA2Q64L. 

This regulatory system, based in GTP/GDP exchange and 

localization, contributes to explain the dominant or par-

tially dominant nature of Q64L and S26N mutations, since 

these forms can remain associated to GTPase Activating 

Proteins (GAP) and Guanine nucleotide Exchange Factors 

(GEF) or GDI, avoiding the action of these proteins on wild 

type versions of GTPases.

RabA2 is also implicated in polar growth of the root 

hair. Mutations in the protein resulted in a reduction 

in the percentage of root hairs that curled in response 

to rhizobia (Supplementary Fig.  2c), but this pheno-

type was milder than that observed with RNAi of RabA2 

(Blanco et al. 2009). This could be explained by the severe 

effect of the RNAi on the reduction of RabA2 transcript 

(>95%) or by the partial dominance of the  RabA2Q64L 

and  RabA2S26N variants over the wild type version of the 

protein.  RabA2Q64L and  RabA2S26N roots developed small 

nodules that present early disintegration of symbiosome 

membranes (Fig. 2e, f), resembling that observed in senes-

cent or ineffective nodules (Cermola et al. 2000). A simi-

lar effect on nodule senescence was originated by defects 

in the symbiosome formation by silencing of Rab7 in M. 

truncatula (Limpens et  al. 2009). It can also be proposed 

that the symbiosome membrane disintegration observed in 

roots expressing the RabA2 mutated forms could be a con-

sequence of defects in symbiosome membrane formation. 

The observation that mutations in RabA2 also affected the 

integrity of IT membrane (Fig. 4; Table 1) is in favor of this 

hypothesis.

Infection by rhizobia via IT requires an actively growing 

root hair where polar growth is initiated from an infection 

chamber to form the tubular structure that guides bacteria 

toward cortical cells (Fournier et al. 2008, 2015). Cytoskel-

eton rearrangements are necessary during root hair growth 

and progression of IT inside the cell (Cárdenas et al. 1998; 

Yokota et  al. 2009). As previously mentioned, Pir1 and 

Nap1 genes are involved in actin dynamics and IT forma-

tion (Yokota et  al. 2009). Interestingly, mutation of these 

genes produced defects in the infection process, resulting 

in abortive ITs that showed enlarged zones along the tubu-

lar structure, and the presence of rhizobia in the cytoplasm 

of epidermal cells. The protein encoded by Nap1 activates 

ARP2/3, a factor that regulates acting polymerization and 

branching (Miyahara et  al. 2010). SCARN, a regulator 

of the APR2/3 complex, also blocked IT growth, result-

ing in early abortion in the root hair. Interestingly, some 

of the ITs produced in the scarn mutants grew within root 

hairs, whereas some others showed bacteria released into 

the cells. This phenotype is similar to that observed in 

 RabA2Q64L and  RabA2S26N roots (Fig. 4), and can be inter-

preted as the consequence of IT bursting. The M. trunca-

tula ortholog of Nap1 is required not only for IT progres-

sion, but also for root hair polar growth (Miyahara et  al. 

2010). The phenotypic similarities observed between Nap1 

mutants and roots expressing RabA2 mutants provides 

additional evidence of the importance of vesicle traffick-

ing associated to actin cytoskeleton during polar growth of 

the root hair and assembling of the IT membrane. Taken 

together, these results indicate that IT integrity requires 

vesicle trafficking and actin rearrangements triggered by 

rhizobia, suggesting a connection between newly formed 

actin bundles with the transport of vesicles toward the elon-

gating ITs. This transport of vesicle across microfilaments 

would support the continuous growth of ITs by providing 

enzymes and material required for the synthesis of mem-

brane and cell wall (Lycett 2008). The pectate lyase NPL, 

which is specific of nodulation (Xie et al. 2012), or the cell 

wall protein ENOD11 (Fournier et  al. 2015) are plausible 

cargos.

GTPases of the ROP family were proposed to regulate 

cytoskeletal rearrangement, influencing cell polarity, mem-

brane transport and signaling in response to external stimuli 

(Yang and Fu 2007). ROP proteins also play a role in root 

hair growth and root nodule symbiosis in legumes. LjROP6 

was identified as an interacting protein of the putative Nod 
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factor receptor of Lotus japonicus NFR5 (Ke et al. 2012). 

The phenotype observed in LjRop6 RNAi roots is simi-

lar to that observed in  RabA2Q64L and  RabA2S26N roots in 

terms of the reduction in the percentage of ITs that reach 

cortical cells and the number of nodules formed. Similarly, 

MtROP9 silencing also resulted in a reduced number of ITs 

and nodules, but in this case the ROP protein had an addi-

tional role in polar growth of root hairs (Kiirika et al. 2012). 

Another ROP from M. truncatula, ROP10, is necessary 

for root hair polar growth. Defects in root hair formation 

produced by overexpression of ROP10 or a constitutively 

active form of this protein resulted in aberrant infections by 

S. meliloti (Lei et al. 2015). Localization of ROP proteins 

depends on the activity of other small GTPases and vesi-

cle trafficking, as reported in the polar growth of root hairs 

(Molendijk et al. 2001; Xu and Scheres 2005). Therefore, it 

will be interesting to explore the connection between Rab 

and ROP proteins in the context of polar growth and infec-

tion events during root nodule symbiosis.

Penetration of bacteria to legume roots is a key step in 

terms of the specific recognition of compatible rhizobia 

during formation and progression of the IT. Our results, 

together with those reported by others, provide genetic 

support to the notion that the molecular machinery associ-

ated to vesicle trafficking and cytoskeleton rearrangements 

required for root hair polar growth has been co-opted to 

participate during the initial events of rhizobial infection, in 

particular, during root hair deformation and IT progression.
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