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ABSTRACT
This paper presents a procedure for testing the hypothesis that the
underlying distribution of the data is elliptical when using robust loca-
tion and scatter estimators instead of the sample mean and covari-
ancematrix. Undermild assumptions that include elliptical distributions
without first moments, we derive the test statistic asymptotic behav-
ior under the null hypothesis and under special alternatives. Numerical
experiments allow to compare the behavior of the tests based on the
sample mean and covariance matrix with that based on robust estima-
tors, under various elliptical distributions and different alternatives. We
also provide a numerical comparison with other competing tests.

1. Introduction

The family of elliptically symmetric (or elliptically contoured) distributions generalizes the
family ofmultivariate normal distributions.One advantage of the elliptical distributions is that
they define a much broader class of multivariate distributions than the multivariate normal
distributions so that they can serve as the basis for the development of more robust analyses.
In fact, in many situations, normal-theory analyses can be modified slightly retaining their
validity across all elliptical distributions. The fact that many statistical procedures (includ-
ing principal component analysis) yield superior performance when data support elliptical
symmetry motivates the consideration of testing for elliptical symmetry, instead of testing for
other forms of multivariate symmetry.

Zhu and Neuhaus (2003) introduced conditional test procedures for testing elliptical sym-
metry of a multivariate distribution. The conditional tests are exactly valid if the center and
the shape matrix are known and are asymptotically valid if they are estimated, when fourth
moments exist. It is worth noting that the test proposed by Zhu andNeuhaus (2003) are based
on the sample mean and the sample covariance matrix, when the center and/or the shape
parameters are unknown. This entails that the test statistics are asymptotically valid only
for elliptical distributions such that E(‖X‖4) < ∞. In a robust framework, one frequently
assumes that the sample belongs to a neighborhood of a given central elliptical distribution P0.
The distributions P to be considered in the neighborhood include heavy-tailed distributions.
Furthermore, in order to ensure Fisher consistency of the proposed estimators, it is gener-
ally assumed that the resulting distribution P is also elliptical. So, it is of interest to check if
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the assumption of elliptical symmetry is valid without making moment assumptions. For this
reason, in this paper, we propose a testing procedure that can be helpful to decide if a given
sample has a common elliptical distribution without requiringmoment conditions when con-
sistent estimators of the unknown parameters are available.

The paper is organized as follows. In Sec. 2, we introduce our proposal, while asymp-
totic distribution results under the null and under contiguous alternatives are provided in
Sec. 3. A bootstrap method to compute effectively an approximation of the proposed test is
presented in Sec. 4. The results of a Monte Carlo study in dimensions p = 2 and 5 are sum-
marized in Sec. 5, while a procedure to compute the test statistic is described in Appendix A.
Proofs can be found in Appendix B and in Bianco et al. (2015), where we also analyze the
behavior of the proposed test statistic and the classical one under different distributions
and sample sizes, so as to check their ability to reject the null hypothesis against a set of
alternatives.

2. Test statistic

For the sake of completeness, we briefly recall the notion of elliptical symmetry.One candefine
symmetry in terms of structural properties of the distribution function, of the density func-
tion, or of the characteristic function. The distribution of a p-dimensional random vectorY is
called spherically symmetric when, for every p× pmatrixA ∈ O(p) (the orthogonal group),
the distribution of AY is the same as that of X. A random vector X ∈ R

p has an elliptically
symmetric or elliptically contoured distribution, with parameters μ ∈ R

p and a non singu-
lar matrix �, if Z = �−1/2(X − μ) is a spherically symmetric random vector. If this elliptical
distribution has finite second moments, then μ is the mean vector and � is up to a scalar
the covariance matrix. More generally, under no moment conditions, the parameters μ and
� are called the location and the scatter matrix parameters, respectively. The associated char-
acteristic function of an elliptical vector has the form φ(t) = eittμψ(tt�t), for t ∈ R

p, for
some scalar function ψ : R → R. Then, if the second moment exists Var(X) = −2ψ ′(0)�,
where for identifiability of �, it is usually required that ψ ′(0) = −1/2. We will write that
X ∼ Ep(μ,�, ψ). Ifψ(x) = e−x/2 in the expression ofφ(t), we get the characteristic function
of a normal distribution, so elliptical distributions are generalizations of normal distributions.
For an overview on these distributions, we refer to Fang and Anderson (1990) and Fang et al.
(1990).

Among the tests for spherical and elliptical distributions that have been introduced, we can
mention Beran (1979), Tyler (1982), Baringhaus (1991), Fang et al. (1993), Koltchinskii and Li
(1998), Koltchinskii and Sakhanenko (2000), Schott (2002), Zhu and Neuhaus (2003), Huffer
and Park (2007), and more recently, Batsidis and Zografos (2013) and Batsidis et al. (2014).

The goal of this section is to suggest a modification of the conditional test for ellipsoidal
symmetric multivariate distributions proposed in Zhu and Neuhaus (2003), which allows
its application to data coming from heavy-tailed elliptical distributions. This is particularly
appealing in a robust framework, since many resistant statistical procedures assume that the
underlying distribution is elliptical to get Fisher-consistent estimators.

Let X be a p-dimensional random vector with distribution P. Given independent and
identically distributed (i.i.d.) observations X1, . . . ,Xn such that Xi ∼ X, denote by Pn
the empirical measure based on the sample points. Moreover, let Pn f = Pn( f ) stands for
(1/n)

∑n
j=1 f (X j) for any function f : Rp → R.

From now on, denote Ep the class of all elliptical contoured distributions. The hypothesis
to be tested isH0 : P ∈ Ep, that is,H0 : X ∼ Ep(μ,�, ψ), with parameters μ and �. For each
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fixed b and A, define the functional

Tb,A(P) =
∫
Sp

∫ [
EP
(
sin
{
tatA−1/2 (X − b)

})]2
w(t )dtdv(a) (1)

where w : R → R is a weight function, Sp = {a ∈ R
p : ‖a‖ = 1}, v the uniform distribution

onSp, andEP indicates that the expectation is takenwith respect to the probabilitymeasure P.
Note that ifX ∼ P = Ep(μ,�, ψ), then Z = �−1/2(X − μ) is spherically distributed. Hence,
the imaginary part of its characteristic function vanishes, that is, EP[sin(tatZ)] = 0 for any
t ∈ R and a ∈ Sp, which implies that Tμ,�(P) = 0.

When μ and � are known, the empirical version of Tμ,�(P) will also be close to zero. This
suggests to reject the null hypothesisH0 for large values of the test statistic Tn(μ,�), where

Tn(b,A) =
∫
Sp

∫ {√
nPn sin

[
tatA−1/2 (X − b)

]}2
w(t )dtdv(a). (2)

The statistic Tn(μ,�) was considered by Zhu and Neuhaus (2003) when w : R → R has a
compact support I and is a weighted version of that studied by Ghosh and Ruymgaart (1992).

Usually the location and scatter matrix parameters are unknown. To overcome this prob-
lem, one may replace in Tn(μ,�), μ and � by consistent estimators. Zhu and Neuhaus
(2003) suggested to use the classical (cl) sample estimators, leading to the test statistic
Tn,cl = Tn(μ̂, �̂), where μ̂ = X̄ =∑n

i=1 Xi/n and �̂ = S =∑n
i=1(Xi − X̄)(Xi − X̄)t/n. As

mentioned in Anderson et estimator ofμ is X̄, while that of� is a constant multiple (depend-
ing on the family) of the sample covariance matrix, that is, the estimators have the same form
as in the normal case, which justifies the above choice. Anderson et al. (1986) studied the
general situation of elliptical random matrices X = (X1, . . . ,Xn) which includes the setting
of independent columns we are considering. In the particular case of independent random
vectors Xi, the class of elliptical distributions for which the sample mean and covariance
matrix (except for a constant) are still the maximum likelihood estimators includes the situa-
tionwhen the density ofX1 equals det(�)−1/2 g((x − μ)t�−1(x − μ)) for some g : R → R

+,
where yp/2g(y) has a finite positive maximum. A condition ensuring the existence of finite
positive maximum is the continuity of g and that E ‖X‖2 < ∞ (see Lemma 2 in Anderson
et al., 1986). On the other hand, if the underlying distribution is heavy tailed the values of
these estimators may be distorted, rendering meaningless the test results. A solution to this
problem is well known in robust statistics: μ and � have to be estimated in a robust manner,
to provide consistent estimators even if moments do not exist as in the case of a multivariate
Cauchy distribution.

The proposal in this paper consists in plugging into the conditional test statistic Tn(μ,�)
robust consistent estimators mn and Vn of the location μ and scatter matrix �, respectively,
to test H0 : P ∈ Ep. This leads to the following conditional robust based statistic:

Tn,m,V = Tn(mn,Vn) =
∫
Sp

∫ {√
nPn sin

[
tatV−1/2

n (X − mn)
]}2

w(t )dtdv(a),

where Pn, a, w, and v are defined as in (2). Denote V(P) andm(P) the functionals related to
Vn andmn, respectively, whenX ∼ P. Usually, underH0,m(P) = μ andV(P) is, up to amul-
tiplicative constant, equal to�. Then, the functional related toTn(mn,Vn) is justTm(P),V(P)(P)
defined in (1) which justifies the considered procedure. In Appendix A, we describe a numer-
ical procedure to compute this test statistic.

Remark 2.1. The results on characteristic functions given inUshakov (1999) give some insight
with respect to the choice of the weight function w. Indeed, as defined in Ushakov (1999), a
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characteristic function � is said to be analytic if there exists a function g : C → C which is
analytic in {|z| ≤ R} for some R > 0 and such that�(t ) = g(t ) for any t ∈ [−R,R]. Theorem
1.7.7 in Ushakov (1999) states that if a characteristic function ϕ coincides with an analytic
characteristic function� in some real neighborhood of the origin, then they coincide for all
real, that is, ϕ = �.

Given a random vectorX ∈ R
p, denote Za the random variable Za = at�−1/2(X − μ) and

ϕa its characteristic function. Assume that for any a ∈ Sp, ϕa is an analytic characteristic func-
tion. Theorem 1.7.7 in Ushakov (1999) entails that if, for any a ∈ Sp, and for some δ > 0 we
have that ϕa(t ) = Re(ϕa)(t ) for t ∈ (−δ, δ), then the random variable Za has a symmetric
distribution for all a. So, in the situation where the underlying distribution is such that all the
projections have analytic characteristic functions, which includes the multivariate normal as
well as the uniform distribution on the ball or in sphere, if the functional related to the test
statistic is zero for some weight function w, with support around 0, then it will be 0 for any
weight function. Thus, for probability measures such that for all a ∈ Sp, the distribution of
Za has an analytic characteristic function the choice of w is not crucial as far as its support
contains a neighborhood of 0.

3. Asymptotic behavior of the test statistic

In order to derive the limit behavior of the proposed test statistic, we will assume that w(t )
has bounded support contained in some finite interval I and we will introduce the empirical
process given by Wn = {Wn(t, a) = √

nPn sin[tatV−1/2
n (X − mn)] , (t, a) ∈ I × Sp}. The-

orem3.1 states the asymptotic distribution of the process {Wn(t, a)}under the null hypothesis,
while Theorem 3.2 concerns the behavior under local alternatives. Note that in our statement
we do not require neither finite moment conditions to the random vector X, nor a rate of
convergence of the shape matrix estimator. In this sense, our result provides an improvement
over the proposal given in Zhu and Neuhaus (2003), who required finite fourth moment. As
shown in Sec. 5, the lack ofmomentsmay distort the results of the classical test based onTn,cl,
while when using robust estimators the test is still reliable. On the other hand, when second
moments exist, if we takemn andVn as the sample mean and covariance matrix, respectively,
Theorem 3.1 provides the asymptotic distribution ofWn under slightly more general condi-
tions than those given in Theorem 2.1 of Zhu and Neuhaus (2003).

3.1. Behavior under the null hypothesis

Theorem 3.1. Let I be a bounded interval. Assume that X ∼ P = Ep(μ,�, ψ), i.e., that
H0 holds and that

∫ 1
0

√
logHudu < ∞, where Hδ is the smallest value H ≥ 1 such that

P(‖�−1/2(X − μ)‖ > H) ≤ δ2, that is Hδ = max(1, F−1
S (1 − δ2)) with FS the distribution

function of S = ‖�−1/2(X − μ)‖. Moreover, assume that P(X = μ) = 0 and that Vn and mn

are consistent estimators of � and μ, respectively, such that mn admits, for some function
αm : R → R, a Bahadur expansion as follows:

√
n(mn − μ) = 1√

n

n∑
i=1

(Xi − μ) αm
(‖�−1/2 (Xi − μ) ‖)+ oP(1), (3)
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whereEP‖�−1/2(X − μ)‖2 α2
m(‖�−1/2(X − μ)‖) < ∞. Then, the processWn = {Wn(t, a) =√

nPn sin[tatV−1/2
n (X − mn)], (t, a) ∈ I × Sp} converges in distribution to a centered con-

tinuous Gaussian process W = {W(t, a), (t, a) ∈ I × Sp} with covariance kernel given
by EP[k(t, a,X)k(s, b,X)], for (t, a) ∈ I × Sp and (s, b) ∈ I × Sp, where k(t, a, x) =
sin[tat�−1/2(x − μ)] − ψ(t2) t at�−1/2(x − μ) αm(‖�−1/2(x − μ)‖).
Remark 3.1. Note that the classical location estimator, that is, the sample mean corresponds
to αm(t ) = 1 and this is the situation considered in Theorem 2.1 of Zhu and Neuhaus (2003)
which requires the existence of fourthmoments. On the other hand, as shown inHampel et al.
(1986), ifmn is an estimator related to a functionalm(P) that is affine equivariant, there exists
a real function αm : R+ → R such that its influence function equals IF (x0,m, P0) = (x0 −
μ)αm(‖�−1/2(x0 − μ)‖). In most cases, the influence function is bounded so the assumption
EP‖�−1/2(X − μ)‖2 α2

m(‖�−1/2(X − μ)‖) < ∞ is satisfied and no moment conditions are
required. Besides, as it is well known, under mild conditions, the influence function allows to
obtain a Bahadur expansion for the location estimator (see Fernholz, 1983). In particular, for
the S-estimator (see Lopuhaä, 1989), we have that αm(t ) = β−1us(t ), where us(t ) = ψs(t )/t ,
ψs(t ) = ρ ′

s(t ). Let G0 be the spherical distribution related to P0, that is, G0 is the distribution
of �−1/2(x0 − μ). Then, the constant β is given by

β = EG0

[(
1 − 1

p

)
us(‖Z‖)+ 1

p
ψ ′

s (‖Z‖)
]
. (4)

Usually, the influence function is computed at the central Gaussian distribution, so
that G0 = N(0, I). A common choice for the ρ-function defining the S-estimator
is the Tukey function defined as ρs(y) = (c2/6)min{1 − [1 − (y/c)2]3, 1}. Hence,
ψs(y) = y[1 − (y2/c2)]2I[−c,c](y), ψ ′

s (y) = [1 − 6(y2/c2)+ 5(y4/c4)]I[−c,c](y) and us(y) =
[1 − (y2/c2)]2I[−c,c](y) (see Lopuhaä, 1989).

Remark 3.2. Let us show that the assumption
∫ 1
0

√
logHu du < ∞, where P(‖�−1/2(X −

μ)‖ > Hδ ) ≤ δ2 is fulfilled for some distributions where fourth moments may not exist. For
the sake of simplicity, we will assume μ = 0 and � = Ip, since otherwise, we may consider
Z = �−1/2(X − μ).

It is clear that if EP‖Z‖2 < ∞, then Hδ ≤ (EP‖Z‖2)1/2/δ and ∫ 1
0

√
logHudu < ∞. More

generally, ifEP‖Z‖ν < ∞, for some ν > 0, thenHδ ≤ (EP‖Z‖ν )1/ν/δ1/ν , so ∫ 1
0

√
logHu du <

∞.
As an example of elliptical distributions satisfying the condition

∫ 1
0

√
logHu du < ∞, let

us consider the multivariate t-distribution with k degrees of freedom, that is, Z ∼ Tp,k(0, I).
As is well knownZ has no finite fourthmoment when k ≤ 4. Besides,Z has the same distribu-
tion as y1/2W, where vk = ky−1 ∼ χ 2

k andW ∼ Np(0, I), where χ 2
k stands for the chi-square

distribution with k degrees of freedom. Then, if the two expectations on the right-hand side
of (5) exist, by the independence betweenW and y we have that

E‖y1/2W‖ν = kmE
(‖W‖ν

vm
k

)
= km E‖W‖ν E (v−m

k

)
, (5)

wherem = ν/2.Note thatE‖W‖ν < ∞ for any ν > 0.On the other hand, using that vk ∼ χ 2
k ,

we have that, for any 0 < ν < k, E(v−ν/2
k ) < ∞, which entails that for the multivariate t-

distribution
∫ 1
0

√
logHu du < ∞. This result shows that our assumption is a very mild one

since it includes for instance, the multivariate Cauchy distribution.
The followingCorollary gives the distribution of the test statistic under the null hypothesis.
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Corollary 3.1. Under the assumptions of Theorem 3.1 ifw(t ) is a weight function with bounded
support I , then Tn(mn,Vn)

D−→ ∫
Sp

∫
I W2(t, a)w(t ) dt dv(a), where the process W(t, a) is

defined in Theorem 3.1.

3.2. Behavior under the alternative

Regarding the consistency of the test, it is well known that if X ∼ Ep(μ,�, ψ), then for
any a ∈ Sp, Za = at�−1/2(X − μ) has a symmetric distribution, but the converse is not
true. A typical example being a random variable Y with distribution uniform on the set
{x : −1 ≤ x j ≤ 1 for all j}which satisfies that fY(y) = fY(−y), ensuring that all projections
atY are symmetric. In this situation, for observations having a symmetric distribution but
not a spherical one, the test-type statistics considered in Zhu and Neuhaus (2003), Ghosh
and Ruymgaart (1992), or in this paper will not reject the null hypothesis. This is a feature
of any projection-pursuit procedure based on the property that any projection of a spherical
distributed random vector is symmetric.

On the other hand, as mentioned in Zhu and Neuhaus (2003), if EP sin(tat�−1/2(X −
μ)) �= 0, for some t ∈ I and a ∈ Sp, thenTμ,�(P) > 0. Therefore, using thatTn(μ,�)/n

p−→
Tμ,�(P) together with the consistency of mn and Vn, we obtain that the test statistic
Tn(mn,Vn) will converge to ∞ and the test is consistent against global alternatives.

To derive the distribution of the test statistic under a set of alternatives, denote as sin( j)(t )
the jth derivative of the sinus function at t . Recall thatV(P) andm(P) stand for the function-
als related toVn andmn, respectively, when X ∼ P. We will assume thatm(P) is affine equiv-
ariant. To strengthen the dependence on the sample, wewill denote asPn,X the empirical distri-
bution of the sampleX1, . . . ,Xn andVn,X andmn,X the estimators based on that sample, that
is,Vn,X = V(Pn,X) andmn,X = m(Pn,X).Moreover, assume that the i.i.d. observationXi = Xin

are such that Xi = Xin = Zi + Yi n−α for some α > 0, where Zi are i.i.d. such that Zi ∼ P0 =
Ep(μ,�, ψ). Due to the equivariance of the location estimator and without loss of generality,
wemay assume thatE(Y) = 0. Effectively, if we define X̃i = Xi − E(Y)/nα , using thatmn,X̃ =
mn,X − E(Y)/nα , we have that Pn sin[tatV−1/2

n (X̃ − mn,X̃)] = Pn sin[tatV−1/2
n (X − mn,X)],

so to obtain the asymptotic behavior of the test statistic under these alternatives we may
assume that E(Y) = 0.

Theorem 3.2. Let w(t ) be a weight function with support I and Z ∼ P0 = Ep(μ,�, ψ).
Assume that the following assumptions hold

(a) Zi are i.i.d. such that Zi ∼ Z and define Xi = Xin = Zi + Yi n−α , where α > 0 and
E(Y) = 0.

(b) P(Z = μ) = P(X = μ) = 0.
(c)
∫ 1
0

√
logHudu < ∞, where Hδ is the smallest value H ≥ 1 such that P(‖�−1/2(Z −

μ)‖ > H) ≤ δ2, that is, Hδ = max(1, F−1
S (1 − δ2)), where FS is the distribution func-

tion of S = ‖�−1/2(Z − μ)‖.
(d) Vn,X andmn,X are such that Vn,X

p−→ � and (mn,X − μ)
p−→ 0.

(e) The functionalm(P) is such that the Bahadur expansion (3) holds at P0, that is, for some
function αm : R → R, mn,Z satisfies (3) where EP0‖�−1/2(Z − μ)‖2 α2

m(‖�−1/2(Z −
μ)‖) < ∞. Furthermore,

√
n(mn,X − μ) = √

n(mn,Z − μ)+ oP(1). (6)
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(f) there is a positive integer m such that E‖Y‖2m < ∞ and for some δm > 0

sup
(t,a)∈Iδm×Sp

|Bm(t, a)| = sup
(t,a)∈Iδm×Sp

∣∣∣E {(tat�−1/2Y
)m sin(m)(tat�−1/2(Z − μ))

}∣∣∣ �= 0

where Iδ stands for a δ−neighborhood of I = [−ν, ν].
Let � be the smallest positive m satisfying (f). If Y and Z are not independent assume in addition
that for any 1 ≤ s < �,

∫ 1
0

√
logHuqdu < ∞, where q = �/(�− s). Then, when α = 1/(2 �),

Tn(mn,Vn)
D−→
∫
Sp

∫
I

(
W(t, a)+ 1

�!
B�(t, a)

)2

w(t ) dt dv(a),

where the processW(t, a) is defined in Theorem 3.1.

4. Bootstrapmethod

As mentioned in Zhu and Neuhaus (2003), the asymptotic behavior of the test statistic does
not allow to compute easily p-values, so a bootstrap method is needed. Zhu and Neuhaus
(2003) describe a bootstrap procedure when the center μ and the shape parameter � are
known and when μ is estimated using the mean of the observations. When the center and
the shape matrix are unknown, a slight modification to the method considered in Zhu and
Neuhaus (2003) is needed to adapt to the resistant location estimators, since the estimated
shape parameter does not influence the distribution of the test statistic.

One possibility is to adapt the bootstrap statistic defined in Zhu and Nehaus (2003) to the
present setting. For that purpose, assume, as in Sec. 3, that the affine equivariant location
estimator admits a Bahadur expansion given by (3). Let d̂ = atV−1/2

n . Using that

Pn sin
[
td̂t (X − mn)

] = cos
[
td̂t (μ − mn)

]
Pn sin

[
td̂t (X − μ)

]
− sin

[
td̂t (mn − μ)

]
Pn cos

[
td̂t (X − μ)

]
,

the first-order von Mises expansion (3) and the fact thatmn
p−→ μ, we have that

√
nPn sin

[
td̂t (X − mn)

] = √
nPn sin

(
tatz

)− √
n sin

{
tatPn [zαm (‖z‖)]

}
Pn
[
cos
(
tatz

)]
+oP(1),

where z = �−1/2(X − μ) ∼ u‖�−1/2(X − μ)‖ and u ∼ U (Sp).
However, the implementation of this bootstrapping method when using a location and

scatter matrix robust estimators implies the computation of αm(t ), which equals 1 for the
sample mean, but may be more complex when using robust estimators. For instance, when
using S-estimators the function αm(t ) involves the calculation of the constant β defined in
(4). In robustness, β is usually computed under the standard normal distribution. However,
in our situation, the constant β must be computed under the spherical distribution related
to the underlying elliptical distribution of the sample. This is a drawback of this bootstrap
method since the correct distribution is unknown. To avoid this vicious circle, we consider a
bootstrap statistic that can be computed as follows:

Step 1 Generate i.i.d. random vector ui ∼ U (Sp) and defineUn = (u1, . . . , un). Let Xi =
ui‖V−1/2

n (Xi − mn)‖ be the bootstrap observations and Pn the empirical distribu-
tion of Xi .
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Step 2 DefineW 
n (t, a) = √

nPn sin[tatV∗−1/2(X − m∗)], wherem∗ andV∗ are the loca-
tion and scatter matrix robust estimators of the bootstrapped sampleXi and calcu-
late the statistic T n,m,V (Un) = ∫Sp

∫
W 

n (t, a)2 w(t )dtdv(a).

Step 3 Repeat Steps 1 and 2 Nboot times to get Nboot values of T n,m,V (U
( j)
n ), 1 ≤ j ≤

Nboot .
Step 4 Estimate the p-value as p = k/(Nboot + 1), where k is the number ofT n,m,V (U

( j)
n )

that are greater or equal than Tn,m,V.
Through this algorithm, we obtain a sample of bootstrap replicates T∗

j , 1 ≤ j ≤ Nboot
whose distribution approximates the distribution of Tn,m,V under the null hypothesis, as
desired.

The proof of the asymptotic distribution of the bootstrap procedure is an interesting topic
which we leave for future research.

5. Monte Carlo study

In this section, we report the results of a simulation study conducted to analyze the perfor-
mance of the test statistic obtained using robust location and scatter estimators with respect to
that based on the samplemean and covariancematrix. The weight function considered in this
Monte Carlo study equalsw(t ) = I[−b,b](t ), where b = 2. Based on the results reported in Sec.
5 of Bianco et al. (2015) regarding the finite-sample distribution of the test statistics, we car-
ried out NR = 500 replications for sample sizes equal to n = 200. To perform the bootstrap
method described in Sec. 4, we usedNboot = 1000 bootstrap samples. The nominal level was
set equal to α = 0.05. Besides, we also compare our test procedure with other known meth-
ods for testing elliptical symmetry, when p = 5. In what follows, πH0 (Tn) and πH1 (Tn) stand
for the observed probabilities of rejection of the test based on the statistic Tn under the null
hypothesis andunder the alternativeH1, respectively. As inBatsidis et al. (2014), we also exam-
ine if the empirical size is significantly different from the nominal level α = 0.05. To be more
precise, letπ be such thatπH0 (Tn)

p−→ π . Then, using the central limit theorem, the hypothe-
sis H0,π : π = α is rejected at level γ versus H1,π : π �= α if πH0 (Tn) /∈ [a1(α), a2(α)], where
a j(α) = α + (−1) jzγ /2 {α(1 − α)/NR}1/2, j = 1, 2. If H0,π : π = α = 0.05 is not rejected,
the testing procedure based on Tn is considered accurate. Note that if πH0 (Tn) < a1(α) the
testing procedure is conservative, while if πH0 (Tn) > a2(α) the test is liberal. In all tables
reporting the observed frequencies of rejection, we indicate with  those cases in which the
observed empirical frequencies of rejection are different from the nominal level with a signif-
icance level γ = 0.01.

From now on, let Tp,k(μ,�) denote the multivariate p-dimensional t-distribution with k
degrees of freedom, which includes the multivariate Cauchy distribution when k = 1, and
denote U (Sp) and U (Bp) the uniform distributions over the unit circle and the unit ball,
respectively. Denote also as χ 2

ν the chi-square distribution with ν degrees of freedom.

5.1. Simulation study in dimension p = 2

We generate independent observations Z1, . . . ,Zn, Zi ∼ P according to different elliptical
models under the null hypothesis. Consider the null hypotheses H (1)

0 : P = Np(0, I), H (2)
0 :

P = 0.9Np(0, I)+ 0.1Tp,1(0, I), H (3)
0 : P = 0.9Np(0, I)+ 0.1Tp,3(0, I), H (4)

0 : P = Tp,3(0, I),
H (5)

0 : P = U (Sp), H (6)
0 : P = U (Bp), and H (7)

0 : P = Tp,1(0, I).
For each null hypothesisH ( j)

0 , we consider different alternative hypothesis H ( j)
1,�, related to

the original distribution P in the null hypothesis. UnderH ( j)
1,�, the observations are generated
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Table . Frequency of rejection for the bootstrap test Tn,cl for n = 200 and dimension p = 2.

Tn,cl

H( j)1,�

� 0 0.5 1 1.5 H
(1)

1 H
(2)

1

H(1)0 . . . . . .

H(2)0 . . . . . .

H(3)0 . . . . . .

H(4)0 . . . . . .

H(5)0 . . . . . .

H(6)0 . . . . . .

H(7)0 . . . . . .

∗indicates that the frequency of rejection is significantly different from the nominal level.

asXi = Zi +�Yi withZi ∼ P independent ofYi andY = (Y1,Y2)
t, whereYk ∼ χ 2

1 indepen-
dent among each other and� = 0.5, 1, and 1.5. We also studied the behavior of the statistics
under two fixed alternatives H(1)

1 and H(2)
1 . Under H(1)

1 , the data have the distribution of
a random vector with two independent components, E (1) and N(0, 1), where E (λ) denotes
the exponential distribution of parameter λ, that is, withmean value 1/λ, while the alternative
H(2)

1 corresponds to the distribution of a random vector with two independent components,
E (1) and E (1/2), that is, with expectations 1 and 2, respectively. The first three alternatives
were studied in Zhu and Neuhaus (2003), while Koltchinskii and Li (1998) studied the capa-
bility of their proposal to detect H(1)

1 and H(2)
1 .

For each sample, we compute the p-values of the test statistics obtained using themean and
sample covariance matrix, denoted by Tn,cl, the Donoho–Stahel estimators of location and
scatter, denoted by Tn,ds and the S-estimators of location and scatter, denoted by Tn,s. Both
robust estimators are calibrated to attain 50% breakdown point. The corresponding frequen-
cies of rejection are reported in Tables 1 and 2, where� = 0 corresponds to the observations
generated according to the null hypothesis.

Taking as reference the first row of Table 1, as expected, we observe some loss of power of
the classical test based on Tn,cl under the alternatives of the distributions considered inH (2)

0
and H (4)

0 , where the data follow heavier-tailed distributions. On the other hand, the opposite

Table . Frequency of rejection for the bootstrap test Tn,ds and Tn,s for n = 200 and dimension p = 2.

Tn,ds Tn,s

H( j)1,� H( j)1,�

� 0 0.5 1 1.5 H
(1)

1 H
(2)

1 0 0.5 1 . H
(1)

1 H
(2)

1

H(1)0 . . . . . . . . . . . .

H(2)0 . . . . . . . . . . . .

H(3)0 . . . . . . . . . . . .

H(4)0 . . . . . . . . . . . .

H(5)0 . . . . . . . . . . . .

H(6)0 . . . . . . . . . . . .

H(7)0 . . . . . . . . . . . .

∗indicates that the frequency of rejection is significantly different from the nominal level.
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is observed when considering U (Sp) and U (Bp). The extreme situation is found under H (7)
0

and its alternatives, since the classical test completely loses its power. Indeed, in this case this
test is unable to distinguish between data coming from the elliptical distribution T2,1(0, I)
from data generated under its alternativesH (7)

1,� for� = 0.5, 1, and 1.5. Besides, Table 2 shows
that for both families of robust estimators of location and scatter matrix similar results are
obtained, either in level or power. Indeed, with both robust estimators, the proposed tests
lead to comparable results to those obtained with the classical test forH ( j)

0 for j = 1, 3, 5, and
6, evenwhen for j = 1 and 3 there is some loss of power underH ( j)

1,0.5. However, the robust tests
outperform the behavior observed with Tn,cl under the alternatives ofH (2)

0 andH (4)
0 , getting

larger frequencies of rejection. Finally, from Table 2 we conclude that using Tn,ds and Tn,s the
decision rule has a good performance and is informative even under H (7)

0 and its alternative
hypotheses.

We have also considered two other alternatives also studied in Batsidis et al. (2014) which
gave power 1 asH(1)

1 andH(2)
1 , for that reason the results are omitted in the tables. One of the

alternatives, denoted as H(3)
1 , is obtained generating random vectors with two independent

components with a common beta distribution Be(5, 1). The other one, H(4)
1 , corresponds to

the distribution of a random vector with distribution 0.5Np(0, I)+ 0.5Np(μ,�) with μ =
(1, 2) and � = ( 5 −4

−4 5 ).
As noted before, the exact sizes of the test statistics, that is, πH0 (Tn,cl), πH0 (Tn,ds), and

πH0 (Tn,s) fluctuate around the fixed level α = 0.05. To help in the visual comparison of the
power performance of the three test statistics, as in Batsidis et al. (2014), Table 3 reports
the size-corrected relative exact powers ρH1 (Tn,ds,Tn,cl) and ρH1 (Tn,s,Tn,cl). For two test
statistics, T (1)

n and T (2)
n , ρH1 (T (1)

n ,T (2)
n ) was defined in Morales et al. (2004) as

ρH1 (T
(1)
n ,T (2)

n ) =
(
DH1 (T (1)

n )

DH1 (T
(2)
n )

− 1

)
× 100, (7)

with DH1 (Tn) = πH1 (Tn)− πH0 (Tn). This measure allows to clarify the fluctuations in the
powers which are more difficult to observe in Tables 1 and 2.

Table 3 shows that in most cases, larger values of ρH1 (Tn,Tn,cl) are obtained with the
Donoho–Stahel estimators over the S-estimators leading to the conclusion that the test based

Table . Size-corrected relative exact power for the robust bootstrap tests Tn,ds and Tn,s with respect to the
classical one Tn,cl for n = 200 and dimension p = 2.

ρH1
(Tn,ds, Tn,cl) ρH1

(Tn,s, Tn,cl)

H( j)1,� H( j)1,�

� 0.5 1 1.5 H
(1)

1 H
(2)

1 0.5 1 1.5 H
(1)

1 H
(2)

1

H(1)0 − . . . . . − . − . . . .

H(2)0 . . . . . . . . . .

H(3)0 − . − . . . . − . − . . − . − .

H(4)0 . . − . − . − . . . − . − . − .

H(5)0 − . − . − . − . − . − . − . − . − . − .

H(6)0 . . . . . . . . . .

H(7)0 . . . . . . . . . .
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Table . Frequency of rejection for the bootstrap test Tn,cl and Tn,ds for n = 200 and dimension p = 5,
α = 0.05.

Tn,cl

H( j)1,�

� 0 . 0.5 . 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 . . . . . . . . . .

H(2)0 . . . . . . . . . .

H(3)0 . . . . . . . . . .
H(4)0 . . . . . . . . . .

Tn,ds

H( j)1,�

� 0 . 0.5 . 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 . . . . . . . . . .

H(2)0 . . . . . . . . . .

H(3)0 . . . . . . . . . .

H(4)0 . . . . . . . . . .

∗indicates that the frequency of rejection is significantly different from the nominal level.

on the Donoho–Stahel estimators is a preferable choice. As noted before, the robust tests out-
perform the classical one specially for alternatives close to the null hypothesis under H (2)

0 ,
H (4)

0 , H (6)
0 , and H (7)

0 . This performance was expected for the heavy-tailed distributions H (2)
0

and H (7)
0 , but it is also present under moderate tails as those of the Tp,3(0, I) since fourth

moments do not exist. On the other hand, as expected, the classical test has a superior behavior
under a Gaussian distribution, when� = 0.5. The better performance of Tn,cl for� = 0.5,
is also observed underH (3)

0 and the uniform distribution over the unit circle. With respect to
the detection of the alternatives H(1)

1 and H(2)
1 , all procedures are almost equivalent. Based

on the simulated results obtained for the considered distributions, we recommend the test
statistic based on the Donoho–Stahel estimators. For this reason, in dimension p = 5 we only
compare the test statistics Tn,ds and Tn,cl.

5.2. Simulation study in dimension p = 5

In order to compare the performance of the two test statistics Tn,cl and Tn,ds, under the null
hypothesis, we generate n independent observations Z1, . . . ,Zn, Zi ∼ P, Zi ∈ R

5, following
different elliptical distributions as follows H (1)

0 : P = Np(0, I), H (2)
0 : P is the Pearson type

II distribution generated as
√
VU, where U ∼ U (Sp) and V ∼ Be(p/2,m), with m = 3/2,

H (3)
0 : P = Tp,5(0, I) and H (4)

0 : P = Tp,1(0, I). As in Sec. 5.1, we consider observations Xi,
i = 1, . . . , n generated under the alternative hypotheses H ( j)

1,�, with � = 0.25, 0.5, 0.75, 1,
and 1.5. Besides, we studied the performance under four fixed alternatives H( j)

1 for j = 1
to 4 defined as follows. Under H(1)

1 , the data have the distribution of a random vector with p
independent components, the first p− 1 having distribution E (1) and the last one N(0, 1).
This distribution corresponds toH(1)

1 in dimension p = 2. The second fixed alternativeH(2)
1

corresponds to the distribution of a random vectorXwith p independent components each of
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Table . Size-corrected relative exact power of the robust bootstrap test Tn,ds with respect to the classical
Tn,cl one, when n = 200, p = 5, and α = 0.05.

ρH1
(Tn,ds, Tn,cl)

H( j)1,�

� . 0.5 . 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 − . − . . . . . . . .

H(2)0 − . . . . . . . . .

H(3)0 − . . . . . . . . .

H(4)0 − . . . . . . . . .

them with distribution E (1). Under H(3)
1 , Xi ∼ X, where X is a random vector with p inde-

pendent components with common distribution Be(5, 1). Finally, H(4)
1 corresponds to the

situation in which X has p independent components, the first p− 1 with common distribu-
tion E (1) and the last one Tp,1.

The frequencies of rejection are reported inTable 4, where� = 0 corresponds to the obser-
vations generated according to the null hypothesis. Besides, Table 5 reports the size-corrected
relative exact powers ρH1 (Tn,ds,Tn,cl) as defined in (7).

From Table 4, one observes that, except for the Pearson distribution, the observed level of
the classical procedure, πH0 (Tn,cl), is slightly higher than the nominal one. However, Tn,cl
leads to a liberal test only for the Tp,5(0, I) distribution. On the contrary,πH0 (Tn,ds) is smaller
than the nominal level, except for the Cauchy distribution in which case, the exact size is close
to 0.05. However, in none of the considered situations the observed frequencies of rejection
are significantly different from the nominal level α = 0.05. For the Cauchy distribution, as
expected, the classical test is non informative when considering the alternatives H (4)

1,�. On the
other hand, both procedures detect the alternatives H( j)

1 for j = 1, . . . , 4. Table 5 shows the
advantage of the procedure based on Tn,ds over that based on Tn,cl, except for H (1)

1,0.05. The
inadequate behavior ofTn,cl for theCauchy distribution shownby a power almost equal to the
level for the alternatives H (4)

1,� is more clear when comparing the values of the size-corrected
relative exact powers ρH1 (Tn,ds,Tn,cl).

5.3. Comparisons with other tests for elliptical symmetry

Taking into account the better performance of the procedure based onTn,ds over that based on
Tn,cl andTn,s, in this section, we compare the conditional test based onTn,ds with some other
methods found in the literature. The simulation conditions are similar to those described in
Secs. 5.1 and 5.2.

Asmentioned in Sec. 2, there is a wide literature onmethods to test for elliptical symmetry.
According to the simulation power studies performed in Huffer and Park (2007), none of
the tests introduced in Manzotti et al. (2002), Schott (2002), or Huffer and Park (2007) are
uniformly superior for detecting departures from the null hypothesis. On the other hand,
Batsidis et al. (2014) also showed that their proposal is comparable in power to that defined
in Schott (2002).

The purpose of the numerical study in this section is to show that the proposed test statis-
tic is a useful option to the previously defined methods, in particular when moments do not
exist. Since there is no superior test statistic, we decided to choose for the comparison a test
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Table . Frequency of rejection for the test defined in Batsidis et al. () forn = 200 and dimension p = 2
with λ = 1.

Tn,bat

H( j)1,�

� 0 0.5 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 . . . . . . . .

H(2)0 . . . . . . . .

H(3)0 . . . . . . . .

H(4)0 . . . . . . . .

H(5)0 . . . . . . . .

H(6)0 . . . . . . . .

H(7)0 . . . . . . . .

 indicates that the frequency of rejection is significantly different from the nominal level.

statistic which can be easily computed and has a tractable null distribution. For this reason,
we excluded the test defined in Koltchinskii and Sakhanenko (2000) as well as the statistic
defined in Beran (1979). With respect to the test proposed in Batsidis and Zografos (2013),
their method helps to decide departures from a specific elliptical model, while our procedure
is designed to detect departures from the whole family of elliptical distributions. For this rea-
son, it is not included in the comparison.

On the contrary, the test defined by Schott (2002) is easy to compute since it is based on a
fourth moment statistic denoted as Tn,sch. Besides, this statistic is asymptotically χ 2

ν , where
ν depends on the dimension of the data, but not on the underlying null elliptical distribu-
tion. Based on the simulation studies reported in Schott (2002), Huffer and Park (2007), and
Batsidis et al. (2014), the test based on Tn,sch has observed level close to the nominal one
and good empirical power. Besides, as our procedure, the test statistic is affine invariant. It is
worth noting that the asymptotic behavior of Tn,sch is derived for distributions having finite
moments up to order eight so that it will be sensitive to departures from this assumption, even
if the distribution is elliptical.

We also include in the comparison the test statistic, Tn,bat, recently introduced in Batsidis
et al. (2014) that is based on a power divergence family of statistics depending on a parameter
λ. According to the simulation results in Batsidis et al. (2014), we select λ = 1 (similar results
were obtained for λ = 2/3). As noted by these authors, Tn,bat has approximately a chi-square
distribution with degrees of freedom depending on the sample size and may be computed in
a simple way. As mentioned in Batsidis et al. (2014), this test statistic has a very good power
for a variety of alternatives, even when it is not affine invariant.

The observed frequency of rejection and the size-corrected relative exact powers forTn,bat
are given in Tables 6 and 7 for p = 2 and in Tables 8 and 9, when p = 5. Analogous quantities
for Tn,sch are reported in Tables 10 and 11 for p = 2 and in Tables 12 and 13 for p = 5.

As expected, when the underlying distribution has no moments, the test based on Tn,sch
becomes non informative, since it relies on the assumption of existence of eighth-order
moments. The same happens when the data are generated according to the multivariate Stu-
dent distribution T2,3(0, I) and T5,5(0, I) since these distributions do not satisfy the assump-
tions in Schott (2002). When p = 2, in the four other situations, even if the test reaches in
most cases the desired level, it has difficulties to detect the selected alternatives, specially the
alternatives H(3)

1 and H(4)
1 . In dimension p = 5, for the Pearson distribution, the level and
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power performance of Tn,sch is analogous to that of our procedure, while for the normal dis-
tribution, the test based on Tn,ds has a better detection power except for � = 0.25. For the
chosen fixed alternatives, H( j)

1 , j = 3, 4 our procedure has much better power.
With respect to the proposal given inBatsidis et al. (2014), the test based onTn,bat becomes

non informative when contaminating with a Cauchy distribution or when the data follow a
Cauchy distribution, which can be explained by the fact that the test is based on the sample
mean and the sample covariance matrix. On the other hand, for the number of replications
considered the level 0.05 is not attained for the normal distribution and for data uniformly

Table . Size-corrected relative exact power for test based on the statistic Tn,bat defined in Batsidis et al.
() with respect to the robust bootstrap test Tn,ds for n = 200 and dimension p = 2with λ = 1.

ρH1
(Tn,bat, Tn,ds)

H( j)1,�

� 0.5 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 − . − . . − . . . .
H(2)0 − . − . − . − . − . − . − .
H(3)0 − . − . − . − . − . − . − .
H(4)0 − . − . − . − . − . − . − .
H(5)0 − . − . . − . . . .

H(6)0 − . . . − . . − . − .

H(7)0 − . − . − . − . − . − . − .

Table . Frequency of rejection for the test defined in Batsidis et al. () forn = 200 and dimension p = 5
with λ = 1.

Tn,bat

H( j)1,�

� 0 . 0.5 . 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 . . . . . . . . . .

H(2)0 . . . . . . . . . .

H(3)0 . . . . . . . . . .

H(4)0 . . . . . . . . . .

 indicates that the frequency of rejection is significantly different from the nominal level.

Table . Size-corrected relative exact power for test based on the statistic Tn,bat defined in Batsidis et al.
() with respect to the robust bootstrap test Tn,ds for n = 200 and dimension p = 5with λ = 1.

ρH1
(Tn,bat, Tn,ds)

H( j)1,�

� . 0.5 . 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 − . − . − . − . . − . . − . − .

H(2)0 − . − . . . . − . . − . .

H(3)0 − . − . − . − . − . − . . − . − .

H(4)0 . − . − . − . − . − . − . − . − .
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Table . Frequency of rejection for the test defined in Schott () for n = 200 and dimension p = 2.

Tn,sch

H( j)1,�

� 0 0.5 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 . . . . . . . .

H(2)0 . . . . . . . .

H(3)0 . . . . . . . .

H(4)0 . . . . . . . .

H(5)0 . . . . . . . .

H(6)0 . . . . . . . .

H(7)0 . . . . . . . .

 indicates that the frequency of rejection is significantly different from the nominal level.

Table . Size-corrected relative exact power for test based on the statistic Tn,sch defined in Schott ()
with respect to the robust bootstrap test Tn,ds for n = 200 and dimension p = 2.

ρH1
(Tn,sch, Tn,ds)

H( j)1,�

� 0.5 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 − . − . − . − . − . − . − .

H(2)0 − . − . − . − . − . − . − .

H(3)0 − . − . − . − . − . − . − .

H(4)0 − . − . − . − . − . − . − .

H(5)0 − . − . − . − . − . − . − .

H(6)0 − . − . − . − . − . − . − .

H(7)0 − . − . − . − . − . − . − .

Table . Frequency of rejection for the test defined in Schott () for n = 200 and dimension p = 5.

Tn,sch

H( j)1,�

� 0 . 0.5 . 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 . . . . . . . . . .

H(2)0 . . . . . . . . . .

H(3)0 . . . . . . . . . .

H(4)0 . . . . . . . . . .

 indicates that the frequency of rejection is significantly different from the nominal level.

distributed over the unit circle, in dimension p = 2. This fact was also observed in Table 10 of
Batsidis et al. (2014) for the normal distribution with 10,000 replications. Table 7 shows that,
as for the Schott’s test, ourmethod outperforms the procedure based onTn,bat in themajority
of the cases considered. Similar conclusions for the considered distributions and alternatives
are obtained in dimension p = 5, as shown in Table 8.
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Table . Size-corrected relative exact power for test based on the statistic Tn,sch defined in Schott ()
with respect to the robust bootstrap test Tn,ds for n = 200 and dimension p = 5.

ρH1
(Tn,sch, Tn,ds)

H( j)1,�

� . 0.5 . 1 1.5 H
(1)

1 H
(2)

1 H
(3)

1 H
(4)

1

H(1)0 . − . − . − . − . − . − . − . − .

H(2)0 − . − . − . − . − . − . − . − . − .

H(3)0 − . − . − . − . − . − . − . − . − .

H(4)0 − . − . − . − . − . − . − . − . − .

These facts are highlighted inTables 11 and 13 that report the size-corrected relative powers
ρH1 (Tn,sch,Tn,ds). The negative values reported in all cells confirm the better performance
of Tn,ds. Note that even if, for the Cauchy distribution, the test proposed in Batsidis et al.
(2014) has a positive valuewhen� = 0.25 and p = 5, the test is non informative having power
almost constant for H (4)

1,�. Hence, in this case, the size-corrected size does not provide a good
measure to compare the test statistics.

It is worth noticing that our conclusions regarding the better performance of the test based
on the Donoho–Stahel estimators are valid only for the considered distributions and alter-
natives. A more extensive simulation study would be necessary to conclude that, in general,
Tn,ds should be preferred. This interesting comparison may be the objective of future work.

Acknowledgments

The authors wish to thank two anonymous referees for valuable comments which led to an improved
version of the original paper.

Funding

This researchwas partially supported byGrantsW276 and 20020130100279BA from theUniversidad of
Buenos Aires, pip 112-2011-01-00339 from conicet and pict 2011-0397 and 2014-0351 from anpcyt,
Argentina, and also received financial support from the Portuguese National Funds through FCT (Fun-
dação para a Ciência e a Tecnologia) under the scope of project PEst-OE/MAT/UI0822/2011.

References

Anderson, T.W., Fang,K.T.,Hsu,H. (1986).Maximum-likelihood estimates and likelihood-ratio criteria
for multivariate elliptically contoured distributions. Can. J. Stat. 14:55–59.

Baringhaus, L. (1991). Testing for spherical symmetry of a multivariate distribution. Ann. Stat. 19:899–
917.

Batsidis, A., Zografos, K. (2013). A necessary test of fit of specific elliptical distributions based on an
estimator of Song’s measure. J. Multivariate Anal. 113:91–105.

Batsidis, A., Martin, N., Pardo, L., Zografos, K. (2014). A necessary power divergence-type family of
tests for testing elliptical symmetry. J. Stat. Comput. Sim. 84:57–83.

Beran, R. (1979). Testing for elliptical symmetry of a multivariate density. Ann. Stat. 7:150–162.
Bianco, A.M., Boente, G., Rodrigues, I.M. (2015). Conditional tests for elliptical symmetry using robust

estimators. http://arxiv.org/abs/1502.05600
Ghosh, S., Ruymgaart, F.H. (1992). Applications of empirical characteristic functions in some multi-

variate problem. Can. J. Stat. 20:429–440.

http://arxiv.org/abs/1502.05600


1760 A. M. BIANCO ET AL.

Fang, K.T., Anderson, T.W., eds. (1990). Statistical Inference in Elliptically Contoured and Related Distri-
butions. New York: Allerton Press.

Fang, K.T., Kotz, S., Ng, K.W. (1990). Symmetric multivariate and related distributions. In:Monographs
on Statistics and Applied Probability, vol. 36. London: Chapman and Hall.

Fang, K.T., Zhu, L.X., Bentler, P.M. (1993). A necessary test for sphericity of a high-dimensional distri-
bution. J. Multivariate Anal. 44:34–55.

Fernholz, L. (1983). Von Mises Calculus for Statistical Functionals. Lecture Notes in Statistics, vol. 19.
New York: Springer Verlag.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A. (1986). Robust Statistics: The Approach
Based on Influence Functions. New York: Wiley.

Huffer, F., Park, C. (2007). A test for elliptical symmetry. J. Multivariate Anal. 98:256–281.
Koltchinskii, V., Li, L. (1998). Testing for spherical symmetry of a multivariate distribution. J. Multi-

variate Anal. 65:228–244.
Koltchinskii, V., Sakhanenko, L. (2000). Testing for ellipsoidal symmetry of a multivariate distribution.

In: Giné, E., Mason, D., Wellner, J., eds. High Dimensional Probability II (pp. 493–510). Boston:
Birkhauser.

Lopuhaä, H. (1989). On the relation between S-estimators and M-estimators of multivariate location
and covariance. Ann. Stat. 17:1662–1683.

Manzotti, A., Pérez, F., Quiroz, A. (2002). A test for testing the null hypothesis of elliptical symmetry.
Journal of Multivariate Analysis 81:274–285.

Morales, D., Pardo, L., Pardo, M.C., Vajda, I. (2004). Rényi statistics for testing composite hypotheses
in general exponential models. Statistics 38:133–147.

Muirhead, R.J. (1982). Aspects of Multivariate Statistical Theory. Canada: John Wiley & Sons.
Schott, J.R. (2002). Testing for elliptical symmetry in covariance-matrix-based analyses. Stat. Probab.

Lett. 60:395–404.
Tyler, D. (1982). Radial estimates and the test for sphericity. Biometrika 69:429–436.
Ushakov, N.G. (1999). Selected Topics in Characteristic Functions. Series:Modern Probability and Statis-

tics. Utrech: Walter de Gruyter.
van de Geer, S. (2000). Empirical Processes in M-Estimation. Cambridge: Cambridge University Press.
Zhu, L.-X., Neuhaus, G. (2003). Conditional tests for elliptical symmetry. J. Multivariate Anal. 84:284–

298.

Appendix A: Numerical computation of the test statistic

The defined test statistic Tn,m,V involves an integral that may be calculated numerically. In
dimension 2, the approximation described below is easy to perform. Assume thatw has com-
pact support I = [−b, b] and split it in a grid of NI points ti. We considerM random direc-
tions {a j}Mj=1 in Sp generated according to a uniform distribution on the sphere. Once the
robust estimatesmn andVn are obtained from the sample, for each ti on the grid and each gen-
erated random direction a j, we compute Ii j = {√nPn sin[tiatj V

−1/2
n (X − mn)]}2w(ti). Then,

we approximate the desired test statistic by 2b sur(Sp)
∑NI

i=1
∑M

j=1 Ii j/(NIM), where sur(Sp)

denotes the surface area of the sphere in R
p of radius 1.

To get an alternative expression for the test statistic, we will restrict our attention to the
situation where w(t ) = I[−b,b](t )/(2b). Let Zi(a) = atV−1/2

n (Xi − mn), then

∫ (√
nPn {sin (tZi(a))}

)2
w(t )dt = 1

2 bn

∑
i, j

∫ b

−b
sin (tZi(a)) sin

(
tZ j(a)

)
dt.

Using that sin(x) sin(y) = (cos(x − y)− cos(x + y))/2 and denoting U+
i j (a) = Zi(a)+

Zj(a) = atV−1/2
n (Xi + X j − 2mn) andU−

i j (a) = Zi(a)− Zj(a) = atV−1/2
n (Xi − X j), we get
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that∫ (√
nPn {sin (tZi(a))}

)2
w(t )dt = 1

2 b
1
2 n

∑
i, j

∫ b

−b
cos
(
tU−

i j (a)
)
dt −

∫ b

−b
cos
(
tU+

i j (a)
)
dt

= 1
2 bn

∑
i, j

sin
(
bU−

i j (a)
)

U−
i j (a)

−
sin
(
bU+

i j (a)
)

U+
i j (a)

,

which implies that

Tn,m,V = 1
2 n

∑
i, j

⎡⎣EUp

sin
(
bUtV−1/2

n
(
Xi − X j

))
bUtV−1/2

n
(
Xi − X j

) − EUp

sin
(
bUtV−1/2

n
(
Xi + X j − 2mn

))
bUtV−1/2

n
(
Xi + X j − 2mn

)
⎤⎦ ,

where U = (U1, . . . ,Up)
t ∼ U (Sp) = Up. Define (D+

i j )
2 = d2(Xi − μ,−(X j − μ),V) and

(D−
i j )

2 = d2(Xi − μ,X j − μ,V), where d2(x, v,�) = (x − v)t�−1(x − v) is the squared
Mahalanobis distance.

Since U ∼ U (Sp), we have thatY = (p− 1) 12U1/
√
1 −U 2

1 ∼ T1,p−1 (see Muirhead, 1982,
pp. 38) and U1 = Y/

√
p− 1 +Y 2. Moreover, since Utv ∼ U1 for any v ∈ Sp we have that

UtV−1/2
n (Xi − X j) ∼ U1D−

i j and UtV−1/2
n (Xi + X j − 2mn) ∼ U1D+

i j . These facts entail that

Tn,m,V = 1
2 n

∑
i, j

[
f
(
bD−

i j

)
− f

(
bD+

i j

)]
,

where the function f : R → R is defined as

f (u) = ET1,p−1

⎛⎜⎜⎝ sin
(
u Y√

p−1+Y 2

)
Y√

p−1+Y 2
u

⎞⎟⎟⎠ = EUp

(
sin (uU1)

uU1

)
,

with sin(u)/u = 1 if u = 0. Then, using thatD−
i j = D−

ji ,D
+
i j = D+

ji ,D
−
ii = 0 and f (0) = 1, we

get a simpler expression for the test statistic given by

Tn,m,V = 1
2n

n∑
j=1

{
1 − f

(
bD+

j j

)
+ 2

j−1∑
i=1

[
f
(
bD−

i j

)
− f

(
bD+

i j

)]}
.

To summarize, in order to compute the test statistic, the user only has to evaluate the function
f by Monte Carlo over a grid of points.

Appendix B: Proofs

Proof of Theorem 3.1. Using that sin(x − y) = sin(x) cos(y)− cos(x) sin(y) and
since atV−1/2

n (X − mn) = atV−1/2
n (X − μ)− atV−1/2

n (mn − μ), we have that√
n Pn sin[tatV−1/2

n (X − mn)] = √
nW1,n(t, a)− √

nW2,n(t, a) where

W1,n(t, a) = cos
[
tatV−1/2

n (mn − μ)
]
Pn sin

[
tatV−1/2

n (X − μ)
]

W2,n(t, a) = sin
[
tatV−1/2

n (mn − μ)
]
Pn cos

[
tatV−1/2

n (X − μ)
]
.

Denote as Zn(t, a,A) = Pn cos[tatA(X − μ)] and ζ (t, a,A) = EP cos[tatA(X − μ)]. Note
that since X ∼ Ep(μ,�, ψ), we have that ζ (t, a,A) = ψ(t2atA�Ata) which entails that
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ζ (t, a,�−1/2) = ψ(t2). The Dominated Convergence Theorem implies that

lim
A→�−1/2

EP sup
t∈R,a∈Sp

∣∣cos [tatA(X − μ)
]− cos

(
tat�−1/2(X − μ)

)∣∣ = 0,

which, together with the fact that Vn
p−→ �, entails that supt∈R,a∈Sp

|ζ (t, a,V−1/2
n )−

ζ (t, a,�−1/2)| p−→ 0, that is,

sup
t∈R,a∈Sp

∣∣EP cos
[
tatV−1/2

n (X − μ)
]− ψ(t2)

∣∣ p−→ 0. (B.1)

Let ‖ · ‖s be a norm in the space M of symmetric positive definite matrices. Then, as
Vn

p−→ �, we have that for n large enough with high probability, ‖V−1/2
n − �−1/2‖s ≤

1. Let F = { f (x) = cos(tatA(x − μ)), t ∈ I, a ∈ Sp,A ∈ R
p×p : ‖A − �−1/2‖s ≤ 1} and

GC = { fb(x) = cos(bt(x − μ)), b ∈ R
p : ‖b‖ ≤ C}. Then, for some C > 0, F ⊂ GC. Note

that the functions fb(x) are such that the map b �→ fb(x) is continuous for all fixed x
and its envelope F(x) = sup‖b‖≤C | fb(x)| satisfies that F ∈ L1(P) since F ≤ 1. Hence, using
Lemma 3.10 in van de Geer (2000), we have that the class GC has finite bracketing num-
ber N[ ](ε,GC, L1(P)), which entails that GC is a Glivenko–Cantelli class of functions, that
is, sup‖b‖≤C |Pn cos[bt(X − μ)] − P cos[bt(X − μ)]| a.s.−→ 0. This convergence implies that

supt∈I,a∈Sp
|Zn(t, a,V−1/2

n )− ζ (t, a,V−1/2
n )| p−→ 0. Hence, using (B.1), we get that

sup
t∈I,a∈Sp

|Zn(t, a,V−1/2
n )− ψ(t2)| p−→ 0. (B.2)

From the fact that limu→0 sin u/u = 1 , the consistency of Vn andmn, we get that

sup
t∈I,a∈Sp

∣∣∣∣∣∣
sin
[
tatV−1/2

n (mn − μ)
]

tatV−1/2
n (mn − μ)

− 1

∣∣∣∣∣∣ p−→ 0. (B.3)

Using that
√
n(mn − μ) = OP(1), together with (B.2) and (B.3), we conclude that

sup
t∈I,a∈Sp

∣∣√nW2,n(t, a)− ψ(t2)
[
tat�−1/2√n(mn − μ)

]∣∣ p−→ 0,

which together with the fact thatmn admits a Bahadur expansion leads to

√
nW2,n(t, a) = ψ(t2) tat�−1/2 1√

n

n∑
i=1

(Xi − μ) αm
(‖�−1/2 (Xi − μ) ‖)+ R2,n(t, a),

(B.4)
where supt∈I,a∈Sp

|R2,n(t, a)| p−→ 0.
Similarly, using that | cos(u)− 1| ≤ |u|, that I is a bounded interval and the consistency

of Vn andmn, we obtain that

sup
t∈I,a∈Sp

∣∣cos [tatV−1/2
n (mn − μ)

]− 1
∣∣ p−→ 0. (B.5)

Hence, the proof will be complete if we show that
a)

√
nW3,n(t, a) = √

nPn sin[tat�−1/2(X − μ)] converges to a Gaussian process and
b) supt∈I,a∈Sp

|√nPn sin[tatV−1/2
n (X − μ)] − √

nPn sin[tat�−1/2(X − μ)]| p−→ 0.
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Effectively, if a) and b) hold the process
√
nPn sin[tatV−1/2

n (X − μ)] is tight, so, using (B.5),
we can write

√
nW1,n(t, a) = √

nW3,n(t, a)+ R1,n(t, a), where supt∈I,a∈Sp
|R1,n(t, a)| p−→

0, which together with (B.4) leads to

√
n Pn sin

[
tatV−1/2

n (X − mn)
] = ψ(t2) tat�−1/2 1√

n

n∑
i=1

(Xi − μ) αm
(‖�−1/2 (Xi − μ) ‖)

+√
nPn sin

[
tat�−1/2(X − μ)

]+ Rn(t, a),

where supt∈I,a∈Sp
|Rn(t, a)| p−→ 0.

The proof of a) follows from Ghosh and Ruymgaart (1992), so it only remains to show b).
To derive b), denote Zn(t, a,A) = Pn sin[tatA(X − μ)]. Then, we have that

EPZn(t, a,A) = 0, sinceX ∼ Ep(μ,�, ψ). Note thatF  = { f (x) = sin(tatA(x − μ)), t ∈
I, a ∈ Sp,A ∈ R

p×p : ‖A − �−1/2‖s ≤ 1} ⊂ GC for some C > 0 where GC = { fb(x) =
sin(bt�−1/2(x − μ)), b ∈ R

p : ‖b‖ ≤ C}. In Appendix C of Bianco et al. (2015), it is shown
that GC is Donsker, which entails the uniform equicontinuity leading to b). �

Proof Theorem 3.2. As in Theorem 3.1, let Wn(t, a) = √
nPn sin[tatV−1/2

n,X (X − mn,X)].
We will show that the process Wn = {Wn(t, a) , (t, a) ∈ I × Sp} converges in distribu-
tion to theGaussian processW = {W(t, a) , (t, a) ∈ I × Sp}withW(t, a) = W(t, a)+
(1/�!)B�(t, a).

As in the proof of Theorem 3.1, we have that Wn(t, a) = √
nW1,n(t, a)− √

nW2,n(t, a)
where

W1,n(t, a) = cos
[
tatV−1/2

n,X

(
mn,X − μ

)]
Pn sin

[
tatV−1/2

n,X (X − μ)
]

W2,n(t, a) = sin
[
tatV−1/2

n,X

(
mn,X − μ

)]
Pn cos

[
tatV−1/2

n,X (X − μ)
]
.

Besides, we also have that

sup
t∈I,a∈Sp

∣∣∣cos [tatV−1/2
n,X

(
mn,X − μ

)]− 1
∣∣∣ p−→ 0, (B.6)

sup
t∈I,a∈Sp

∣∣∣∣∣∣
sin
[
tatV−1/2

n,X

(
mn,X − μ

)]
tatV−1/2

n,X

(
mn,X − μ

) − 1

∣∣∣∣∣∣ p−→ 0 , (B.7)

hold sinceVn,X
p−→ � andmn,X − μ

p−→ 0. On the other hand, from (6) and using thatmn,Z

satisfies (3) together with the fact that Vn,X
p−→ �, we get that

√
nV−1/2

n,X

(
mn,X − μ

) = 1√
n

n∑
i=1

�−1/2 (Zi − μ) αm
(‖�−1/2 (Zi − μ) ‖)+ Rn , (B.8)

where Rn
p−→ 0. Hence, if we show that

sup
t∈I,a∈Sp

∣∣∣Pn cos [tatV−1/2
n,X (X − μ)

]
− ψ(t2)

∣∣∣ p−→ 0 , (B.9)

we obtain the following expansion for
√
nW2,n(t, a)

√
nW2,n(t, a) = ψ(t2) tat�−1/2 1√

n

n∑
i=1

(Zi − μ) αm
(‖�−1/2 (Zi − μ) ‖)+ R2,n(t, a) ,
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where supt∈I,a∈Sp
|R2,n(t, a)| p−→ 0.

To obtain (B.9), notice that from the proof of Theorem 3.1, we have that

sup
t∈I,a∈Sp

|Pn cos
[
tatV−1/2

n,X (Z − μ)
]

− ψ(t2)| p−→ 0 , (B.10)

sinceZ ∼ Ep(μ,�, ψ) andVn,X
p−→ �. Besides, using that | cos(u)− cos(v )| ≤ |u − v| and

Xi = Zi + Yi/nα , we get the bound

sup
t∈I,a∈Sp

|Pn cos
[
tatV−1/2

n,X (X − μ)
]

− Pn cos
[
tatV−1/2

n,X (Z − μ)
]
| ≤ λ1/2n,max

ν

nα
Pn‖Y‖ ,

whereλn,max stands for the largest eigenvalue of thematrixV−1
n,X. Therefore, using thatE‖Y‖ <

∞ and Vn,X
p−→ �, we get (B.9) from (B.10).

Denote as Mn,X(t, a,A) = Pn sin[tatA(X − μ)] and Mn,Z(t, a,A) = Pn sin[tatA(Z −
μ)]. Then, noting that W1,n(t, a) = cos[tatV−1/2

n,X (mn,X − μ)]Mn,X(t, a,V−1/2
n,X ),

from (B.6), we obtain that
√
nW1,n(t, a) = Mn,X(t, a,V−1/2

n,X )+ R1,n(t, a), with

supt∈I,a∈Sp
|R1,n(t, a)| p−→ 0, if

√
n sup

t∈I,a∈Sp

|Mn,X(t, a,V−1/2
n,X )| = OP(1) (B.11)

holds.
Recall that, from the proof of Theorem 3.1,

√
nMn,Z(t, a,V−1/2

n,X ) converges to a Gaussian

process since Vn,X
p−→ �. Let δ be such that ‖A − �−1/2‖s ≤ δ entails that |λmax(A�At)−

1| ≤ δ0/ν where δ0 = min1≤m≤�(δm) and δm are given in assumption (f). Denote F =
{ f (y, z) = (tatAy)� sin(�)(tatA(z − μ)), (t, a,A) ∈ A}, whereA = {(t, a,A) : t ∈ I, a ∈
Sp, ‖A − �−1/2‖s ≤ δ}. Then, the proof will be completed if we show the following conver-
gences

sup
(t,a,A)∈A

∣∣√n
{
Mn,X(t, a,A)− Mn,Z(t, a,A)

}
− 1
�!
Pn
{(
tatAY

)� sin(�)(tatA(Z − μ))
}∣∣∣∣ p−→ 0, (B.12)

sup
f∈F

∣∣Pn f (Y,Z)− P f (Y,Z)
∣∣ p−→ 0, (B.13)

for some δ small enough, since (B.12) and (B.13) entail (B.11) and also the desired expansion.
For any 1 ≤ s ≤ �, define

Gs = {gb(y, z) = (bt�−1/2y)s sin(s)(bt�−1/2(z − μ)), b ∈ R
p : ‖b‖ ≤ ν + δ0} . (B.14)

The proof of (B.13) follows using Lemma 3.10 of van de Geer (2000) and similar argu-
ments to those considered in proof of Theorem 3.1 applied to the classes of functions F
and G� since F ⊂ G� and the envelope G(y, z) = sup‖b‖≤C |gb(y, z)| ≤ C�‖y‖� ∈ L1(P) with
C = (ν + δ0)λ

1/2
max(�

−1).
It only remains to prove (B.12) which follow if we show that sup‖b‖≤ν+δ0 |Yn(b)| p−→ 0

where

Yn(b) = √
n
{
Pn sin

[
bt�−1/2 (X − μ)

]− Pn sin
[
bt�−1/2 (Z − μ)

]}
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− 1
�!
Pn
{(
bt�−1/2Y

)� sin(�)(bt�−1/2(Z − μ))
}
.

Using a Taylor’s expansion and noting that Xi − μ = (Zi − μ)+ Yi/nα and α = 1/(2�) we
have that (1/n)

∑n
i=1 sin[b

t�−1/2(Xi − μ)] = (1/n)
∑n

i=1 sin[b
t�−1/2(Zi − μ)] + S1,n +

S2,n + S3,n, where

S1,n = 1
n

n∑
i=1

�−1∑
s=1

1
s!

1
nα s

[
bt�−1/2Yi

]s sin(s)(bt�−1/2(Zi − μ)) =
�−1∑
s=1

1
s!

1
nα s

S1,n,s

S2,n = 1
nα �

1
�!
1
n

n∑
i=1

(
bt�−1/2Yi

)� sin(�)(bt�−1/2(Zi − μ))

S3,n = 1
nα (�+1)

1
(�+ 1)!

1
n

n∑
i=1

(
bt�−1/2Yi

)�+1 sin(�+1) (ξn)

with ξn = θnbt�−1/2(Zi − μ)+ (1 − θn)bt�−1/2(Xi − μ)), for some θn ∈ (0, 1).
Thus, Yn(b) = √

n(S1,n + S3,n) so to conclude the proof, we only have to show that√
n sup‖b‖≤δ0+ν |S j,n| p−→ 0, for j = 1, 3. Using that �α = 1/2, we get that, for any

‖b‖ ≤ δ0 + ν,

|√nS3,n| ≤ 1
nα

1
(�+ 1)!

Pn
∣∣∣(bt�−1/2Y

)�+1
∣∣∣ ≤ 1

nα
1

(�+ 1)!
C�+1 Pn‖Y‖�+1

whereC = (ν + δ0)λ
1/2
max(�

−1), which entails that
√
nS3,n

p−→ 0 since E‖Y‖�+1 < ∞.
To obtain that

√
n sup‖b‖≤C |S1,n| p−→ 0, it is enough to show that, for any 1 ≤ s ≤ �− 1,

√
n sup‖b‖≤C |S1,n,s|/nα s p−→ 0 which will follow if we prove that

√
n sup

‖b‖≤C
|S1,n,s| = OP(1) . (B.15)

Note that by assumption (f), for any s < �, E{[bt�−1/2Yi]s sin(s)(bt�−1/2(Zi − μ))} = 0,
when ‖b‖ ≤ δ0 + ν. Thus, ES1,n,s = 0 holds, so (B.15) follows from the fact that the class
Gs defined in (B.14) is Donsker which is derived in Appendix C of Bianco et al. (2015). �
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S.1 Finite sample distribution of the test statistic when p = 2

As in Section 4, we generate independent observations Z1, . . . ,Zn, Zi ∼ P according to different

elliptical models under the null hypothesis. Let Tp,k(µ,Σ) be the multivariate p−dimensional

t−distribution with k degrees of freedom, which includes the multivariate Cauchy distribution when

k = 1, and denote U(Sp) and U(Bp) the uniform distributions over the unit circle and the unit ball,

respectively. Consider the null hypothesesH
(1)
0 : P = Np(0, I), H

(2)
0 : P = 0.9Np(0, I)+0.1Tp,1(0, I),

H
(3)
0 : P = 0.9Np(0, I) + 0.1Tp,3(0, I), H(4)

0 : P = Tp,3(0, I), H(5)
0 : P = U(Sp), H

(6)
0 : P = U(Bp)

and H
(7)
0 : P = Tp,1(0, I).

For each null hypothesis H
(j)
0 , we consider different alternative hypothesis H

(j)
1,∆, related to

the original distribution P in the null hypothesis. Under H
(j)
1,∆, the observations are generated as

Xi = Zi + ∆Yi with Zi ∼ P independent of Yi and Y = (Y1, Y2)
t where Yk ∼ χ2

1 independent

among each other and ∆ = 0.5, 1 and 1.5. We also studied the behaviour of the statistics under

two fixed alternatives H?(1)
1 and H?(2)

1 . Under H?(1)
1 , the data have the distribution of a random

vector with two independent components, E(1) and N(0, 1), where E(λ) denotes the exponential

distribution of parameter λ, that is, with mean value 1/λ, while the alternative H?(2)
1 corresponds

to the distribution of a random vector with two independent components, E(1) and E(1/2), that
is, with expectation 1 and 2, respectively. The first three alternatives were studied in Zhu and

Neuhaus (2003), while Koltchinskii and Li (1998) studied the capability of their proposal to detect

H?(1)
1 and H?(2)

1 .

In all cases, we perform N = 1000 replications for samples of size n = 20, 50, 100 and 200. For

each sample, we compute the test statistics with the mean and sample covariance matrix, denoted

by Tn,cl, with the Donoho–Stahel estimators of location and scatter, denoted by Tn,ds and with

the S−estimators of location and scatter, denoted by Tn,s. Both robust estimators are calibrated

to attain 50% breakdown point. We choose as weight function w(t) = I[−b,b](t) with b = 2.

In Figures S.1 to S.7, the density estimates of test statistics Tn,cl, Tn,ds and Tn,s are plotted

under the null hypotheses H
(1)
0 to H

(7)
0 and under their corresponding alternatives. The density

estimates were evaluated using the normal kernel.

As expected, in most cases the classical test statistics is more sensitive to the lack of elliptical

symmetry of the alternative distributions than the robust test statistics. However, for n = 20 in
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the considered situations all statistics, the classical and the robust ones, fail to distinguish the

symmetric distribution under the null hypothesis from those considered in the alternatives. Indeed,

for this sample size all the density estimates are almost overlapping. The tests detect some of the

selected alternatives for n = 50. For n = 100, in all cases the ability of the test statistics to make

out the nature of the underlying distribution increases and this fact becomes more clear for n = 200.

For n = 100 and 200, the densities corresponding to the non–elliptical distributions generated under

H?(1)
1 and H?(2)

1 are shifted to the right from those of the test statistic under the null hypothesis.

This effect is less visible for n = 50. Hence, one could expect that the tests statistics will work

well under these circumstances. On the opposite, except for Figure S.6, the densities of all the

test statistics under the null hypothesis and under the alternative H
(j)
1,0.5 are almost overlapping.

As expected, this performance is even worst for the classical test under H
(7)
0 and H

(7)
1,∆, where the

distribution of the test statistic does not allow to distinguish between the null and the alternative

hypotheses even for n = 200 (see Figure S.7). Hence, one can not expect a good performance of

the classical tests in this case. A similar conclusion can be held for H
(j)
1,1 for n = 100, while for

n = 200 the behaviour of the test statistic depends on the distribution of Zi.

This numerical approach suggests that, for p = 2, small sample sizes and values of ∆ smaller

than 0.5 when considering alternatives of the form Zi+∆Yi should not be considered in the Monte

Carlo study presented in Section 4.

S.2 Simulation study in dimension p = 5 with n = 50.

In Section S.1, we noticed that for small sample sizes the distribution of the test statistic does

not allow to distinguish the elliptical distributions from those considered in the alternative. For

that reason, in the simulation study reported in Section 5, we choose as sample size n = 200. To

complement the results obtained in Section 5.2 and to study the effect of a smaller sample size on

the decisions taken, we report here the observed frequencies of rejection for the test based on the

sample mean and covariance matrix, Tn,cl and for that based on the Donoho–Stahel estimators,

Tn,ds, when p = 5 and n = 50, which represents a challenging situation due to the ratio between

sample size and dimension. As in Section 5.3, we also compare their performance with that of the

test statistic, Tn,bat, introduced in Batsidis et al. (2014) and with the test defined by Schott (2002),
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Tn,sch. The simulation conditions as well as the considered alternatives are described in Section 5.2.

To be more precise, under the null hypothesis, we generate n independent observations Zi ∈ R5,

1 ≤ i ≤ n = 50, following different elliptical distributions as follows H
(1)
0 : P = Np(0, I), H

(2)
0 : P is

the Pearson type II distribution generated as
√
VU where U ∼ U(Sp) and V ∼ Be(p/2,m), with

m = 3/2, H
(3)
0 : P = Tp,5(0, I) and H

(4)
0 : P = Tp,1(0, I). As in Section 5.2, we consider observations

Xi, i = 1, . . . , n generated under the alternative hypotheses H
(j)
1,∆, with ∆ = 0.25, 0.5, 0.75, 1 and

1.5 as well as four fixed alternatives H?(j)
1 for j = 1 to 4 defined as follows. Under H?(1)

1 , the data

have the distribution of a random vector with p independent components, the first p − 1 having

distribution E(1) and the last one N(0, 1), while H?(2)
1 corresponds to the distribution of a random

vector X with p independent components each of them with distribution E(1). UnderH?(3)
1 , Xi ∼ X

where X is a random vector with p independent components with common distribution Be(5, 1).

Finally, H?(4)
1 corresponds to the situation in which X has p independent components, the first

p− 1 with common distribution E(1) and the last one Tp,1.

The corresponding frequencies of rejection are reported in Tables S.1, S.2 and S.3, where ∆ = 0

corresponds to the observations generated according to the null hypothesis. Besides, Table S.4

reports the size–corrected relative exact powers ρH1(Tn,ds, Tn,cl) as defined in (7), while Tables S.5

and S.6 report the size corrected relative powers ρH1(Tn,bat, Tn,ds) and ρH1(Tn,sch, Tn,ds). Note that

a positive value of size corrected relative power ρH1(Tn,1, Tn,2) indicates that the test based on Tn,1

has a better detection capability than that based on Tn,2 and the size of its advantage is quantified

by ρH1(Tn,1, Tn,2). Similarly, a negative value of ρH1(Tn,1, Tn,2) provides a measure of the deficiency

of Tn,1 with respect to Tn,2.

Table S.1 shows that, even for this small sample size, the robust procedures allow to detect

the considered alternatives keeping the exact sizes of the test statistic, i.e., πH0(Tn,ds) around

the nominal level α = 0.05. As in Section 4.2 and 4.3, we indicate with a ? those cases, in

which the observed empirical frequencies of rejection are different from the nominal level with a

significance level γ = 0.01. As expected, the test based on the sample mean and covariance matrix

outperforms that based on the Donoho–Stahel estimators under the normal distribution due to the

loss of efficiency of the robust estimators. The advantage of Tn,cl is also observed for the Pearson

distribution, in particular, when ∆ = 0.25 and ∆ = 0.5. These two facts are consistent with the

behaviour described in Section S.1, where for dimension p = 2 and n = 50, the distribution of
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the test statistic has troubles to distinguish between the null hypothesis and close alternatives for

most of the considered elliptical distributions. Note that the test based on the sample mean and

covariance matrix becomes liberal under Tp,5(0, I). Besides, the test based on the robust estimators

shows its advantage for this distribution, except for ∆ = 0.25 where Tn,ds does not succeed in

detecting the hypothesis, leading to a large negative value on the size corrected relative power.

On the other hand, under the Cauchy distribution Tn,cl is non–informative, while Tn,ds is able to

distinguish all the alternatives except when ∆ = 0.25 and 0.5. These facts become more evident

in Table S.4, where most size corrected relative powers are positive for distributions different from

the normal. The large negative value obtained at ∆ = 0.25 for the Cauchy distribution can be

explained by means of two facts. The first one is that Tn,cl has power almost constant, so that the

denominator is close to 0, while the second one is that the power of Tn,ds decreases at ∆ = 0.25

with respect to its size. Note that, given two test statistics Tn,1 and Tn,2, when the test based on

Tn,2 is non-informative, a negative value of the size corrected relative power ρH1(Tn,1, Tn,2) does

not provide a good measure to conclude the benefits of Tn,2 over Tn,1.

With respect to the test statistics, Tn,bat and Tn,sch, both procedures loose their capability of

detection under the Cauchy distribution, since their behaviour relies on the existence of moments.

On the other hand, the test statistic proposed in Batsidis et al. (2014) is conservative in all situa-

tions except for the Cauchy distribution (H
(4)
0 ), where it is liberal. The same conclusions obtained

when n = 200 are preserved in the actual setting, that is, the procedure proposed in this paper

outperforms these competitors in the majority of the situations considered. As mentioned in Sec-

tion 4.3, our conclusions on the benefits of Tn,ds are valid only for the considered distributions and

alternatives. Quite surprisingly, even for this small sample size the procedure based on Tn,ds shows

a reasonable performance probably due to the bootstrap method used to compute the p−value.
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Tn,cl

H
(j)
1,∆ H?(1)

1 H?(2)

1 H?(3)

1 H?(4)

1

∆ 0 0.25 0.5 0.75 1 1.5

H
(1)
0 0.054 0.068 0.180 0.528 0.844 0.988 1.000 1.000 1.000 0.998

H
(2)
0 0.044 0.440 0.984 1.000 1.000 1.000 1.000 1.000 1.000 0.998

H
(3)
0 0.128? 0.134 0.186 0.370 0.652 0.940 1.000 1.000 1.000 0.998

H
(4)
0 0.228? 0.230 0.240 0.276 0.290 0.362 1.000 1.000 1.000 0.998

Tn,ds

H
(j)
1,∆ H?(1)

1 H?(2)

1 H?(3)

1 H?(4)

1

∆ 0 0.25 0.5 0.75 1 1.5

H
(1)
0 0.052 0.050 0.086 0.236 0.542 0.898 0.992 1.000 0.972 0.980

H
(2)
0 0.060 0.204 0.858 0.992 1.000 1.000 0.992 1.000 0.972 0.980

H
(3)
0 0.068 0.050 0.090 0.190 0.360 0.774 0.992 1.000 0.972 0.980

H
(4)
0 0.044 0.036 0.048 0.098 0.150 0.330 0.992 1.000 0.972 0.980

Table S.1: Frequency of rejection for the bootstrap test Tn,cl and Tn,ds for n = 50 and dimension p = 5, α = 0.05.
? indicates that the frequency of rejection is significantly different from the nominal level.

Tn,bat

H
(j)
1,∆ H?(1)

1 H?(2)

1 H?(3)

1 H?(4)

1

∆ 0 0.25 0.5 0.75 1 1.5

H
(1)
0 0.016? 0.016 0.030 0.040 0.084 0.248 0.152 0.302 0.144 0.274

H
(2)
0 0.016? 0.036 0.186 0.440 0.544 0.640 0.152 0.302 0.144 0.274

H
(3)
0 0.016? 0.024 0.036 0.036 0.074 0.184 0.152 0.302 0.144 0.274

H
(4)
0 0.438? 0.408 0.362 0.374 0.352 0.324 0.152 0.302 0.144 0.274

Table S.2: Frequency of rejection for the test defined in Batsidis et al. (2014) for n = 50 and dimension p = 5 with
λ = 1. ? indicates that the frequency of rejection is significantly different from the nominal level.

Tn,sch

H
(j)
1,∆ H?(1)

1 H?(2)

1 H?(3)

1 H?(4)

1

∆ 0 0.25 0.5 0.75 1 1.5

H
(1)
0 0.048 0.034 0.034 0.076 0.142 0.312 0.238 0.258 0.074 0.708

H
(2)
0 0.060 0.074 0.270 0.432 0.514 0.586 0.238 0.258 0.074 0.708

H
(3)
0 0.038 0.036 0.044 0.060 0.084 0.182 0.238 0.258 0.074 0.708

H
(4)
0 0.964? 0.966 0.966 0.956 0.948 0.900 0.238 0.258 0.074 0.708

Table S.3: Frequency of rejection for the test defined in Schott (2002) for n = 50 and dimension p = 5. ? indicates
that the frequency of rejection is significantly different from the nominal level.
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ρH1(Tn,ds, Tn,cl)

H
(j)
1,∆ H?(1)

1 H?(2)

1 H?(3)

1 H?(4)

1

∆ 0.25 0.5 0.75 1 1.5

H
(1)
0 -114.286 -73.016 -61.181 -37.975 -9.422 -0.634 0.211 -2.748 -1.695

H
(2)
0 -63.636 -15.106 -2.510 -1.674 -1.674 -2.510 -1.674 -4.603 -3.564

H
(3)
0 -400.000 -62.069 -49.587 -44.275 -13.054 5.963 6.881 3.670 4.828

H
(4)
0 -500.000 -66.667 12.500 70.968 113.433 22.798 23.834 20.207 21.548

Table S.4: Size corrected relative exact power of the robust bootstrap test Tn,ds with respect to the classical Tn,cl

one, when n = 50, p = 5 and α = 0.05.

ρH1(Tn,bat, Tn,ds)

H
(j)
1,∆ H?(1)

1 H?(2)

1 H?(3)

1 H?(4)

1

∆ 0.25 0.5 0.75 1 1.5

H
(1)
0 -100.000 -58.824 -86.957 -86.122 -72.577 -85.532 -69.831 -86.087 -72.198

H
(2)
0 -86.111 -78.697 -54.506 -43.830 -33.617 -85.408 -69.574 -85.965 -71.957

H
(3)
0 -144.444 -9.091 -83.607 -80.137 -76.204 -85.281 -69.313 -85.841 -71.711

H
(4)
0 275.000 -2000.000 -218.519 -181.132 -139.860 -130.169 -114.226 -131.681 -117.949

Table S.5: Size corrected relative exact power for test based on the statistic Tn,bat defined in Batsidis et al. (2014)
with respect to the robust bootstrap test Tn,ds for n = 50 and dimension p = 5 with λ = 1.

ρH1(Tn,sch, Tn,ds)

H
(j)
1,∆ H?(1)

1 H?(2)

1 H?(3)

1 H?(4)

1

∆ 0.25 0.5 0.75 1 1.5

H
(1)
0 600.000 -141.176 -84.783 -80.816 -68.794 -79.787 -77.848 -97.174 -28.879

H
(2)
0 -90.278 -73.684 -60.086 -51.702 -44.043 -80.901 -78.936 -98.465 -29.565

H
(3)
0 -88.889 -72.727 -81.967 -84.247 -79.603 -78.355 -76.395 -96.018 -26.535

H
(4)
0 -125.000 -50.000 -114.815 -115.094 -122.378 -176.582 -173.849 -195.905 -127.350

Table S.6: Size corrected relative exact power for test based on the statistic Tn,sch defined in Schott (2002) with
respect to the robust bootstrap test Tn,ds for n = 50 and dimension p = 5.
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S.3 Proof that G?
C = {fb(x) = sin(btΣ−1/2(x − µ)), b ∈ Rp : ‖b‖ ≤ C}

and Gs defined in (A.14) are Donsker

When EP ‖X − µ‖2 < ∞, the result follows easily from Lemma 2.5 in van de Geer (2000) and

Theorem 2.7.11 in van der Vaart and Wellner (1996). However, since we do not assume this moment

condition, we have to work more carefully and we will use the fact that
∫ 1
0

√
logHudu < ∞.

To provide a unified proof, denote as

Gs = {gb(y, z) = (btΣ−1/2y)s sin(s)(btΣ−1/2(z− µ)), b ∈ Rp : ‖b‖ ≤ C} .

Hence, when s = 0, Gs = G?
C while for C = ν + δ0 we get the class defined in (A.14). It is then,

enough to show that Gs is Donsker when
∫ 1
0

√
logHudu < ∞ if s = 0 or if Y and Z are independent

while, if 1 ≤ s < ` and Y and Z are not independent we will use that for any 1 ≤ s < `,
∫ 1
0

√
logHuqdu < ∞, where q = `/(`− s), sin(s)(u) = (−1)s sin(u) or sin(s)(u) = (−1)s+1 cos(u)

and that E‖Y‖2s < ∞.

For simplicity, denote Bp(b, δ) = {u : ‖u − b‖ ≤ δ}, Bp(δ) = Bp(0, δ), ‖f‖L2(P ) = (EP f
2)1/2,

λ =
√

λmax(Σ
−1) and A = 2λs

{

3
(

E‖Y‖2s
)1/2

+ Cs
(

E‖Y‖2`
)

s
2`

}

.

For any fixed ρ > 0 and β ∈ Bp(C), define Ψ(y, z,β, ρ) = sup{b∈Bp(C)∩Bp(β,ρ)} |gb(y, z) −
gβ(y, z)|. Note that the continuity of the sinus entails that the supremum can be taken over Qp, so

that Ψ(x,β, ρ) is measurable for each β and ρ > 0. Note that | sin(s)(u)− sin(s)(v)| ≤ |u−v| entails
that |gb1(y, z)− gb2(y, z)| ≤ λs‖y‖s max (‖b1 − b2‖, ‖b1 − b2‖s)

{

1 + Cs‖Σ−1/2(z− µ)‖
}

. Then,

if S = ‖Σ−1/2(Z− µ)‖ we obtain the bound

EPΨ
2(Y,Z,β, ρ)I[0,M ](S) ≤ E‖Y‖2sλ2s {1 + CsM}2max

(

ρ2, ρ2s
)

. (S.1)

On the other hand, since |gb1(y, z) − gb2(y, z)| ≤ λs‖y‖s {‖b1 − b2‖s + 2Cs}, we have that

Ψ2(Y,Z,β, ρ) ≤ λ2s
{

ρ2s + 2Cs
}2 ‖Y‖2s and so, using the dominated convergence Theorem we

get that EPΨ
2(Y,Z,β, ρ) → 0 as ρ → 0.

For a given 0 < ε < min(1, A), let η = ε/A, choose Mε as the smallest value such that P(S >

Mε) = P(‖Σ−1/2(X − µ)‖ > Mε) ≤ (ε/A)2 `/(`−s) and define ρε = min{η, η/[CsMε]} < 1. Then,
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since max
(

ρ2ε , ρ
2s
ε

)

= ρ2ε , we get that

EPΨ
2(Y,Z,β, ρε)I[0,Mε](S) ≤ E‖Y‖2sλ2s

{

min

(

η,
η

CsMε

)

+ CsMε min

(

η,
η

CsMε

)}2

≤ E‖Y‖2sλ2s4η2 (S.2)

Let N = N(ρε,Bp(C)) the minimum number of balls of radius ρε and center in Bp(C), needed to

cover the set Bp(C). Then,N is at most twice the number of balls of radius ρε needed to cover the set

Bp(C) for which a bound is given in Lemma 2.5 in van de Geer (2000). Hence, there exist b1, . . . ,bN ,

bj ∈ Bp(C) such that Bp(C) ⊂ ∪N
j=1Bp(bj , ρε). Define uj(y, z) = gbj

(y, z) + Ψ(y, z,bj , ρε) and

`j(y, z) = gbj
(y, z) − Ψ(y, z,bj , ρε). Then, for any b ∈ Bp(C), there exists 1 ≤ j ≤ N such

that b ∈ Bp(bj , ρε), so that |gb(y, z) − gbj
(y, z)| ≤ Ψ(y, z,bj , ρε) which entails that `j(y, z) ≤

gb(y, z) ≤ uj(y, z). On the other hand, Ψ(y, z,bj , ρε) = Ψ1,j(y, z) + Ψ2,j(y, z) where Ψ1,j(y, z) =

Ψ(y, z,bj , ρε)I[0,Mε](‖Σ−1/2(x − µ)‖) and Ψ2,j(y, z) = Ψ(y, z,bj , ρε)I(Mε,+∞)(‖Σ−1/2(x − µ)‖).
Note that using (S.2), we get that

‖Ψ1,j‖L2(P ) ≤ 2
(

E‖Y‖2s
)1/2

λs η = 2
(

E‖Y‖2s
)1/2

λs ε

A
.

On the other hand, the fact that Ψ2(y, z,bj , ρε) ≤ λ2s {ρsε + 2Cs}2 ‖Y‖2s entails that

‖Ψ2,j‖L2(P ) ≤ λs {ρsε + 2Cs}
(

E‖Y‖2sIS>Mε

)1/2

≤
(

E‖Y‖2s
)1/2

λs η + 2λsCs
{

E
(

‖Y‖2sIS>Mε

)}1/2
(S.3)

We will apply Hölder inequality with p = `/s, so that 1/p = s/` and q = `/(`− s). Then

E‖Y‖2sIS>Mε ≤
(

E‖Y‖2sp
)

1
p (EIS>Mε)

1
q =

{

E‖Y‖2`
}

s
` {P (S > Mε)}

(`−s)
`

so, using that η = ε/A we get

‖Ψ2,j‖L2(P ) ≤
(

E‖Y‖2s
)1/2

λs ε

A
+ 2λsCs

{

E‖Y‖2`
}

s
2` {P (S > Mε)}

(`−s)
2`

≤
{

(

E‖Y‖2s
)1/2

λs + 2λsCs
{

E‖Y‖2`
}

s
2`

}

ε

A
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so that

‖uj − `j‖L2(P ) = 2‖Ψ1,j +Ψ2,j‖L2(P ) ≤ 2‖Ψ1,j‖L2(P ) + 2‖Ψ2,j‖L2(P )

≤
{

6
(

E‖Y‖2s
)1/2

λs + 2λsCs
{

E‖Y‖2`
}

s
2`

}

ε

A
= ε .

Summarizing, we have shown that the bracketing number N[ ](ε,Gs, L
2(P )) is smaller or equal than

N(ρε,Bp(C)) which, from Lemma 2.5 in van de Geer (2000), may be bounded as

N(ρε,Bp(C)) ≤ 2

(

4C + ρε
ρε

)p

.

Note that if ρε > C, N(ρε,Bp(C)) ≤ 2× 5p, otherwise N(ρε,Bp(C)) ≤ 2 (5C/ρε)
p. Thus,

N[ ](ε,Gs, L
2(P )) ≤ 2 max

(

5p,

[

5C

ρε

]p)

≤ 2 max

(

5p,

[

5C

ε

]p

,

[

5Cs+1AMε
1

ε

]p)

. (S.4)

Note that in (S.4) we can always assume that Mε ≥ 1, otherwise we take Mε = 1 which gives

an upper bound, so that Mε = H(ε/A)`/(`−s) . Thus, if we denote as A = p log(5) + p log(5C) +

p log(5Cs+1A) + log(2), we have the following bound

∫ 1

0

√

log
(

N[ ](u,Gs, L2(P ))
)

du ≤
∫ 1

0

√

A+ p logMu + 2p log

(

1

u

)

du

≤
√
A+

√
p

∫ 1

0

√

logMu du+
√

2p

∫ 1

0

√

log

(

1

u

)

du < ∞ ,

since by hypothesis
∫ 1
0

√
logMudu =

∫ 1
0

√

logH(u/A)qdu = A
∫ A
0

√
logHuqdu < ∞, where q =

`/(`− s), concluding the proof.

Note that if s = 0, the condition
∫ 1
0

√
logHudu < ∞ suffices to prove that Gs is Donsker.

Furthermore, if Yi y Zi are independent the assumption
∫ 1
0

√
logHuqdu < ∞ is also weakened to

∫ 1
0

√
logHudu < ∞. Indeed, in this case, we define A = 2λs

(

E‖Y‖2s
)1/2 {3 + Cs} and we choose

Mε as the smallest value greater or equal than 1 such that P(S > Mε) = P(‖Σ−1/2(X − µ)‖ >

Mε) ≤ ε2/A2, that is, Mε = H(ε/A) and using the independence in (S.3), we get

‖Ψ2,j‖L2(P ) ≤
(

E‖Y‖2s
)1/2

λs ε

A
+ 2λsCs

(

E‖Y‖2s P (S > Mε)
)1/2
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≤
{

(

E‖Y‖2s
)1/2

λs + 2λsCs
(

E‖Y‖2s
)1/2

} ε

A
,

so that ‖uj− `j‖L2(P ) ≤ ε. So, as above, the bracketing number N[ ](ε,Gs, L
2(P )) is smaller or equal

than N(ρε,Bp(C)) getting the bound (S.4). Hence, if we denote as A = p log(5) + p log(5C) +

p log(5Cs+1A) + log(2), we obtain

∫ 1

0

√

log
(

N[ ](u,Gs, L2(P ))
)

du ≤
√
A+

√
p

∫ 1

0

√

logMu du+
√

2p

∫ 1

0

√

log

(

1

u

)

du < ∞

since by hypothesis
∫ 1
0

√
logMudu =

∫ 1
0

√

logH(u/A)du = A
∫ A
0

√
logHudu < ∞.
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Figure S.1: Density estimates of Tn,cl, Tn,ds and Tn,s. Black and dotted line corresponds to H
(1)
0 , blue and dash line to H

(1)
1,0.5,

green and solid line to H
(1)
1,1 , orange and dot–dashed line to H

(1)
1,1.5, red and long–dashed line to H?(1)

1 and violet and two–dashed

line to H?(2)
1 .
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Figure S.2: Density estimates of Tn,cl, Tn,ds and Tn,s. Black and dotted line corresponds to H
(2)
0 , blue and dash line to H

(2)
1,0.5,

green and solid line to H
(2)
1,1 , orange and dot–dashed line to H

(2)
1,1.5, red and long–dashed line to H?(1)

1 and violet and two–dashed

line to H?(2)
1 .
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Figure S.3: Density estimates of Tn,cl, Tn,ds and Tn,s. Black and dotted line corresponds to H
(3)
0 , blue and dash line to H

(3)
1,0.5,

green and solid line to H
(3)
1,1 , orange and dot–dashed line to H

(3)
1,1.5, red and long–dashed line to H?(1)

1 and violet and two–dashed

line to H?(2)
1 .
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Figure S.4: Density estimates of Tn,cl, Tn,ds and Tn,s. Black and dotted line corresponds to H
(4)
0 , blue and dash line to H

(4)
1,0.5,

green and solid line to H
(4)
1,1 , orange and dot–dashed line to H

(4)
1,1.5, red and long–dashed line to H?(1)

1 and violet and two–dashed

line to H?(2)
1 .
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Figure S.5: Density estimates of Tn,cl, Tn,ds and Tn,s. Black and dotted line corresponds to H
(5)
0 , blue and dash line to H

(5)
1,0.5,

green and solid line to H
(5)
1,1 , orange and dot–dashed line to H

(5)
1,1.5, red and long–dashed line to H?(1)

1 and violet and two–dashed

line to H?(2)
1 .
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Figure S.6: Density estimates of Tn,cl, Tn,ds and Tn,s. Black and dotted line corresponds to H
(6)
0 , blue and dash line to H

(6)
1,0.5,

green and solid line to H
(6)
1,1 , orange and dot–dashed line to H

(6)
1,1.5, red and long–dashed line to H?(1)

1 and violet and two–dashed

line to H?(2)
1 .
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Figure S.7: Density estimates of Tn,cl, Tn,ds and Tn,s. Black and dotted line corresponds to H
(7)
0 , blue and dash line to H

(7)
1,0.5,

green and solid line to H
(7)
1,1 , orange and dot–dashed line to H

(7)
1,1.5, red and long–dashed line to H?(1)

1 and violet and two–dashed

line to H?(2)
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