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Abstract Long-lasting changes in dendritic spines provide a
physical correlate for memory formation and persistence. LIM
kinase (LIMK) plays a critical role in orchestrating dendritic
actin dynamics during memory processing, since it is the con-
vergent downstream target of both the Rac1/PAK and
RhoA/ROCK pathways that in turn induce cofilin phosphor-
ylation and prevent depolymerization of actin filaments. Here,
using a potent LIMK inhibitor (BMS-5), we investigated the
role of LIMK activity in the dorsal hippocampus during con-
textual fear memory in rats. We first found that post-training
administration of BMS-5 impaired memory consolidation in a
dose-dependent manner. Inhibiting LIMK before training also
disrupted memory acquisition.We then demonstrated that hip-
pocampal LIMK activity seems to be critical for memory re-
trieval and reconsolidation, since both processes were im-
paired by BMS-5 treatment. Contextual fear memory

extinction, however, was not sensitive to the same treatment.
In conclusion, our findings demonstrate that hippocampal
LIMK activity plays an important role in memory acquisition,
consolidation, retrieval, and reconsolidation during contextual
fear conditioning.
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Introduction

Dendritic spines are small actin-rich protrusions from neuro-
nal dendrites that comprise post-synaptic sites and receive the
majority of excitatory synaptic inputs in the brain [1–5].
Modifications in dendritic spine numbers and morphology
are highly dynamic and support several forms of synaptic
plasticity, including learning and memory [4, 6–8].

NMDA receptor (NMDAR) activation and Ca2+ influx are
the two main events that occur at the hippocampal synapses
following the induction of long-term potentiation (LTP) and
memory acquisition [9–11]. Shortly after a series of essential
processes including cytoskeleton rearrangement, AMPA re-
ceptor (AMPAR) trafficking and protein synthesis occur in
order to induce the establishment of long-term memory
(LTM). Importantly, the modulation and stabilization of excit-
atory transmission—which involves the insertion of glutamate
receptors into the post-synaptic membrane—that follow LTP
induction or learning are controlled by actin dynamics and
changes in dendritic spines [7, 12–14].

Several studies have demonstrated a close relationship be-
tween the increase in spine number and spine size after LTP
induction [1, 15–17]. In fact, dendritic structural changes
followed by LTP (spine enlargement) are induced by cofilin
translocation in response to an NMDAR-dependent activity
[18]. On the other hand, a decrease in the same dendritic spine
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parameters underlies long-term depression (LTD), which is
the main mechanism underpinning spine shrinkage [19, 20].

Currently, the pathways involving the Rho family of small
GTPases, such as RhoA, Rac1, and Cdc42, have been care-
fully studied together with actin dynamics and memory pro-
cessing [21–24]. Inhibition of the Rho-associated kinase
(ROCK) in the lateral amygdala impairs the formation of
long- but not short-term fear memory [25].

The p21-activated kinase (PAK), another critical regulator
of actin remodeling, which is activated downstream of Rac1
and Cdc42 signaling [26], has been suggested to be crucial in
dendritic spine/synapse loss and memory deficits associated
with Alzheimer’s disease [27, 28]. Recently, the pharmacolog-
ical activation of Rac1 has been shown to enhance fear extinc-
tion memory [29]. Additionally, inhibition of Rac1 in the dor-
sal hippocampus was able to disrupt contextual fear memory
reconsolidation [30].

Both the Rac1/PAK and RhoA/ROCK signaling pathways
activate the LIM kinase (LIMK), which is involved in actin
dynamics and synaptic plasticity [31, 32]. When activated,
LIMK induces actin polymerization through the phosphoryla-
tion of cofilin. Specifically, in its unphosphorylated state,
cofilin depolymerizes actin, but its depolymerizing activity
is inhibited when it is phosphorylated by LIMK [23, 33–35].
Indeed, Rac1/PAK- and RhoA/ROCK-induced cofilin reorga-
nization of actin can be blocked by LIMK inhibition [36, 37].
LIMK knockout mice present markedly diminished levels of
phosphorylated cofilin and exhibit several abnormalities in
dendritic spine morphology and synaptic transmission [20,
38]. Moreover, they show changes in the LTP profile [38] as
well as memory deficits in the Morris water maze and cue fear
conditioning [20, 38]. Although this interesting study shed
new light on the role of LIMK in memory [20, 38], it is pos-
sible that other proteins can compensate for the absence of
LIMK in these transgenic mice. Indeed, testicular protein ki-
nase (TESK) can also inactivate cofilin [39]. Also, these
LIMK knockout animals present behavioral abnormalities that
go beyond mnemonic processes, such as motor changes [40].
Moreover, since these animals do not express LIMK through-
out their lives, it is not possible to determine whether the
memory effects are related to memory acquisition, consolida-
tion, and/or retrieval deficits. Additionally, we have recently
suggested that LTP de-potentiation during memory forgetting
rely on spine shrinkage controlled by LIMK activity [41].

Considering (1) the existence of a striking association be-
tween synaptic plasticity and dendritic spine remodeling
through actin dynamics; (2) actin dynamics are regulated by
the Rac1/PAK and RhoA/ROCK pathways; and (3) LIMK is
the common convergent downstream enzyme of both path-
ways: in the present study, we evaluated the effects of hippo-
campal inhibition of LIMK on memory acquisition, consoli-
dation, retrieval, reconsolidation, and extinction in the contex-
tual fear conditioning in rats.

Methods

Animals

Male Wistar rats (age 2–3 months, weight 290–350 g) from
our breeding colony were used. Animals were housed in plas-
tic cages, four to five per cage, with water and food available
ad libitum under a 12/12 h light/dark cycle (lights on at 7 a.m.)
in a constant temperature of 24 ± 1 °C. All experiments were
performed in accordance to the national animal care legisla-
tion and guidelines (Brazilian Law 11.794/2008) and ap-
proved by the Ethics Committee of the Federal University of
Rio Grande do Sul.

Stereotaxic Surgery and Cannula Placement

Rats were deeply anesthetized by an i.p. injection of ketamine/
xylazine (75 and 10 mg/kg, respectively) and bilaterally im-
planted in the brain targeting the dorsal hippocampus, with
27-gauge guide cannula. Coordinates for hippocampus cannu-
lation were anterioposterior (AP) −4.0 mm (from bregma),
laterolateral (LL) ±3.0 mm, and dorsoventral (DV)
−1.6 mm, positioned just 1.0 mm above the CA1 area of the
dorsal hippocampus [42]. Before the behavioral tests, animals
were allowed a recovery period of 5–7 days. Following the
behavioral experiments, subjects were sacrificed and their
brains were dissected and preserved in 10% formaldehyde to
verify for cannula position. Only animals with correct cannula
placements were included in the statistical analysis.

Drugs and Administration

BMS-5 (Tocris), a potent non-specific LIM kinase inhibitor,
was prepared in a vehicle solution (1% DMSO in sterile iso-
tonic saline). At the time of infusion, a 30-gauge infusion
needle was fitted into a guide cannula, with its tip protruding
1.0 mm beyond the guide cannula end and aimed at the pyra-
midal cell layer of CA1 of the dorsal hippocampus. Avolume
of 1 μl of BMS-5 (20 and 200 μM) or vehicle (DMSO 1%)
was bilaterally infused in a time of 90 s. The doses of BMS-5
were based on its IC50 value (provide by the manufacturer)
and in vitro studies [43, 44].

Open-Field Test

The OF chamber consisted of a 50-cm high, 60 × 40-cm
plywood box with a linoleum floor divided into 12 equal
rectangles or Bsectors.^ Animals were exposed for 5 min,
and the number of crossings between sectors was regis-
tered. The number of crossings was considered a measure
of motor performance.
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Measurement of Pain Threshold

Animals were placed individually into the conditioning cham-
ber. After a 3 min exposure, animals received a series of 1 s
electric foot shocks, starting at an intensity of 0.1 mA. The
intensity was increased by 0.1 mA every 30 s between suc-
cessive stimuli until the rats showed the first sign of pain
(jumping or vocalizing), and the corresponding value was
defined as the pain threshold.

Contextual Fear Conditioning

The conditioning chamber (context) consisted of an illuminat-
ed Plexiglas box (25.0 × 25.0-cm grid of parallel 0.1-cm cal-
iber stainless steel bars spaced 1.0 cm apart). The illumination
inside the room was ∼400–800 lx. In the conditioning session
(training), rats were placed in the chamber for 3 min for ha-
bituation and then received two 2 s foot shocks, of 0.5 mA,
separated by a 30 s interval. Before returning to their home
cages, animals were kept in the conditioning environment for
an additional 30 s.

Reactivation session Depending on the experiment per-
formed, subjects were reexposed to the context, 2 days after
training without foot shocks, during 7 min to induce memory
reconsolidation.

Extinction session Depending on the experiment performed,
subjects were reexposed to the context, 2 days after training
without foot shocks, during 30 min to induce memory
extinction.

Test session Animals were tested for 4 min in the same
context.

Behavioral Measurement

Freezing behavior was used as a memory index, being regis-
tered using a stopwatch in real time by an experienced observ-
er that was unaware of the experimental conditions. Freezing
was defined as total immobilization except for movements
required for respiration [45].

Statistical Analysis

Since data from all experimental groups was proven to
be both homoscedastic and normally distributed
(Kolmogorov-Smirnov test with Lilliefors correction,
P > 0.05), results were analyzed with dependent and
independent t test, one-way ANOVA, or repeated mea-
sures ANOVA followed by a Fisher’s (LSD) post hoc
test for within and between comparisons. Significance
level was set at P < 0.05.

Results

Hippocampal LIMK-Mediated Signaling Controls
Memory Consolidation for Contextual Fear

Immediately after training to fear conditioning, memory be-
comes labile and sensitive to modulation, in which it may be
strengthened or disrupted. Gradually, memory is transformed
into a more stable form. This post-acquisition process of sta-
bilization is called consolidation [46, 47].

Learning induces changes in the size and number of den-
dritic spines [48, 49]. Since LIMK plays an important role in
actin cytoskeleton reorganization, spine morphology, and LTP
induction [20, 50, 51], we hypothesized that LIMK inhibition
would affect memory consolidation. In order to address this
question, the LIMK inhibitor BMS-5 (20 or 200 μM/side) or
vehicle was bilaterally infused into the hippocampus of rats
immediately after contextual fear conditioning training. Rats
were tested for memory consolidation 48 h after fear condi-
tioning (Fig. 1a).

One-way ANOVA revealed significant effects of treatment
(Fig. 1b, F2,23 = 5.680, P = 0.009). Post hoc analysis showed
that the group treated with 200 μM BMS-5 expressed lower
freezing levels compared to the 20 μM and vehicle groups
(P < 0.01). These results show that the hippocampal LIMK
inhibition immediately after training disrupts memory
consolidation.

An additional experiment was performed in order to test if a
short-term fear memory (STM) could be affected by LIMK
inhibition. Animals were infused with 200 μMBMS-5 imme-
diately after training and were tested in the same context 2 h
later (Fig. 1c). No significant difference was found between
both groups, BMS-5 and vehicle, in the test (Fig. 1d,
P = 0.1565 in Student’s t test), suggesting that actin dynamics
briefly after training is not crucial to STM expression.

Inhibition of Hippocampal LIMK Activity Disrupts
the Acquisition of Contextual Fear Memories

Previous studies have reported that local administration of
cytochalasin D, an actin polymerization inhibitor, impairs
long-term fear memory when applied immediately before
training [52, 53]. Since 200 μM BMS-5 was able to impair
memory consolidation, next, we addressed whether LIMK
activity would play a role in the acquisition of contextual fear
memories. BMS-5 (200 μM) or vehicle were infused into the
dorsal hippocampus of rats 20 min before training (Fig. 2a).
Animals infused with BMS-5 expressed lower freezing levels
in the test compared to the vehicle group (Fig. 2b, P = 0.023 in
Student’s t test). Our findings indicate that memory acquisi-
tion requires LIMK activity, suggesting that contextual fear
conditioning involves immediate changes in actin reorganiza-
tion within the hippocampus. In order to rule out the
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possibility that the BMS-5 could induce non-mnemonic ef-
fects, animals received intra-hippocampal infusion of
BMS-5 or vehicle and, 20 min later, were tested either in
open-field locomotor activity test or in a pain sensitivity test.
No significant difference between the groups were found in

the crossings during an open-field task (Fig. 2c, P = 0.4148
Student’s t test) or pain sensitivity to a rising electric foot
shock (Fig. 2d, P = 0.5796 in Student’s t test).

LIMK Activity Is Necessary for Memory Retrieval

Some evidence suggests that memory retrieval is not a passive
process. For instance, a recent study demonstrated that

Fig. 2 LIMK inhibition prevented learning. The graph shows the
percentage of freezing time expressed as mean ± SEM. a Experimental
design: animals were injected with either vehicle (DMSO 1%) or BMS-5
200 μM 20 min prior conditioning CTX and tested 2 days later to
evaluate memory acquisition. b During the test, animals infused within
dorsal hippocampus with BMS-5 200 μM showed less freezing levels
than the vehicle group (the asterisk indicates P < 0.05, Student’s t test,
N = 10 for both groups).c BMS-5 200 μM injection has no effects in
motor activity (P = 0.4148 in Student’s t test, N = 5–6) as well as in (d)
pain sensitivity (P = 0.5796 in Student’s t test, N = 5)

Fig. 1 LIMK activity regulates memory consolidation at higher dose.
The graph shows the percentage of freezing time expressed as
mean ± SEM. a Experimental design: animals were injected with either
vehicle (DMSO 1%) or BMS-5 at two different concentrations, 20 and
200 μM, immediately after conditioning CTX and tested 2 days later for
memory consolidation. b During the test, only animals infused within
dorsal hippocampus with BMS-5 at 200 μM expressed lower freezing
levels (the asterisks indicate P < 0.01, Fisher’s LSD post hoc test after
one-way ANOVA—vehicle, N = 9; BMS-5 20 μM, N = 8; BMS-5
200 μM, N = 9). c Experimental design: animals were injected with
either vehicle (DMSO 1%) or BMS-5 at 200 μM immediately after
conditioning CTX and tested 2 h later for short-term memory
formation. d No difference on freezing levels was found between the
groups (P = 0.1565 in Student’s t test—vehicle, N = 13; BMS-5
200 μM, N = 14)
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retrieval of auditory fear memories depends on protein syn-
thesis and NMDAR activity-mediated AMPAR trafficking
[54]. Since AMPAR trafficking has been shown to be highly
dependent on the structure and turnover rates of actin fila-
ments [12, 14, 55], we hypothesized that LIMK inhibition
could affect memory retrieval.

In order to address this question, BMS-5 (200 μM) or ve-
hicle was infused into the dorsal hippocampus of rats 20 min
before the test (Fig. 3a). Animals infused with BMS-5
expressed lower freezing levels compared to the vehicle group
(Fig. 3b, P = 0.005 Student’s t test). These results show that
pre-test inhibition of LIMK in the hippocampus impairs mem-
ory retrieval. It also suggests that this process requires an
ongoing balance between actin polymerization and depoly-
merization (and ultimately spine morphology) in order to re-
trieve memory.

LIMK Inhibition Disrupts Memory Reconsolidation

Fear memory retrieval in the absence of the unconditioned
stimulus (foot shock) could permit two different post-retrieval
processes: reconsolidation or extinction. Previous experiments
from our lab demonstrated that a reexposure session with a
duration similar to the one used here was able to turn memory
susceptible to modifications via reconsolidation [41, 56].
However, whether actin dynamics mediated by LIMK are cru-
cial for memory reconsolidation is still an open question. Thus,
in order to address this possibility, animals were infused with

BMS-5 (200μM) or vehicle into the hippocampus immediately
after the reexposure to the training context (retrieval, 7 min) and
tested 24 h later (Fig. 4a). Repeatedmeasures ANOVA revealed
significant effects of treatment (vehicle or LIMK; F1,16 = 4.854,
P = 0.042) and interaction of treatment × time (reactivation vs.
test; F1,16 = 17.461, P =<0.001) but not for time (F1,16 = 0.981,
P = 0.336). Fisher’s (LSD) post hoc analysis showed that ani-
mals treated with intra-hippocampal LIMK inhibitor expressed
less freezing compared to vehicle during the test (P < 0.01) and

Fig. 3 Memory retrieval is sensible to LIMK inhibition. The graph
shows the percentage of freezing time expressed as mean ± SEM. a
Experimental design: animals were injected with either vehicle (DMSO
1%) or BMS-5 200 μM 20 min prior the test and freezing levels were
analyzed subsequently. b Animals that received BMS-5 200 μM within
the dorsal hippocampus expressed lower freezing levels compared to the
vehicle group (the asterisks indicate P < 0.01, Student’s t test—vehicle,
N = 6; BMS-5 200 μM, N = 8)

Fig. 4 After retrieval, blockade of LIMK activity impairs memory
reconsolidation. The graph shows the percentage of freezing time
expressed as mean ± SEM. a Experimental design: animals were
injected with either vehicle (DMSO 1%) or BMS-5 200 μM
immediately after reexposure to the conditioning CTX (reactivation,
7 min) and tested 24 h later. b During the test, animals that were
infused with BMS-5 200 μM within dorsal hippocampus showed less
freezing levels than the vehicle group (the asterisks indicate P < 0.01,
ANOVA for repeated measures with Fisher’s LSD post hoc analysis—
vehicle, N = 8; BMS-5 200 μM, N = 7). c Experimental design for non-
reactivation test: animals were injected either vehicle (DMSO 1%) or
BMS-5 200 μM 2 days after training and tested 24 h later. d No
difference on freezing levels was found between the groups
(P = 0.4800 in Student’s t test, N = 8–9)
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during the test compared to the reactivation session (P < 0.01)
(Fig. 4b). These results indicate that LIMK inhibition disrupts
reconsolidation, suggesting that memory reactivation induces
an actin remodeling process that requires LIMK activation in
order to maintain LTM.

Additionally, we performed a test without memory reacti-
vation (Fig. 4c) in order to rule out the possibility of unspecific
effects of BMS-5 administration and the necessity of actin
rearrangement triggered by memory reactivation [57]. We
found no differences between the groups (Fig. 4d,
P = 0.4800 Student’s t test). This result suggests that LIMK
activity is essential only when reconsolidation induces synap-
tic plasticity associated to destabilization/reconsolidation
process.

Contextual Fear Extinction Is Not Sensitive to LIMK
Inhibition in the Hippocampus

Fear extinction depends on the inhibition of previously ac-
quired memories. However, in contrast to reconsolidation,
the original fear memory may return over time or can be rein-
stated by presenting the unconditioned stimulus [58].

In order to evaluate the involvement of LIMK activity dur-
ing contextual fear extinction, BMS-5 (200 μM) or vehicle
was infused into the dorsal hippocampus of rats 20 min before
the extinction session (Fig. 5a). Repeated measures ANOVA
revealed significant effects of time (0–5 vs. 25–30 min;
F1,16 = 6.426, P = 0.021) but not treatment (vehicle vs.
BMS-5; F1,16 = 3.512, P = <0.079) and a time × treatment

interaction (F1,16 = 1773, P = 0.201). Post hoc analysis
showed that animals treated with intra-hippocampal LIMK
inhibitor expressed less freezing compared to vehicle during
the first 5 min of the extinction session (P < 0.05), as verified
in our previous experiments with memory retrieval showed
previously. The vehicle group was able to extinguish fear
memory, since in the last 5 min of the extinction session,
animals expressed less freezing compared to the first 5 min
(P < 0.05; Fig. 5b). No differences were detected within the
BMS-5 group during the extinction session.

During the test performed 24 h after fear extinction and
spontaneous recovery session, repeated measures ANOVA
revealed significant effects of time (test vs. spontaneous re-
covery; F1,16 = 13.949, P = 0.001) but not for treatment (ve-
hicle vs. BMS-5; F1,16 = 0.750, P = 0.398). No significant
time × treatment interaction was observed (F1,16 = 0.057,
P = 0.813). Post hoc analysis showed that both the vehicle
and the BMS-5 groups expressed more freezing during the
spontaneous recovery session compared to the test 24 h after
extinction (P < 0.05), demonstrating that fear responses
returned independent of LIMK inhibition (Fig. 5b).

Consistent with our results upon retrieval, hippocampal
LIMK inhibition was able to impair memory expression dur-
ing the extinction session; however, the absence of behavioral
fear response within the extinction session did not prevent the
acquisition of fear extinction. These findings suggest that actin
dynamics mediated by hippocampal LIMK during memory
retrieval can take place in parallel to additionally plastic events
that occur during fear extinction.

Discussion

Our findings provide evidence for a central role of LIMK
activity in different memory processes in the hippocampus.
Using a potent LIMK inhibitor (BMS-5), here, we demon-
strate that LIMK activity in the hippocampus is necessary
for consolidation, acquisition, retrieval, and reconsolidation
of contextual fear conditioning in rats. Surprisingly, only fear
extinction was resistant to LIMK manipulation, allowing the
natural course of fear extinction acquisition and subsequent
spontaneous recovery.

Actin remodeling plays a pivotal role in the structural plas-
ticity involved in LTP induction and memory formation
[59–61]. LIMK is the convergent node of two key upstream
pathways controlling spine morphogenesis—the Rac1/PAK
and RhoA/ROCK cascades. We chose to inhibit LIMK be-
cause it controls cofilin, a crucial regulator of actin dynamics
[36, 37]. The phosphorylated form of cofilin prevents the
cleavage and de-polymerization of actin filaments [55]. It
has been showed that LIMK-1 knockout mice exhibit changes
in LTP, fear conditioning, and spatial learning [20, 40]. Our
results are consistent with this evidence, since BMS-5 was

Fig. 5 Contextual fear extinction was not sensitive to LIMK inhibition.
The graph shows the percentage of freezing time expressed as
mean ± SEM. a Experimental design: animals were injected with either
vehicle (DMSO 1%) or BMS-5 200 μM 20 min prior the extinction
session (30 min) and tested 24 h later. b Animals infused with BMS-5
200 μM within dorsal hippocampus expressed less freezing levels than
the vehicle group during the first 5 min of extinction session, and all
groups expressed spontaneous recovery (SR) (the asterisk indicates
P < 0.05, ANOVA for repeated measures with Fisher’s LSD post hoc
analysis—vehicle, N = 10; BMS-5 200 μM, N = 8)

Mol Neurobiol



able to impair memory acquisition (Fig. 2b) and consolidation
(Fig. 1b) of contextual fear conditioning. Studies in cultured
hippocampal neurons using latrunculin A, a compound able to
disrupt actin filaments, showed that actin de-polymerization
elicits NMDA and AMPA receptor internalization that re-
quires stable F-actin [62]. It is well known that NMDA recep-
tors lead to the activation of intra-cellular cascades such as
calcium-dependent enzymes and AMPAR trafficking [63,
64]. NMDAR also triggers the structural and functional
changes in dendritic spines that are characteristic of LTP in-
duction [18]. Therefore, we suggest that LIMK inhibition may
disrupt the early stages of synaptic potentiation during mem-
ory LTM acquisition and consolidation, while short-term
memory is unaffected (Fig. 1d). Accordantly, several studies
have demonstrated that actin polymerization processes are not
needed for generate LTP, but it is essential for LTP endurance
[65, 66; see review in 47].

Retrieval of cue fear conditioning leads to the rapid inser-
tion of CP-AMPAR and removal of CI-AMPAR via endocy-
tosis of GluA2 into lateral amygdala synapses [67]. Because
GluA2 controls spine size and density in hippocampal neu-
rons [68], these results led us to hypothesize that cytoskeletal
reorganization could be a critical step during the retrieval of
contextual fear memories. In fact, it has been recently shown
that ongoing protein synthesis is required to retrieve fear
memories by controlling AMPAR expressions in the PSD
[54]. Here, we demonstrated that LIMK inhibition was able
to disrupt fear memory retrieval, suggesting that retrieval is an
active process relying on actin remodeling mechanisms.
Interestingly, MAPK activity related to memory retrieval is
also known to phosphorylate cortactin, a structural protein
associated with actin, which promotes changes within spines
via F-actin and actin-related protein (Arp) 2/3 complexes [69].
Taken together with the present study, these results suggest
that memory retrieval is a dynamic process mediated by con-
stant actin recasting that in turn depends on AMPAR
trafficking.

Reactivation of an established memory might result in a
new labile state that needs to be reconsolidated in order to
persist and requires de novo protein synthesis [54]. Some
studies suggest that stable dendritic spines provide a physical
basis for memory persistence [70, 71]. We found that LIMK
inhibition immediately after memory reactivation impairs
memory reconsolidation. These findings indicate that reacti-
vation may convert the dendritic spine to a labile state that
requires a rearrangement mediated by actin dynamics in order
to persist. If such a process is disrupted, memory is lost. In
fact, Rao-Ruiz and colleagues (2011) have shown that mem-
ory reactivation induces AMPAR endocytosis followed by
upregulation of AMPAR exocytosis a few hours later. This
AMPAR endocytosis/exocytosis cycle allows memories to
be updated [72]. We suggest that this AMPAR trafficking,
mediated by memory reactivation, may be accompanied by

spine modification via LIMK. Our results are consistent with
previous reports showing that inhibition of Rac1 (which re-
duces spine number and density) disrupts reconsolidation of
cue and contextual fear conditioning [30] and cocaine-induced
conditioned place preference [73]. Importantly, Rac1-/
cofilin-induced reorganization of actin can be prevented by
LIMK inhibition [36, 37].

Memory reconsolidation and extinction have been recog-
nized as two faces of the same process [74]. Using a
two-photon microscopy and YFP-expressing transgenic mice,
Lai et al. (2012) [75] demonstrated that, during cue fear con-
ditioning, foot shock increased the rate of spine elimination in
layer V pyramidal neurons in the dorsal medial region of the
frontal association cortex. On the other hand, extinction in-
creased the rate of spine formation. Spine elimination and
formation processes occurred on the same dendritic branches,
but not in the same dendritic spines, suggesting that fear con-
ditioning and extinction have parallel dendritic spine dynam-
ics. Our result showed that, even when treated with the LIMK
inhibitor BMS-5, animals were able to acquire and consolidate
fear extinction; however, those animals treated with the inhib-
itor presented significantly lower fear expression in the first
minutes of the extinction session. Additionally, LIMK inhibi-
tion had no effect on subsequent spontaneous recovery. How
can fear extinction memories be established without the prop-
er fear expression? Delorenzi et al. [76] proposed that memory
expression could occur independent of the molecular events
triggered by memory reactivation. Accordingly, several stud-
ies have shown that memory reconsolidation can be disrupted
by amnestic treatments independent of adequate memory re-
trieval [77–79]. We suggest that LIMK inhibition before fear
extinction impairs specific mechanisms associated with mem-
ory retrieval without interfering with memory extinction, at
least in the hippocampus. Indeed, this result differs from a
previous report showing that cytochalasin D administration
after repetitive and brief context exposure disrupts fear extinc-
tion [80]. Other studies have also shown the involvement of
actin dynamics for memory extinction. For instance, it has
been described the Rac1-Cdk5-PAK1 signaling pathway inhi-
bition impairs memory extinction [81]. A recent work has
shown that the inhibition of hippocampal Rac1 activity im-
paired extinction of contextual fear memory, suggesting a role
for Rac1 in fear memory persistence [29]. In the extinction of
conditioned taste aversive (CTA) memory, it was observed
that there is a temporally enhancement of ADF/cofilin activity
in rat infralimbic cortex [13]. Thus, we do not rule out the
possibility that the LIMK-cofilin pathway plays a role in the
consolidation of fear extinction and future experiments should
be conducted to investigate actin dynamics along with differ-
ent times of context exposure. Moreover, it is possible that
other brain structures such as amygdala and medial prefrontal
cortex (mPFC) could be the principal locus of LIMK activity
in order to acquire or consolidate contextual fear extinction.
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Conclusions

The results presented here reveal a broad spectrum of LIMK
activity in regulating actin dynamics during the processing of
contextual fear memories. Importantly, our pharmacological
experiments complement previous genetic approaches while
avoiding the compensatory mechanisms that could emerge in
knockout mice. Moreover, this pharmacological approach al-
lows the specific evaluation of the role of LIMK in different
memory phases in the hippocampus. To our knowledge, this
study is the first to demonstrate that LIMK activity is required
for memory acquisition and consolidation and that actin dy-
namics mediated by LIMK are necessary for fear retrieval and
memory reconsolidation. However, if the reactivation session
is extended in order to promote extinction, LIMK inhibition
does not affect the subsequent fear expression, suggesting that
cytoskeletal reorganization during retrieval/reconsolidation
and extinction are independent mechanisms. Altogether, these
results demonstrate that contextual fear memories are regulat-
ed by hippocampal LIMK activity and suggest that pharma-
cological modulation of LIMK may represent a promising
therapy for fear-related disorders.
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