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TSSs are defined by the core promoter, a complex DNA element 
that facilitates recruitment of the basal transcriptional machinery  
and RNA polymerase II (RNA Pol II)1–3 in addition to providing 
specificity for interactions with particular enhancers4–10. Methods 
such as cap analysis of gene expression (CAGE)11,12 map TSS posi-
tion at single-nucleotide resolution and provide a global view of  
TSS distribution within a promoter11,13,14. This has led to the clas-
sification of animal promoters into two major types3,15. Narrow pro-
moters, typical of genes with restricted tissue-specific expression, 
are often associated with positioned motifs such as the TATA box  
or initiator (Inr), and have a single predominant TSS. Broad promoters,  
typical of ubiquitously expressed genes, have more dispersed  
patterns of transcriptional initiation and do not contain a TATA box16–19.  
Broad promoters were initially associated with mammalian CpG 
island promoters11 but later found to be common in Drosophila20,21, 
indicating that they function independently of the CpG island itself. 
Broad and narrow promoters also have differences in the positioning 
and histone modifications of the first nucleosome downstream of the 
promoter22–24, suggesting different regulatory mechanisms.

Although both promoter classes are found in organisms ranging 
from flies to humans11,14,23, their inherent functional differences are 
not understood. Cross-species studies indicate that promoter shape 
is generally conserved11,25, suggesting functional importance, yet 
the natural variability of promoter shape within populations and its 
genetic determinants and evolutionary constraints are unknown.

Studies of expression quantitative trait loci (eQTLs) in human26–28 
and model systems29–32 have identified extensive functional genetic 
variants in the vicinity of promoters that affect transcript abun-
dance. This suggests that natural sequence variation within a highly 
polymorphic species such as Drosophila melanogaster could also be 
used as a perturbation tool to gain mechanistic insights into pro-
moter function by testing for associations with complex molecular 
readouts. Following this rationale, we used CAGE12,33 sequencing 
across a panel of 81 Drosophila melanogaster inbred lines to investi-
gate genetic effects on 5′ transcriptional initiation at single-base-pair 
resolution during embryonic development. Mapping TSS-associated 
QTLs (tssQTLs) using CAGE-derived phenotypes highlighted three 
types of associations: variants affecting transcript abundance (either 
promoter strength or transcript turnover), variants affecting pro-
moter shape (a new genetic trait), or variants affecting both. Genetic 
variants primarily associated with promoter shape are located within 
the core promoter region itself. Using a single-cell quantitative assay 
combined with promoter engineering, we found that tssQTLs affect-
ing promoter shape typically increase expression noise. In their natu-
ral sequence context, this noise effect was often buffered by other 
variants within the promoter, suggesting that promoter shape–asso-
ciated variants, although frequent, are found only in specific allelic 
combinations. Taken together, our results identify promoter shape as 
a genetically controlled molecular trait with important implications 
for both promoter function and evolution.
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RESULTS
A strategy to map genetic determinants of TSS usage
As a source of genetic perturbations, we made use of the extensive 
natural sequence variation within Drosophila, which is characterized 
by inherently small (<5 kb) blocks of linkage disequilibrium (LD) and 
therefore well suited for high-resolution QTL mapping within endog-
enous core promoter elements. As part of the Drosophila Genetic 
Reference Panel (DGRP)34, wild D. melanogaster isolates were inbred 
to near homozygosity, representing near genetic clones. We selected 
81 unrelated lines and used CAGE to measure transcription initiation 
at base-pair resolution for each. Given the importance of specific pro-
moter types in the regulation of developmental and tissue-specific gene 
expression4,8–10,14,24,35, we studied promoter function during embry-
onic development. CAGE libraries were prepared from tightly staged 
embryos at three important transitions during embryogenesis (Fig. 1a): 
2–4 h after egg laying (AEL) (stages 5–8, early in development, includ-
ing blastula), 6–8 h AEL (stages 10–11, during major linage specifica-
tion in the mesoderm and ectoderm) and 10–12 h AEL (stages 13–14, 
terminal tissue differentiation). This yielded a total of 243 samples.

Prior to the genetic analysis of CAGE-derived phenotypes, we 
applied conservative filters to minimize potential biases due to dif-
ferential mappability (Online Methods). First, to avoid line-specific 
mapping effects, we created a ‘universal mappability map’ (UMM) of 
the reference genome that identifies all sites that can be accurately 
mapped across all lines. All genomic positions that failed to uniquely 
map DNA reads (using the same read length as CAGE) in even 1 of 
the 81 lines were excluded from the analysis (Online Methods), pro-
viding a conservative method to eliminate mapping biases and trivial 
associations with insertions or deletions (indels) segregating within 
the population. Second, to remove residual variation in mappability 
that may have escaped the UMM, we applied WASP, a computational 
method to identify potential biases in allele-specific read mapping36. 
To identify active promoters, both annotated and unannotated, we 
iteratively selected 1-kb windows centered on the highest CAGE peaks 
across the entire genome (Fig. 1a) until 99% of genomic regions with 
mapped CAGE signal (with >10 reads) were covered. This identi-
fied 13,249 transcriptionally active regions (windows) at one or more 
stages of embryogenesis (Supplementary Table 1).

We developed an analysis strategy to detect genetic effects on dif-
ferent traits derived from the CAGE signal. Specifically, we used prin-
cipal component (PC) analysis to project the full CAGE output within 
1-kb windows onto the first three PCs, which capture the major axes of 
covariation of individual bases in a promoter among Drosophila lines.  
These PC-based traits capture changes in total TSS usage (promoter 
strength) and in spatial distribution of CAGE signal (promoter shape) 
(Fig. 1b and Supplementary Fig. 1).

We then applied a multi-trait linear mixed model37–39 (LMM) to 
test for associations between genetic variants in 200-kb cis-regions 
centered on each active promoter window and the PC-based traits 
(Fig. 1a and Online Methods). This model extends existing LMMs 
to enable testing for genetic effects that are common or time- 
specific across developmental stages, and it accounts for genetic 
structure between lines as well as nongenetic correlations between 
traits (Online Methods). Using this approach, we tested ~2.2 mil-
lion common variants (minor allele frequency > 5%) extracted from 
the Freeze 2 genotype catalog for cis-associations34,40. After filter-
ing associations influencing intragenic CAGE clusters and variants 
disrupting the restriction site used for CAGE (Online Methods), we 
identified a high-confidence set of 4,075 promoters with a tssQTL 
(at genome-wide false discovery rate (FDR) < 0.01) (Supplementary 
Tables 2 and 3).

Almost 30% (1,183/4,075) of tssQTLs had a distinct lead vari-
ant (with P values more than an order of magnitude different from 
those of other variants), and more than 70% contained five or fewer 
equivalent lead variants. This suggests that our tssQTL set is highly 
enriched for causal variants affecting transcriptional initiation, which 
our experimental validation (described below) strongly supports.

The joint model using PCs as traits yielded greater power to detect 
tssQTLs, almost doubling the number of associations achieved with 
a conventional approach using mean CAGE signal as a trait (Fig. 1c),  
and detected a large set of additional regulatory associations (2,363) 
(Fig. 1c and Supplementary Table 3). These PC-based tssQTLs 
included both ‘simple’ associations, in which the genetic variant 
influences transcript abundance, affecting all TSSs within a promoter 
in the same direction (abundance QTLs) (Fig. 1d), and more com-
plex QTLs, where transcription is affected in opposite directions at 
different TSSs in the promoter (promoter shape QTLs) (Fig. 1d). 
Notably, the majority of tssQTLs consistently affected transcriptional 
initiation at all three time points tested (Supplementary Fig. 2), with 
only 5.2% (210/4,075) showing evidence of stage-specific effects 
(Supplementary Table 3 and Online Methods). Moreover, tssQTLs 
for alternative promoters for the same gene appeared independent, 
showing no evidence for coordinated changes that would suggest 
compensation between TSSs (Supplementary Fig. 3).

Single-bp effect sizes distinguish three classes of tssQTL
Whereas PC-based LMM provides an excellent method to discover 
genetic variants associated with abundance and shape changes, it does 
not show the extent to which a tssQTL affects individual bases, infor-
mation that is important to dissect their mechanisms. To obtain such 
spatially resolved effect sizes, we applied a wavelet-based decomposi-
tion model41 to the raw CAGE signal using the set of tssQTLs (Online 
Methods and Supplementary Fig. 4). The wavelet analysis assesses 
genetic effects on the CAGE signal in the entire window, on halves 
of the window, on halves of these halves, and so on until reaching 
effect size estimates at base-pair resolution. By specifically targeting 
the tssQTLs discovered in the PC-based approach, we limited the 
computational burden of the wavelet analysis while gaining effect size 
estimates at high spatial resolution. This identified the most affected 
TSSs within promoters that have multiple initiation sites (Fig. 2a). 
This modeling approach also yielded a Bayes factor (BF) for evidence 
of associations at different spatial scales (wavelet coefficients (WCs)), 
which estimates the extent to which any tssQTL affects transcript 
abundance or promoter shape (Fig. 2a, Supplementary Fig. 4 and 
Supplementary Table 3). tssQTLs that affect the first WC capture 
effects on transcript abundance, as shown for CG11164 (Fig. 2a). 
Alternatively, tssQTLs with little (or no) evidence of effects on the 
first WC but genetic effects on higher-order WCs capture nonhomo-
geneous effects, which affect specific TSSs, resulting in changes of 
promoter shape, as illustrated by CG7927 (Fig. 2a).

Different spatial architectures of tssQTLs are also evident in the 
single-base effect size estimates (Fig. 2a), which we used to classify 
individual tssQTLs more formally (Online Methods). Plotting the 
sum of effect sizes for positions with an effect in the same direc-
tion as the most affected TSS (primary direction) (Fig. 2a) versus 
the sum of effect sizes of positions with opposite effects (second-
ary direction) highlighted three types of tssQTL (Fig. 2b and Online 
Methods). Abundance QTLs (28.7% of tssQTLs, 1,171/4,075) are pri-
marily associated with the mean CAGE signal (first WC) (Fig. 2b)  
and therefore are likely to affect promoter strength and transcrip-
tional and/or post-transcriptional regulation. Shape QTLs (40.5% of 
tssQTLs, 1,649/4,075) are associated with changes in the distribution  



©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

Nature Genetics  ADVANCE ONLINE PUBLICATION	 �

A rt i c l e s

of TSSs (promoter shape), with little or no evidence of a change in 
mean signal, indicating that transcriptional changes at one posi-
tion (primary direction) are balanced by transcriptional changes at 
another (secondary direction). Consequently, these are located close 
to the diagonal (Fig. 2b). Mixed QTLs (30.8%, 1,255/4,075) affect 
both transcript abundance and promoter shape and populate regions 
above and below the diagonal (Fig. 2b).

Shape and abundance tssQTLs have different properties
Genetic variants associated with shape and abundance tssQTLs pref-
erentially occurred in different genomic contexts: variants in active 
promoter regions, for example, were enriched for shape QTLs and 
low in abundance QTLs (Fig. 3a and Online Methods). Similarly, 
genetic variants in promoter-proximal DNase I–hypersensitive sites 
(DHS) were 3–4 times more likely to harbor shape tssQTLs than 
abundance tssQTLs (Fig. 3a). In contrast, coding regions and the 
3′ UTR were enriched for abundance QTL (odds ratio (OR) > 2 and 

> 4, respectively). Consistent with this, lead variants of shape QTLs 
were concentrated in core promoter regions (±100 bp around the TSS;  
Fig. 3b), whereas abundance QTLs were more dispersed and biased 
toward locations downstream of the TSS (Fig. 3b).

The single-base-pair effect size estimates derived from the wavelet 
analysis enabled us to more accurately survey the positions of lead 
variants relative to the most affected TSSs within promoters. This 
enhanced resolution showed that shape QTLs tend to be located in 
bases immediately adjacent to the affected TSS (Fig. 3b). This posi-
tion strongly suggests that shape tssQTLs have local effects that are 
likely to involve sequence changes that strengthen or weaken motifs 
around the TSS itself (a hypothesis we confirm below).

Taken together, these results provide the first insights into how 
common genetic variants affect endogenous transcription initiation 
sites, highlighting promoter shape as a genetically regulated trait. The 
prevalence of shape tssQTLs at core promoter regions indicates exten-
sive functional genetic variation within the population, specifically 
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Figure 1  Identification of tssQTL using 5′ CAGE and PC analysis. (a) Experimental design for QTL calling. CAGE reads from embryonic samples  
(81 lines, 3 developmental stages) clustered into 13,249 1-kb regions (TSS cluster window) and tested for association with variants ±100 kb.  
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affecting the distribution of TSS usage within a promoter without 
necessarily affecting transcript abundance. Consequently, promoter 
shape may evolve freely as an independent trait from overall tran-
script levels.

Lead variants are causal, affecting core promoter motifs
To assess the functional consequence of genetic variants on promoter 
activity, we designed a single-cell-based assay to quantify expression 
of a promoter across thousands of individual cells using analytical 
flow cytometry (Fig. 4a). We selected eight representative promot-
ers, across all three types of tssQTL, that (i) had a distinct lead vari-
ant in the promoter region and (ii) induced a measurable change in 
expression in the cell culture assay. We then compared the promoter 
activity for a natural major and minor allele haplotype, as well as an 
engineered promoter with the minor allele lead variant placed into 
the major allele background (Majmin). The tssQTL for CG31436, for 
example, is due to a minor allele variant that creates an Inr motif, 
resulting in increased promoter strength (Fig. 4b). Placing the minor 
allele into the major haplotype reproduced this effect, thus confirming 
that the tssQTL lead variant is the causal SNP. Similarly, the QTL for 
CG12576 is due to a SNP that destroys an instance of motif 1 (ref. 42)  
in the minor allele, thereby reducing promoter activity (Fig. 4b). 
Again, allele replacement of the minor allele into the major haplotype 
phenocopied the promoter activity of the natural minor haplotype. 

We confirmed the function of the remaining six tssQTLs in an analo-
gous manner (Supplementary Fig. 5), demonstrating that the lead 
variants of all eight tested tssQTLs were causal, as measured by their 
effect on expression in the reporter assay (Fig. 4b and Supplementary 
Fig. 5). Taken together, the results of this validation strongly suggest 
that the 4,075 tssQTLs are highly enriched for causal variants, with 
sufficient resolution to pinpoint functional motifs.

To more globally dissect the underlying mechanism of tssQTLs, 
we used de novo motif discovery on all active promoters to identify 
potentially novel core promoter motifs (Online Methods). By com-
bining reads from all lines and time points, we obtained sequence 
information of TSSs at depths (~2.6 × 109 uniquely mapped reads) 
unprecedented for these stages of embryogenesis. This enabled  
us to recover all eight common Drosophila core promoter motifs20  
and discover 22 new motif clusters, 15 of which were enriched at 
specific positions with respect to the main TSS, suggesting a specific 
function in transcription initiation (Supplementary Table 4 and 
Online Methods).

Promoter motifs with specific positioning relative to the TSS 
(upstream, at the TSS, or downstream) were globally enriched  
for tssQTLs, even when compared to promoter motifs that lack  
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preference in their localization, strand, or promoter type (nonspe-
cific motifs), with no significant differences between tssQTL types 
(Fig. 4c). Moreover, the direction of motif changes caused by tssQTLs 
was largely concordant with the observed direction of effect on tran-
script abundance or promoter shape—for example, for Inr-like motifs 
located at the TSS (Fig. 4d)—indicating their functional role. We 
observed that when an Inr-like motif is created (in the minor geno-
type), for example, the promoter becomes stronger and narrower, and 
the opposite happens when it is destroyed (Fig. 4d). This population 
resource complements cross-species data in mice and humans, show-
ing that substitutions in Inr-like PyPu motifs disrupt TSS usage11. We 
found that 55.7% (167/300) of shape QTLs located within ±1 bp of 
a TSS modify a PyPu motif, providing further support for the func-
tional importance of this dinucleotide in defining the precise position 
of transcriptional initiation. However, disruption of Inr-like PyPu 
motifs only accounted for 10% (167/1649) of all shape QTLs, which 

probably reflects the higher information content of Drosophila TSS- 
defining motifs1,18,42 and the importance of other core promoter 
motifs. For example, changes in downstream-positioned DPE- or 
MTE-like motifs were also generally concordant with the direction 
of change in promoter output (Supplementary Fig. 6). Transcription 
initiation patterns could also be affected by tssQTL disruption of 
nucleosome positioning, as recently suggested43. Although 228 of our 
tssQTLs (including 64 shape QTLs) were located in the general region 
of the first nucleosome (+50 to +250 bp from the affected TSS), we 
did not find an association between changes in predicted nucleosome 
positioning sequences44 and the effects of these tssQTLs.

Broad initiation confers distinct evolutionary properties
The extensive genetic variation affecting TSSs highlights the potential 
evolvability of features such as promoter shape and raises questions 
about the selective pressures acting on this variation. To address these 
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questions, we first classified promoters genome-wide as broad or nar-
row using a computational estimate of promoter shape (shape index 
(SI))14 derived from the aggregated CAGE data from all lines and time 
points. The defined promoter shape classes showed a significantly 
higher proportion of broad promoters affected by tssQTLs (Fig. 5a, 
2.2-fold difference, P = 3.08 × 10−91, Fisher’s exact test), where the 
majority are shape QTLs, with smaller proportion of mixed QTLs.  
This result held true in an orthogonal, CAGE-independent clas-
sification of promoters into broad and narrow based only on their 
motif content19,42 (Supplementary Fig. 7). Notably, the difference 
in the frequency of abundance tssQTLs between promoters of dif-
ferent shapes could be explained by differences in expression level 
between genes with broad (mainly housekeeping) and narrow (mainly 
tissue-specific) promoters (Fig. 5b), a property commonly observed 
in conventional eQTL studies45. The frequency of shape-changing 
tssQTLs, however, remained higher within broad promoters, even 
after accounting for differences in expression level (Fig. 5b).

This effect may reflect a biological property of broad promoters, 
such as increased robustness to genetic variation, but may also be 
explained by differences in power to detect shape tssQTLs in broad 
versus narrow promoters (Supplementary Fig. 8). To further explore 

this, we examined patterns of segregating variation and substitution 
rates, which can provide information on how selection has histori-
cally acted on promoters of different shapes. To examine positive and 
negative selection in broad versus narrow promoters, we applied a 
probabilistic extension of the McDonald–Kreitman test designed for 
noncoding sequence (INSIGHT)46,47. This showed only a weak rela-
tionship between promoter shape and the fraction of sites under selec-
tion and no relationship with the number of segregating sites under 
weak negative selection (Supplementary Fig. 9 and Supplementary 
Table 5). Promoter shape classes differed markedly in the number 
of adaptive events inferred by INSIGHT: broad promoters had con-
sistently higher substitutions rates than narrow promoters (Fig. 5c 
and Supplementary Table 5), a feature also observed in mice and 
humans11 and consistent with more frequent positive selection act-
ing on broader promoters. This conclusion was further supported by 
other metrics of selection (Supplementary Fig. 10), including inter-
species conservation, which showed that narrow promoters are under 
stronger constraint than broad promoters48 (Fig. 5d).

Genomic regions associated with abundance and shape tssQTLs 
also have distinct signatures of selection. Within each promoter class, 
regions flanking abundance QTLs were more constrained, whereas 
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those around shape QTLs showed increased evidence of positive 
selection (Fig. 5e and Online Methods). This is supported by an 
increased number of adaptive substitutions in shape QTL promoter 
regions of both classes (Fig. 5e) and increased interspecies conserva-
tion around abundance QTLs, particularly within broad promoters, 
suggestive of purifying selection (Fig. 5e). The extent of LD between 
tssQTLs and flanking variants also differed according to tssQTL type 
and promoter shape class; genetic variants in the vicinity of broad 

promoters showed more pronounced LD with the lead variant than 
narrow promoters (Fig. 5f), consistent with longer haplotypes and 
again supporting more frequent, recent positive selection in broad 
promoters. When we stratified these LD patterns by tssQTL types, 
shape QTLs showed stronger linkage than abundance QTLs in nar-
row promoters (Fig. 5f).

Taken together, these data further support promoter shape as a 
functional property that leads to distinct selective pressures, with 
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broad promoters having longer LD blocks and more frequent substitu-
tions, consistent with the actions of (recent) positive selection. Within 
each promoter class, genetic variants that change promoter shape are 
less constrained than those affecting transcript abundance, suggesting 
that shape as a trait may evolve more rapidly.

Variants changing promoter shape increase expression noise
The identified set of genetic variants affecting promoter shape provides 
a unique opportunity to examine the functional consequences of varia-
tion in shape for a given promoter, as opposed to comparing the general 
properties of genes with broad versus narrow promoters1–3. To explore 
this, we measured expression levels of promoter variants in thousands 
of individual cells, including population replicates, to estimate both 
expression level and expression noise, defined as the dispersion of 
single-cell expression values for a given promoter (Fig. 6a).

We focused on shape or mixed tssQTLs in which genetic variation 
alters promoter shape, studying seven broad promoters in four hap-
lotypes. For example, the functional impact of the tssQTL disrupt-
ing motif 1 in the CG12576 promoter (Fig. 4b) was examined in the 
two ‘natural’ haplotypes as well as in engineered promoters with the 
minor allele placed into the Major haplotype (Majmin) and the major 
allele placed into the minor haplotype (Minmaj) (Fig. 6b). Using this 
reciprocal design, we assessed the effect of both alleles of tssQTL lead 
variants in either genetic background, thereby assessing the effect of 
changes in genetic context for both alleles (Fig. 6b).

We drew three conclusions from this experiment. First, the tssQTL 
disrupting motif 1 caused not only a difference in CG12576 expres-
sion (Fig. 4b) but also a ~15% increase in expression noise (Fig. 6b). 
Second, when considering expression level and noise, different vari-
ants within the CG12576 promoter showed distinct effects: the lead 
variant had an effect on both parameters (Maj versus Majmin and Min 
versus Minmaj), but there are clearly additional variants within the 
promoter that have a specific effect to reduce noise as, for example, 
noise in the natural major haplotype was lower than the engineered 
promoter with the major lead variant in the context of the minor hap-
lotype (Fig. 6b). Third, the effects of each transition were not additive 
but rather point to an epistatic interaction that compensates for the 
increase in noise of variants in their natural context.

Examining the remaining six promoters led to similar results. In 
five cases, we observed a significant increase in expression noise in 
Majmin versus major (Fig. 6b–d and Supplementary Fig. 11). This 
increase was not always accompanied by an increase in expression, 
suggesting that elevated noise levels are not merely a consequence 
of higher expression. Notably, for all seven promoters, we observed 
interaction effects, within the promoter’s natural heteroallelic con-
text, on expression noise (Fig. 6b–d and Supplementary Fig. 11).  
In six out of seven cases, the natural promoter context significantly 
reduced expression noise for either the major or minor allele; the only 
exception was the wls gene promoter. In the promoter of l(3)01239, 
the effects of both transitions appeared to be additive; the variants sur-
rounding the lead SNP decreased expression noise in the direction of 
major to minor while increasing it in the opposite direction (Fig. 6d).  
In contrast, four promoters (of CG12576, CG17802, TfIIB and 
CG2469) (Fig. 6b,c and Supplementary Fig. 11) showed patterns 
consistent with epistatic interactions among the lead variant and the 
remaining polymorphisms; for a given allele of the lead variant (both 
major and minor), the natural promoter context led to a decrease in 
noise with respect to the mutant construct.

This suggests that although genetic variants associated with a change 
in promoter shape often increase transcriptional noise, in natural 
promoter haplotypes they occur in the context of other cis-associated  

variants that reduce noise levels. Considering that polymorphisms 
in broad promoters showed strong LD (Fig. 5f), these results  
suggest that only particular combinations of alleles that maintain 
a minimum level of expression noise can reach high frequency  
in the population.

DISCUSSION
The regulatory regions controlling embryonic gene expression must 
impart robustness to developmental programs while leaving flexibility 
for evolutionary innovations. Broad and narrow core promoters have 
different signatures of evolution that reflect their regulatory needs. 
Narrow promoters, which are associated with tissue- or stage-specific  
genes, are evolutionary constrained. These genes have complex 
regulatory landscapes in which many developmental enhancers at 
diverse distances give input to the core promoter49. Moreover, narrow  
promoters typically have motifs working in close cooperation at fixed 
distances from each other, such that weakening of any one motif or 
changing the distance between them could have a major impact on 
transcriptional initiation and overall transcript levels. Conversely, 
ubiquitously expressed genes generally have broad promoters, with 
many regulatory elements located close to the promoter itself10, 
implying a need to achieve robustness and evolvability within the 
promoter region. Our results suggest that this is achieved by the dis-
tributed initiation architecture of broad promoters: the effect of a 
genetic variant on one TSS is often buffered by other initiation sites 
within the same broad promoter, generating a shape effect with little 
or no impact on promoter strength (transcript abundance).

Promoter evolution appears to be influenced by a need to main-
tain low levels of expression noise, as recently shown for the TDH3 
promoter in yeast50. In that case, purifying selection acts to eliminate 
variants leading to an increase in noise. Here we showed that the situ-
ation is more complex in animal promoters; ‘noisy’ alleles associated 
with changes in promoter shape are common within natural popula-
tions. However, the impact of these mutations is partially buffered 
by the ‘noise-reducing haplotypes’ in which they reside, owing to 
allelic interactions with other variants that attenuate noise (Fig. 6). 
We propose that the dispersed architecture (which probably reduces 
the impact of mutations) and high frequency of adaptive substitu-
tions in broad promoters may provide the substrate for the formation  
of such haplotypes, effectively allowing the presence of promoter 
shape variants in spite of the constraints associated with promoter 
function. We recently found a different instance of heteroallelic 
interactions within enhancer elements, which act to partially buffer  
deleterious effects on enhancer activity32. Taken together, these results 
suggest that allelic combinations with balancing effects are common-
place within haplotypes of diverse cis-regulatory elements, at least 
within drosophilids.

Overall, this study demonstrates how high-resolution mea
surements such as CAGE coupled with multivariate QTL mapping 
strategies enable probing of genetic effects on a new dimension of 
molecular variability, namely promoter shape. Many of the shape and 
mixed QTLs we identified are missed by conventional expression QTL 
mapping (Fig. 1c) yet highlight an important link between promoter 
shape and expression noise.

URLs.  UCSC Genome Browser, https://genome.ucsc.edu/.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

https://genome.ucsc.edu/
http://dx.doi.org/10.1038/ng.3791
http://dx.doi.org/10.1038/ng.3791
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
5′ CAGE library preparation from DGRP embryos. We selected 81 geno
typed fly lines from the Drosophila Genetic Reference Panel (DGRP)40, 
including lines with the highest quality and depth of genome sequencing, 
avoiding pairs of highly-related lines, and avoiding lines with unusual levels 
of residual heterozygosity. Tightly staged embryos were collected at the speci-
fied time points, and RNA was extracted as described previously32 and in the 
Supplementary Note.

5′ CAGE produces libraries containing strand-specific 27-nt-long tags, 
with their 5′ ends indicating the position of the 5′ cap-bound nucleotide and 
therefore the TSS33. We applied the protocol developed by Takahashi et al.33, 
starting with 2.5 µg total RNA for each sample, with some minor modifica-
tions (Supplementary Note). A set of test PCRs was used to assess whether 
adequate numbers of cycles were performed for the preparative reaction. The 
final number of cycles was 11 for most of the samples, although it ranged 
from 9 to 12. To remove large fragments from the CAGE tags, we routinely 
included a second purification and size-selection step by adding 0.75 volumes 
of Agencourt AMPure XP beads (Beckman Coulter) for 5 min, recovering the 
supernatant and precipitating the CAGE tags by addition of extra 1.25 vol-
umes of beads. This also removed minor contamination of adapters, leaving 
a unique peak of ~100 bp.

The final libraries were quality checked using a 2100 Bioanalyzer sys-
tem with a HS DNA kit (Agilent) and quantified using a Qubit fluorometer  
with dsDNA HS reagent (Life Technologies). Libraries were sequenced (50-bp 
single end) by the EMBL Genomics Core Facility using a HiSeq 2000 Illumina 
Sequencer, adding 15% PhiX genomic DNA (molar concentration) to increase 
sequence complexity.

All oligos follow the sequences suggested previously33, except that  
we extended the length of the barcodes from 3 to 6 nt. The upper oligos  
for the 5′ linkers were ordered in two variants (N6 and GN5), and mixed  
in 1:4 proportions.

Processing and mapping of CAGE reads is described in the Supplementary 
Note. The numbers of total and mapped reads, including barcode information 
for each sequence, are provided in Supplementary Table 6.

Defining active promoter windows. All individual CAGE libraries, from 
all time points and genotypes, were merged into a single BAM file. On the 
basis the combined sequencing data, we used a greedy search algorithm to 
select promoter windows (1,024-bp windows) for analysis, which together 
contained more than 99% of the total CAGE reads. The algorithm consist of 
the following steps:

1. � Tally number of reads originating from each base in the genome.
2. � Select the base with the highest read count.
3. � Identify the 1,024-bp region centered on this base as the next phenotype 

window and replace count at all bases contained in this window with 0 in 
the tally made in step 1. Record the total fraction of all reads contained 
in phenotype windows.

4. � Repeat steps 2–3 until total fraction of reads contained in all chosen 
phenotype windows is >99%.

This identified 13,508 active promoter windows (which generally repre-
sent clusters of TSSs (CAGE tags)) at one or more stages of embryogenesis 
(Supplementary Table 1). By definition, these contain 99% of all mapped 
CAGE signal (with >10 reads).

Testing for tssQTLs within a 200-kb cis-candidate window. Before the QTL 
analysis, we sequentially applied two approaches to reduce mappability differ-
ences between lines: UMM (developed here) and WASP36. A detailed descrip-
tion of both approaches is provided in the Supplementary Note.

For each promoter window, we tested common (minor allele frequency 
>5%) biallelic variants (Freeze 2.0 from the DGRP consortium) in 200-kb win-
dows centered on the TSS with maximum CAGE signal within the active pro-
moter window for association with the observed expression levels. Multiallelic 
variants were reduced to biallelic variants, considering the reference allele 
(Ref) versus all alternative (Alt) alleles. Association tests were performed 
using a multi-trait linear mixed model35,37, jointly testing for genetic effects 

across developmental stages while accounting for population structure37,39. 
We considered two alternative phenotypes derived from the CAGE signal: 
the mean CAGE signal of the promoter window or the projections of the raw 
CAGE signal onto the first three PCs. All traits were adjusted for observed and  
hidden covariates using PEER51.

Using these traits, we carried out three different analyses: (i) single-trait 
analysis of the mean CAGE signal for individual developmental stages,  
(ii) a joint analysis across the three time points using the mean CAGE signal, or 
(iii) the full model that performs joint genetic analysis across nine phenotypes 
derived from the PC-based phenotypes (three time points and three PCs).  
For full details of all models as well as the processing steps for the  
CAGE-derived phenotypes, see Supplementary Note.

Multiple testing, model comparison, and downstream evaluation of tssQTLs. 
We adjusted for multiple testing using a two-stage approach. First, for each 
promoter window, we adjusted for multiple testing in cis-regions using 10,000 
permutations as described26. Specifically, we estimated cis-region adjusted  
P values by comparing the P value of the lead variant for a given test to the 
empirical distribution of null lead variants from 10,000 permutations. These 
cis-region adjusted P values were stored for each test and promoter window. 
Next, we applied Benjamini and Hochberg’s method52 to adjust for tests across 
promoter windows, thereby controlling for the  global, genome-wide FDR. For 
single-trait methods, we adjusted for all tests and promoter windows.

We compared the performance of mean-based and PC-based pheno-
types using two criteria. First, we compared the overall number of promoter  
windows with a significant association, thereby assessing the power to  
detect genetic associations. Second, we evaluated the ability of one method 
to recover the QTLs identified by other methods. The PC-based approach 
identified the majority (85%) of QTLs identified by the mean-based method 
and yielded increased power, but the converse was not true (Fig. 1c). Thus, for 
subsequent analysis, we considered lead QTLs obtained from the PC-based 
multi-trait analysis (at global FDR < 1%), yielding 4,526 promoter windows 
with a tssQTL.

We applied two additional filters to obtain a high-confidence set. First, 
tssQTLs at internal intragenic peaks were discarded, as they are probably the 
result of re-capping events in highly expressed genes (flagged as internal = 
TRUE in Supplementary Table 2). Although these associations may represent 
interesting genetic regulation of exonic promoter activity (as described by 
Carninci et al.11), these are outside the scope of our study focusing on canoni-
cal promoter function. Second, we identified variants that disrupt an EcoP15I 
restriction site in the same orientation as the one provided by the CAGE RT 
primer, which can cause technical associations with variation in CAGE signal. 
The creation of such sites in a genomic region proximal to the start site results 
in a significant enhancement of the CAGE signal, probably because they are the 
preferred matching sites owing to their proximity to the site on the 5′ adapter. 
These variants were therefore also filtered out (flagged as is_enzyme_artifact =  
TRUE in Supplementary Table 2). This resulted in 4,075 high-confidence 
tssQTLs, which are those included in Supplementary Table 3 and used for all 
analysis in this study. Confidence intervals of lead QTL variants were derived 
by examining the sizes of regions with loci with association P values within 
one order of magnitude of the top P value for that region. Stage-specific effects 
were tested for these tssQTLs as described in the Supplementary Note.

Estimating single-base-pair effect sizes of significant QTLs using  
wavelets. Although the PC-based approach proved to be powerful and scal-
able for the large number of individual SNP × phenotype tests required here, 
this model has limitations. First, only the first three PCs were considered to 
test for associations, which may discard subtle changes in promoter shape. 
Second, although we expect the biology of TSS choice to be at least somewhat 
spatially dependent, this spatial structure is not explicitly accounted for by the  
PC-based method. Both limitations are effectively addressed in a wavelet-based 
method41, which models CAGE data using a spatial model based on wavelets. 
By specifically targeting the tssQTL lead variants discovered by the PC-based 
approach, we limit the computational burden of the wavelet analysis.

The matrix of CAGE signal is decomposed into projections onto wave-
let space, using the full representation of signal in this space, which allows 
a posterior of significant genetic effects to be estimated at single-base-pair 
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resolution. Moreover, as wavelets capture successively larger chunks of the 
base-pair space, estimation of effect sizes in this space enables analyzing spa-
tially restricted sections of the phenotype window (in our case the 1-kb pro-
moter region) to share the same effect size when effects are distributed on the 
lower-order (larger segment) WCs. This procedure results in estimations of 
effect size both in base-pair space and in the space of wavelets, both of which 
were used to characterize the architecture of tssQTLs (estimation is done in 
wavelet space, which can be subsequently transformed to base-pair space) 
(Supplementary Fig. 4).

For each significant tssQTL (FDR < 1%), we calculated effect sizes and 
Bayes factors for the association between the top associated SNP and the 
1,024-bp region surrounding the primary TSS location. Forward and reverse 
strands were concatenated for each 1,024-bp region so that the total phe-
notype input matrix had 2,048 columns (1,024 bp for forward strand and 
1,024 bp for reverse strand). As the majority of QTLs were consistent across 
stages, however, we focused our analysis on the middle (6–8 h) develop-
mental stage. Other WaveQTL parameters were -f 2048 -numPerm 0 -fph 
1 –gmode 1.

Criteria for classification of tssQTLs on the basis of pattern of wavelet 
and single-base effect sizes. To classify tssQTLs, we used estimates of effect 
size for individual WCs as well as single-base-pair effects. tssQTLs were clas-
sified as shape effects if the overall evidence was in favor of no association  
with the mean CAGE level (log10 Bayes factor (BF) < 0 for evidence of asso-
ciation with the lowest WC), or when only weak statistical evidence for an 
association with mean (log10 BF < 2.5) was observed, but much higher evi-
dence was observed for effects at higher WCs (difference between maximum 
log10 BF and lowest WC log10 BF at least 10). At the other extreme, we use the 
directionality of the effect as the main determinant of abundance tssQTLs: 
when all the bases with a significant effect size were in the same direction 
(significance at the base-pair level corresponds to an approximate credible 
interval—calculated as posterior mean ±2 posterior s.d.—on base-level effect 
size that does not overlap 0) or the sum of effects on the primary direction 
was at least 10 times higher than in the second direction. Finally, the mixed 
tssQTL class included instances where the criteria for either both or none of 
the previous types were met.

De novo motif discovery. The Meme Suite53 was used for all de novo motif 
discoveries. We first defined high-confidence TSS clusters (Supplementary 
Note and Supplementary Table 7) and subsequently ran MEME-ChIP  
on these regions, centering on the most highly tagged site within each and 
extending outwards ±250 bp, using a maximum motif size of 15 bp and an 
E-value cutoff of 5 × 10−5. A separate MEME-ChIP analysis was carried out 
for broad CAGE peaks, narrow CAGE peaks, and their union, in addition 
to contrasting broad against narrow, and vice versa. We ran CentriMo on all 
discovered promoter motifs.

To assess motifs for similarity, a column-wise correlation score was used 
as described previously54. To this we added 0.1, where motifs had overlap-
ping positional enrichments, to yield a similarity score. From this score we 
constructed a similarity matrix and performed hierarchical clustering, cutting 
the tree at a distance of 0.6 to yield clusters of similar motifs. This procedure 
resulted in 59 motif clusters. Motifs with information content lower than 8 
were discarded, giving a final result of 183 motifs grouped in 58 similarity 
clusters (Supplementary Table 4). After analyzing the properties of the dif-
ferent motifs (mainly the positioning with respect to main TSSs and the shape 
bias of promoters containing them) we split clusters 15, 24, 46, 47, and 56 in 
two (naming them 15 and 15a, 24 and 24a, and so on). Motifs were consid-
ered novel if they did not match promoter motifs discovered by Ohler et al.42, 
FitzGerald et al.18, or Down et al.55.

Feature enrichments. Previous studies in human populations have shown 
that eQTLs are enriched in specific biochemical, annotational, and sequence 
features within the genome45,56. We applied a multivariate logistic regression 
framework similar to the method used by Brown et al.45 to estimate the enrich-
ments of tssQTLs in specific annotations (Figs. 3a and 4c) 

P( ) ~ ( log ( )) ( )Eqtl logit Feature AF Expr− + + +1
0 10 1B (1)(1)

Where Eqt1 is a binary variable denoting whether a given variant-window pair 
is a significant tssQTL, B0 is the intercept, Feature is a binary variable denoting 
the variant’s overlap with the feature, and Expr denotes to the total number of 
CAGE reads of the corresponding promoter window.

This model was fit to all variants tested for each CAGE window and 
models the probability of a given variant being a tssQTL lead variant on the 
basis of a given feature of interest and additional covariates. The variant’s 
frequency (AF) and the total expression level were included as covariates in 
the regression framework, as both affect the power to detect tssQTLs. For 
promoters, introns, exons, and UTRs (Fig. 3a), we included (log10) distance 
to the CAGE window as an additional covariate. For chromatin immunopre-
cipitation (ChIP) and DNase I peaks (data from ref. 57), we did not include 
distance as a continuous covariate but instead tested proximal (within 1 kb 
of a CAGE window) and distal variants using separate models, because distal 
peaks are likely to have distinct functions and more often represent enhancers 
than promoters. For promoter-associated motifs (Fig. 4c), we reasoned that 
motif functionality should be limited to promoter-proximal regions so tested  
for enrichment relative to other variants within the CAGE clusters used to 
discover the motifs.

tssQTLs affecting core promoter motifs. We assessed changes to transcrip-
tion factor binding sites by constructing local haplotype sequences, scanning 
them for the presence of motif matches, and assigning the best score in each 
haplotype to the corresponding variants. To select variants strongly affecting 
position weight matrix (PWM) scores, therefore, we counted only differences 
of 3 or more points in PWM scores between haplotypes. After obtaining all 
lead tssQTL variants affecting any of the core promoter motifs, we removed 
those located outside a ±100-bp window centered in the most affected TSS to 
enrich in the actual core promoter motifs instances. Only cases where the SI and 
CAGE signal were measurable for both genotypes were considered. For assessing 
turnover of Inr-like motifs, we took tssQTsL affecting motifs from clusters 10, 
15, and 31 (Supplementary Table 4), located ±4 bp from the most affected TSS. 
For downstream promoter element (DPE)- and motif ten element (MTE)-like 
motifs (downstream-positioned motifs) we took tssQTLs affecting motifs from 
clusters 12, 24a, 26, 46a, 47a, 56a, 57, and 59 (Supplementary Table 4), located 
between 10 and 40 bp downstream of the most affected TSS. In both cases, for 
inclusion in this analysis, we considered only those cases where the most affected 
TSS was located at the promoter window center to avoid considering the effect 
of minor secondary peaks on the overall promoter region signal.

SI calculation and promoter classification. Shape index (SI) was calculated 
as previously described14 using the aggregated CAGE signal for all time points 
and all lines (or all lines for major and minor allele separately, when indi-
cated). Promoter regions were classified as broad if SI ≤ −1.5; otherwise they  
were scored as narrow (unique SI per window is shown in Supplementary 
Table 1). For binning promoters according to shape, we took 10% quantiles 
of the SI distribution.

Scans for selection. For analysis on promoters, scans were carried out using 
the initial 1-kb promoter windows. For tssQTL-centric analyses, we considered 
lead variants located inside the promoter window and took a region of ±250 bp 
centered on the SNP position. In all cases, exonic sequences were excluded.

INSIGHT analysis was carried out using scripts from Gronau et al.47. The 
scripts require input on both intraspecies variation, for which we used the 
complete genotypes of the DGRP lines34, and interspecies variation, for which 
we used the 12 sequenced Drosophila genomes56. We modified the scripts to 
use nearby fourfold-degenerate sites rather than flanking intergenic regions 
as neutral proxies, as the high density of the D. melanogaster genome means 
that most of these regions are not evolving neutrally.

As an alternative method to look for positive and negative selective forces, 
we used the phyloP tool48, as previously described58. In addition, we down-
loaded phastCons scores from the UCSC Genome Browser.

Flow cytometry and single-cell quantification of gene expression. We 
designed a reporter system for single-cell measurements in transient trans-
fection, consisting of a single plasmid (TIPR-cherry) harboring both an sfGFP 
coding sequence under the control of the test promoter and an mCherry  
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coding sequence under the control of a constitutive promoter. Expression 
values per transfected cell were measured by analytical FACS for thousands of 
individual cells and calculated as log10 sfGFP/mCherry. For testing statistically 
significant differences between constructs, we used the average expression 
value from the population as a magnitude. All promoters were tested in at least 
2 independent (different day) experiments; in each experiment we typically 
transfected each construct in duplicate or triplicate, and each transfection 
was considered an independent sample. Details of the TIPR-Cherry plasmid 
construction and promoter cloning, as well as the measurement protocol, are 
provided in the Supplementary Note.

Measuring expression noise. Single-cell expression levels from clonal cells can 
be used to determine expression noise, defined as the dispersion of single-cell 
expression values for a given promoter over thousands of cells. All promot-
ers were tested in at least 2 independent (different day) experiments. In each 
experiment, to accurately determine the dispersion within the population, we 
required at least 3 independent transfections with a minimum of 15,000 cells 
per variant. Because the distribution of expression values for some promot-
ers or promoter variants was not entirely normal (for example owing to long 
tails), we applied a conservative measure of dispersion, namely the median 
absolute deviation from the population median (MAD). Accordingly, when 
comparing changes in expression noise, we used the population median to 
indicate changes in expression levels. The qualitative results did not differ  
if we used population mean and s.d. as measures of expression level and  
noise, respectively.

To determine statistically significant differences in variance, we used 
the missMethyl package58, which implements a Levene test for homogene-
ity of variances between groups, using replicate information to distinguish  

technical effects on variability from those due to construct genotype. We 
contrasted each mutant haplotype (Majmin and Minmaj) against both natural 
haplotypes (major and minor).

Data availability. Raw data, comprising 317 demultiplexed files of CAGE-seq, 
have been submitted to EBI’s ArrayExpress under accession number E-MTAB-
4787. The mapped CAGE clusters and other processed data, including raw  
P values for all variants as well as HTML table for convenient visualization of 
tssQTL plots and information, are available at http://furlonglab.embl.de/data.
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