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A cosmological scenario where dark matter interacts with a variable vacuum energy for a

spatially flat Friedmann–Robertson–Walker (FRW) spacetime is proposed and analyzed
to show that with a linear equation of state and a particular interaction in the dark

sector it is possible to get a model of an Emergent Universe. In addition, the viability

of two particular models is studied by taking into account the recent observations. The
updated observational Hubble data and the JLA supernovae data are used in order to

constraint the cosmological parameters of the models and estimate the amount of dark

energy in the radiation era. It is shown that the two models fulfil the severe bounds of
Ωx(z ' 1100) < 0.009 at the 2σ level of Planck.
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1. Introduction

Since 1998, there are strong evidences that the Universe is flat and in an acceler-

ated expansion phase. Some of these evidences comes from the cosmological and

astrophysical data from type supernovae Ia (SNIa),1–3 the spectra of the Cosmic

Microwave Background (CMB)4–7 radiation anisotropies and Large Scale Structure

(LSS).8–10 One of the alternatives to explain this faster expansion phase is to con-

sider a mysterious dark energy component with negative pressure. The simplest type
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model of dark energy corresponds to a positive cosmological constant Λ. Another

important component of our Universe is dark matter, it shares the non-luminous na-

ture with the dark energy. It is gravitationally attractive and leads to the formation

of LSSs.

There are several models which attempt to explain the origin or the dynamics of

the dark matter and the dark energy. Some of them propose that the origin could be

from a kind of dynamical scalar field, as the quintessence model.11–13 Other models

expect that the cosmological term Λ should not be strictly constant, it appears as

a smooth function of the Hubble rate H(t).14–18 It has actually been shown that,

in some cases, these models can actually fit the data better than the concordance

ΛCDM model at a level of 3–4σ.19–23

A considerable alternative to the ΛCDM model is the possibility of interaction

in the dark sector. This non-gravitational interaction gives rise to a continuous

transfer of energy between dark energy and matter, i.e. we suppose that one com-

ponent can feel the presence of the other through the gravitational expansion of the

Universe.24 As it is expected, a connection between the dark components changes

the background evolution of the dark sector,25–28 giving rise to rich cosmological

dynamics compared with the non-interacting models. It can be found that this

phenomenon seems to be possible at theoretical level when coupled scalar fields

are considered29,30 and it is also compatible with the current data coming from

Planck.31–34

As it is known, the big bang cosmology scenario has some problems both in

the early and late Universe. Many of these problems emerge when one is describing

the early Universe, the horizon problem, the flatness problem, fine-tuning, etc.35,36

These unresolved issues could be explained by the physics of inflation and the

introduction of a small cosmological constant for late acceleration, but they are not

clearly understood. An alternative is the Emergent Universe scenario, in which an

inflationary Universe emerges from a small static state that has within it the origin

of the development of the macroscopic Universe. The Universe has a finite initial

size and since the initial stage is Einstein static, there is no time-like singularity.

As the Einstein static Universe solution obtained is unstable, it creates fine-tuning

problems for emergent cosmology, it imposes conditions for an appropriate choice

of the inflaton potential, more precisely the initial value of the field must match

the asymptotic form of the potential, which is a consequence of the Einstein static

Universe being unstable in General Relativity.37 Mukherjee et al.38 also showed that

a successful inflation may be permitted in the Emergent Universe scenario. This

model does not solve all the inflationary problems mentioned above, but because

it is an ever-existing Universe, there is no horizon problem.39 The possibilities of

an emergent Universe have been studied in few papers. del Campo et al.40 studied

the emergent Universe model in the context of a self-interacting Jordan–Brans–

Dicke theory, Mukherjee et al.41 in the framework of general relativity, Paul and

Ghose in Gauss–Bonnet gravity,42 in a Horava gravity was studied by Mukherjee

and Chakraborty,43 etc.
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The emergent Universes proposed by Mukherjee41 are late-time de Sitter with

an equation of state of the form p = Aρ − Bρ1/2, where A and B are constants.

This is a special case of the Chaplygin gas.44–46 Lately, the onset of the recent

accelerating phase has been determined by the constraints of the parameters A, B
with the observational data.47,49

The aim of this work is two-folded. On the one hand it is shown that, by assum-

ing the existence of an interacting dark sector with a barotropic equation of state

in the context of General Relativity, an emergent Universe dynamics such as the

ones considered in Refs. 41, 47 and 50 may arise. It should be emphasized that none

of the previous emergent scenarios were obtained by taking into account a linear

barotropic equation of state in General Relativity. This fact is one novel features of

this work. On the other hand, we are considering the models described by a source

equation which is of second order24 and differ from those studies41,47 that consider

a conservation equation which is of first order. Certain explicit solutions of these

new models are reported in the text. In addition the explicit form of these solutions,

the updated Hubble data, the JLA supernovae data points and the severe bounds

reported by the Planck mission on early dark energy are used below in order to

constraint the parameters of our model.

2. Interaction Model

In the interaction scenario, a spatially flat isotropic and homogeneous Universe

described by Friedmann–Robertson–Walker (FRW) spacetime is usually considered.

The Universe is filled with three components, baryonic matter and two fluids that

interacts in the dark sector. The first is a decoupled component. The evolution of

the FRW Universe is governed by the Friedmann and conservation equations,

3H2 = ρT = ρr + ρb + ρm + ρx , (1)

ρ̇b + 3Hγbρb = 0 , (2)

ρ̇m + ρ̇x + 3H(γmρm + γxρx) = 0 , (3)

where H = ȧ/a is the Hubble expansion rate and a(t) is the scale factor. The

equation of state for each species, with energy densities ρi, and pressures pi, take a

barotropic form pi = (γi − 1)ρi, and the constants γi indicate the barotropic index

of each component being i = {x,m, b}, so that γx = 0, γb = 1, whereas γm will

be estimated later on. Then ρx plays the role of a variable cosmological constant,

ρb represents a pressureless baryonic matter, and ρm can be associated with dark

matter.

In order to continue the analysis of the interacting dark sector we note that,

by separating the conservation equation for the system Eq. (3) and by using the

variable η defined above, the following energy transfer equation between the two

fluids is obtained:

ρ′m + γmρm = −Q , ρ′x + γxρx = Q , (4)
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where the variable η = ln(a/a0)3 has been introduced, with a0 the present value of

the scale factor (a0 = 1), and Q indicates the energy exchange between the dark

components.

In the following it is assumed that there is no interaction between the baryons

and the dark sector, so the energy density is conserved and the prime indicates

differentiation with respect to the new time variable ′ ≡ d/dη. Under this situation,

Eq. (2) leads to the energy density for the baryonic matter, ρb ∼ a−3.

In this work, we present a phenomenological interaction Q between both dark

components with a scale factor power law dependence as in Ref. 48

Q = −2A
√
Ba−3r −Ba−6r , (5)

where A and B are the coupling constants that measure the strength of the inter-

action in the dark sector. In this case, we will analyze the models with r = 1/2

and r = 1/3. These kind of interactions are now studied under the view of the

new observations and gives rise to a dark energy model that can be viewed as an

emergent Universe.47,49

By replacing the specific form of Q into the source equation (4) and the value

γx = 0, the first order differential equations for the dark matter density ρm(a)

and the dark energy density ρx(a) can be solved. The relation between the energy

density and the redshift z may be found by considering the expression of the scalar

factor in terms of the redshift, z + 1 = 1/a, so the solutions are

ρm = C2(1 + z)3γm +
2A
√
B

γm − r
(1 + z)3r +

B

γm − 2r
(1 + z)6r , (6)

ρx = C1 +
2A
√
B

r
(1 + z)3r +

B

2r
(1 + z)6r , (7)

where C1 and C2 are the integration constants. By adding Eqs. (6) and (7), we get

the energy density of the dark sector

ρ = C1 + C2(1 + z)3γm +
2A
√
B

r

γm
γm − r

(1 + z)3r

+
B

2r

γm
γm − 2r

(1 + z)6r . (8)

For the choice C2 = 0, the energy density of Eq. (8) may be written in the form

ρ(a) = (β + αa3r)2/a6r, with β and α simple constants. This form of the energy

density is the one obtained in Ref. 41, these authors found it by using a polytropic

equation of state of the form p = Aρ−Bρ1/2. One purpose of this research is to show

that in a spatially flat Universe with a linear barotropic equation of state (instead of

polytropic) and the interaction equation (5) may cast the energy density of the an

Emergent Universe. That is why we studied this specific interaction and no others.

Probably there are other interactions that could cast this particular energy density,

maybe there is one where it could be possible to leave the barotropic index γx free.
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We are working on this and we leave it for a future research. For the purposes of this

work, it can be seen that the models studied in Refs. 47 and 49 are a particular case

of this model when the constant C2 = 0. We will not analyze these models, instead,

we studied the model with C2 6= 0 for r = 1/2 and r = 1/3 and we have found the

constraints to determine the model parameters, for every case respectively. To the

best of our knowledge, this was not done in any previous work.

By taking into account the present-density parameters Ωi0 = ρi0/3H
2
0 along

with the flatness condition 1 = Ωb0 + Ωx0 + Ωm0, the integration constants C1 and

C2 may be expressed in terms of the observational density parameters

C1 = 3H0
2Ωx0 −

2A
√
B

r
− B

2r
, (9)

C2 = 3H0
2Ωm0 −

2A
√
B

γm − r
− B

γm − 2r
. (10)

In this case the Friedmann equation (1) is given in terms of the redshift and density

parameters by

[3H2(z) = (1− Ωx0 − Ωm0)(1 + z)3 + C1 + C2(1 + z)3γm

+
2A
√
B

r

γm
γm − r

(1 + z)3r +
B

2r

γm
γm − 2r

(1 + z)6r . (11)

The specific models with r = 1/2 and r = 1/3 have six independent parameters

(H0, Ωx0, Ωm0, A, B, γm) to be completely specified. The above function (11) will

be used in the next section for analysis with observational results and to determine

the model parameters. For both models, in the limit case z → −1, the energy

density goes to a constant value like the ΛCDM model, so the Universe exhibits

a de Sitter phase at late times. In the dark energy domains, the energy density

Eq. (8) for the model with r = 1/3 corresponds to a cosmic fluid that behaves as a

composition of the cosmological constant, domain walls and cosmic strings.41

3. Constrains on the Parameters of the Model

3.1. Observational Hubble data

A set of measurements for Hubble parameter H(z) at different redshifts51–58 will

be considered in the following. A qualitative estimation of the cosmological pa-

rameters for the models with r = 1/2 and r = 1/3 described above is found. The

values of the function H(z) are directly obtained from the cosmological observa-

tions, so this function plays a fundamental role in understanding the properties of

the dark sector. The bibliography59–61 shows Hobs for different redshifts with the

corresponding 1σ uncertainties. The probability distribution for the θ-parameters,

for each model, is P (θ) = ℵ exp−χ
2(θ)/2,62 ℵ being a normalization constant.

In order to obtain the parameters of the models we first minimized a chi-square
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function χ2 defined as

χ2(θ) =

N=29∑
i=1

[H(θ; zi)−Hobs(zi)]
2

σ2(zi)
, (12)

where Hobs(zi) and H(θ, zi) are the observed and observational values of the Hubble

parameter H(z) at different redshifts zi and σ(zi) is the corresponding 1σ error.

The Hubble function H(θ, zi) is (11) evaluated at zi, for both models, with r = 1/2

and r = 1/3, respectively. The variable χ2 is a random variable that depends on

N = 29, the number of the data, and its probability distribution is a χ2 distribution

for N − n degrees of freedom, with n = 2, where n is the number of parameters.

The χ2 function reaches its minimum value at the best fit value θc and the fit is

good when χ2
min(θc)/(N −n) is close to 1.62 For a given pair (θ1, θ2) of independent

parameters, fixing the other ones, the confidence levels (C.L.) 1σ (68.3%) or 2σ

(95.4% will satisfy χ2(θ)−χ2
min(θc) ≤ 2.30 or χ2(θ)−χ2

min(θc) ≤ 6.17, respectively.

In theoretical models it is demanded that the parameters should satisfy the

inequalities (i) A > 0 and (ii) B > 0. Some plots of the regions of 1σ and 2σ C.L.

obtained with the standard χ2 function are shown in Fig. 1, on the right the
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Fig. 1. 2D C.L. associated with 1σ, 2σ for different θ planes.
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Table 1. We show the observational bounds for the 2D C.L. obtained in the left panels of Fig. 1
by varying two cosmological parameters.

2D C.L. for r = 1/2

No. Priors Best fits χ2
d.o.f

I (H0,Ωx,Ωm, γm) = (69.2, 0.72, 0.235, 1.07) (A,B) = (49.39+21.69
−21.59, 30.95+22.19

−17.95) 0.764

II (Ωx,Ωm, B, γm) = (0.72, 0.235, 30, 1.07) (H0, A) = (70.12+1.49
−1.23, 59.71+20.81

−22.37) 0.749

III (Ωx,Ωm, A, γm) = (0.721, 0.235, 60, 1.07) (H0, B) = (70.14+1.48
−1.25, 29.08+18.37

−16.04) 0.748

IV (H0, A,B, γm) = (68, 60, 25, 1.08) (Ωx,Ωm) = (0.714+0.026
−0.025, 0.249+0.077

−0.084) 0.831

Table 2. We show the observational bounds for the 2D C.L. obtained in the right panels of Fig. 1

by varying two cosmological parameters.

2D C.L. for r = 1/3

No. Priors Best fits χ2
d.o.f

I (H0,Ωx,Ωm, γm) = (69.2, 0.721, 0.235, 1.08) (A,B) = (75.81+24.07
−26.84, 24.34+16.84

−12.94) 0.765

II (Ωx,Ωm, B, γm) = (0.72, 0.235, 25, 1.07) (H0, A) = (70.24+1.43
−1.50, 80.74+25.96

−26.90) 0.745

III (Ωx,Ωm, A, γm) = (0.721, 0.235, 60, 1.07) (H0, B) = (70.25+1.45
−1.51, 41.60+26.14

−22.63) 0.744

IV (H0, A,B, γm) = (68, 60, 25, 1.06) (Ωx,Ωm) = (0.707+0.024
−0.026, 0.247+0.085

−0.086) 0.831

model with r = 1/2 and on the left the model with r = 1/3. The respective

estimations for the models are briefly summarized in Tables 1 and 2. For exam-

ple, some best-fitting values obtained for the parameters are, A = 49.39+21.69
−21.59

and B = 30.95+22.19
−17.95 with χ2

d.o.f = 0.764 for the model with r = 1/2 and A =

75.81+24.07
−26.84, B = 24.34+16.84

−12.94 with χ2
d.o.f = 0.765 for r = 1/3. In both cases it sat-

isfied the goodness condition χ2
d.o.f < 1. We get the best fit at the independence

parameters (Ωx,Ωm) = (0.714+0.026
−0.025, 0.249+0.077

−0.084) with χ2
d.o.f = 0.831 for the case

with r = 1/2 by using the priors (H0 = 68, A = 60, B = 25, γm = 1.08); therefore

the present day values obtained of the dark energy and dark matter parameters are

in agreement with the data released by the WMAP-9 project60 or with the data

coming from the Planck Mission.6 A similar result is obtained for the model with

r = 1/3 as shown in Table 2.

3.2. Cosmological constraints from supernova observations

In order to constraint the parameters of the model we use the data from a joint anal-

ysis of type Ia supernova (SNIa) observations obtained by the SDSS-II and SNLS

collaborations.63 The data set includes a total of 740 spectroscopically confirmed

type Ia supernovae with high quality light curves.

For this analysis the standardized distance modulus

µ = 5 log10(dL(z)/Mpc) + 25 , (13)
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Table 3. The best-fitting values obtained using the
data base JLA.

Model A B χ2
d.o.f

r = 1/2 37.59± 36.21 31.25± 56.04 0.863

r = 1/3 58.38± 57.59 11.49± 24.53 0.859
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Fig. 2. (color online) The distance modulus redshift relation of the best-fit model with r = 1/2

is shown as the red line.

is taken into account, where the dL is the luminosity distance defined as dL(z) =

c(1 + z)
∫ z

0
dz′

H(z′) , c is the velocity of light and H(z) is the one given in Eq. (11).

In this case, we minimized the chi-square function defined as

χ2(θ) =

N=740∑
i=1

[µ(θ; zi)− µobs(zi)]
2

σ2(zi)
, (14)

in order to obtain the parameters of the model. Here µobs is the observed distance

modulus used in Ref. 63. The function µ(θ, zi) is (13) evaluated at zi, for both

models, with r = 1/2 and r = 1/3, respectively. In Ref. 63 they computed a fixed

fiducial value of H0 = 70 km s−1 Mpc−1, we use this value for H0 to get the best-

fitting values of the models. The model parameters obtained from this best-fitting

analysis with supernovae observational data are shown in Table 3. The Hubble

diagram for the JLA sample and the model fit are shown in Fig. 2.

The best fit value for the dark energy parameter is Ωx = 0.745 ± 0.032 for the

model with r = 1/2 and Ωx = 0.746 ± 0.033 for r = 1/3. These values are in

agreement with the ones founded with the Hubble data in the last section and with

the observations.6,7,60 We also plot the confidence contours of (68.3%) and (95.4%)

for Ωx and the parameters A and B in Fig. 3.

Moreover, the best fit values for the dark matter parameter and the barotropic

matter index are Ωm = 0.245 ± 0.123 and γm = 1.039 ± 0.188 for the model with

r = 1/2, respectively, and Ωm = 0.224±0.131 and γm = 1.082±0.177 with r = 1/3.
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Fig. 3. 2D C.L. associated with 1σ, 2σ for different θ planes.

4. Other Relevant Parameters

For the models with r = 1/2 and r = 1/3, the behavior of the density parameters

Ωx, Ωm and Ωb nearly close to z = 0 is described in Fig. 4. As we well know, the dark

energy is in particular the main source responsible of the Universe acceleration; far

away from z = 1 the Universe is dominated by the dark matter which is responsible

of the structure formation. Note that these models are asymptotically de Sitter

when z → −1 and the total energy density tends to a constant value.

Other cosmological relevant parameter is the deceleration parameter at the

present time q(z = 0) = q0. Figure 4 shows the behavior of the deceleration param-

eter with the redshift. In particular, the present-day value of q(z = 0) is between

[−0.56;−0.54] as can be seen from Table 4.

We also determined the variation of the dark energy parameter behind recom-

bination or big-bang nucleosynthesis epochs25,26 and compared with the severe

bound for each epoch. This can be considered as a complementary tool for testing

our models. One of the last constraints on early dark energy (ede) comes from the

- 1 0 1 2 3 4
- 1.0

- 0.5

0.0

0.5

1.0

z

q H z L
r H z L
Wm H z L
W x H z L
Wb H z L

Fig. 4. Plot of Ωb(z), Ωx(z), Ωm(z), r(z), and q(z), using the best-fit values obtained with the

Hubble data for different θ planes, for the model with r = 1/2.
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Table 4. We show the cosmological parameters derived from the best fits value of 2D C.L.
obtained in Tables 1 and 2 by varying two cosmological parameters.

Cosmological parameters for r = 1/2

No. q(z = 0) Ωx(z ≈ 1100) Ωx(z ≈ 1010)

I −0.56 0.0032 0.00012

II −0.56 0.0032 0.00012

III −0.56 0.0031 0.00012

IV −0.54 0.0020 0.00004

Cosmological parameters for r = 1/3

No. q(z = 0) Ωx(z ≈ 1100) Ωx(z ≈ 1010)

I −0.55 2.7× 10−6 6.3× 10−15

II −0.56 3.3× 10−6 1.3× 10−14

III −0.56 5.4× 10−6 2.1× 10−13

IV −0.54 3.7× 10−6 2.3× 10−14

Planck TT, TE, EE + lowP + BSHdata: Ωede < 0.0036 at 95% C.L.7 We found

that Ωx(z ' 103) is over the interval [0.0020, 0.0032] for the model with r = 1/2

and [2.7 × 10−6, 5.4 × 10−6] for r = 1/3, so our estimations satisfied the bound

reported by the Planck mission (see Table 4). In regard to the bound reported from

the joint analysis based on Euclid+CMBPol data, Ωede < 0.00092,64,65 the model

with r = 1/2 does not satisfy the severe bound, but the model with r = 1/3 ful-

fils the bound reported. Around z = 1010, in the nucleosynthesis epoch, we have

Ωx between [10−15; 10−13] at the 1σ level, therefore the model with r = 1/3 is

in concordance with the conventional BBN processes that occurred at a temper-

ature of 1 MeV.66 For the best fit values obtained using the JLA sample for the

models, the dark energy behind the recombination is Ωx(z ' 103) = 0.0056 and

Ωx(z ' 103) = 1.05 · 10−6 with r = 1/2 and with r = 1/3, respectively. For the

nucleosynthesis epoch, the values are Ωx = 0.001 for the model with r = 1/2 and

Ωx = 2.18 · 10−15 with r = 1/3. These values coincide with the ones obtained by

constraining with the Hubble data.

5. Discussions

In this work, a Universe that presents a particular interaction in the dark sector has

been analyzed. It was found that, when the interaction depends on the scale factor

as Q = −
√
Ba−3r

(
2A+

√
Ba−3r

)
, and when the dark sector is characterized by a

barotropic equation of state p = (γ− 1)ρ, then the flat Emergent Universe solution

that was already presented in Ref. 41 appears. However, it should be emphasized

that these Emergent Universe solutions were obtained in these references by using

a nonlinear equation of state, which is a particular case of the Chaplygin gas, and

not with the interactions considered by us. So our result can be considered as orig-

inal. The reason for which we analyzed this particular interaction and no others is

because we have found that this can cast the solution of an Emergent Universe.47,49

Interactions with γx 6= 0, together with different interactions or models with vari-

able Λ such as those studied in Refs. 22 and 23 will be considered in a separate

work.

The comparison with observational data was carried out by considering the

parameter values r = 1/2 and r = 1/3, and the remaining cosmic set of parameters
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has been constrained by using the updated Hubble data, the JLA supernova data

and the severe bounds for dark energy found at early times. We have shown that

both models interpolate between a cold dark matter regime and a De Sitter phase

in the asymptotic future.

On the observational side, the best-fit values at 2σ level, using the Hubble data,

for the parameters of the model are represented in Fig. 1 and Tables 1 and 2.

We observe that the obtained constant values of the models are A = 49.39+21.69
−21.59

and B = 30.95+22.19
−17.95 with χ2

d.o.f = 0.764 for the model with r = 1/2 and A =

75.81+24.07
−26.84, B = 24.34+16.84

−12.94 with χ2
d.o.f = 0.765 for r = 1/3, where A > 0 and

B > 0 for both cases. They satisfy the goodness condition χ2
d.o.f ≈ 1. The best fit

is obtained at the independence parameters (Ωx,Ωm) = (0.714+0.026
−0.025, 0.249+0.077

−0.084)

with χ2
d.o.f = 0.831 by using the priors (H0 = 68, A = 60, B = 25, γm = 1.08) for

the case with r = 1/2. The values obtained for the dark energy and dark matter

density parameters are in agreement with the data coming from the WMAP-9

project60 or with the data realized by the Planck Mission,6 see Table 1. For the

model with r = 1/3 as it is shown in Table 2, we get a similar result. In the same

line, the best-fit values using the JLA sample of the parameters of the models are

A = 37.59 ± 36.51 and B = 31.25 ± 56.04 with χ2
d.o.f = 0.863 for the model with

r = 1/2 and A = 58.38±57.59 and B = 11.49±24.53 with χ2
d.o.f = 0.859 for r = 1/3.

The values obtained of the dark energy and dark matter density parameters as we

see in Sec. 3.2 are in agreement with the data. In addition, the amount of early dark

energy has been estimated, i.e. the energy density parameter in the radiation era.

We found that the two models fulfil the severe bounds of Ωx(z ' 1100) < 0.009 at

the 2σ level of Planck. But the model with r = 1/2 did not satisfy the severe bound

reported by the joint analysis based on Euclid+CMBPol data, Ωede < 0.00092,64,65

while the model with r = 1/3 does it.

The central aim of the work is to show that a linear equation of state and the

proposed interaction Q in the dark sector, instead of a mechanism that makes each

of them more complex, recover the solution of Emergent Universe models. We rec-

ognize the limitation of the model but it does not remove the fact that it is an

original work and it deserves to be studied. In fact, to show that an interaction

can lead to the same kind of Universe as a non-barotropic state equation is some-

thing that deserves to be investigated and the possibility of generalizing in a future

work is not ruled out. Under this assumption, we leave for a future research the

consideration of the BAO scale, the CMB dates and the growth of perturbation.

Nevertheless, the analysis performed here over the updated observational Hubble

data and the JLA supernovae data, which predict dark densities close to the ob-

servations, is enough to prove the viability of the approach proposed by us. These

results should be considered in future investigations and discussions.
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