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Nonsingular Promises from Born-Infeld Gravity
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Born-Infeld determinantal gravity formulated in Weitzenböck spacetime is discussed in the context
of Friedmann-Robertson-Walker (FRW) cosmologies. It is shown how the standard model big bang
singularity is absent in certain spatially flat FRW spacetimes, where the high energy regime is
characterized by a de Sitter inflationary stage of geometrical character, i.e., without the presence
of the inflaton field. This taming of the initial singularity is also achieved for some spatially curved
FRW manifolds where the singularity is replaced by a de Sitter stage or a big bounce of the scale
factor depending on certain combinations of free parameters appearing in the action. Unlike other
Born-Infeld-like theories in vogue, the one here presented is also capable of deforming vacuum general
relativistic solutions.

After the proposal addressed in [1], the quest for non-
singular classical spacetimes was carried out several ti-
mes in the context of extended theories of gravity with
Born-Infeld-like structure [2]-[11]. The choice of Born-
Infeld actions for the gravitational field is strongly sug-
gested for taming the singularities present in Einstein’s
theory, especially if one remembers the early success of
the theory in the analogue framework of classical elec-
trodynamics, i.e., in the problem concerning the infini-
teness of the pointlike charge self-energy characterizing
Maxwell’s theory [12]. Remarkable enough, the Born-
Infeld electromagnetic action also plays a prominent role
in string theory, being the proper action for describing
the electromagnetic field inD-branes [13], [14], and it was
shown recently that Born-Infeld gravitational structures
of the sort considered in references [9] and [10] appear na-
turally as counterterms in four-dimensional anti-de Sit-
ter spacetime [15]. However, in all the above mentioned
gravitational Born-Infeld schemes, and due to the fourth
order field equations for the metric tensor coming from
the higher order curvature components in the action, no
single exact solution describing a regular spacetime has
ever been found.

Along this quest, another closely related nonsingu-
lar programme for the gravitational field, the so-called
Eddington inspired Born-Infeld gravity, was introduced
by Bañados in [16] and studied carefully very recently,
mostly in cosmological and astrophysical environments
[17]-[26]. Second order motion equations in this frame-
work are assured due to the independent role played
by the metric and the connection, and a number of
exact cosmological solutions without the big bang sin-
gularity were found [18], [24], even though the theory
seems to also possess singular states [27], [28]. Neverthe-
less, Eddington-Born-Infeld gravity differs from Einstein
theory only when matter sources are present, an unfortu-
nate fact that deprives us from regular black hole states
in pure vacuum.

The purpose of this work is to present a number of re-
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gular cosmological solutions arising from the previously
featured Born-Infeld determinantal gravity [29]. In many
senses, this theory captures the most distinguished points
of all the above mentioned Born-Infeld-like schemes, for
it assures second order motion equations for the vielbein
field ea and, unlike Eddington-Born-Infeld gravity, it is
also capable of deforming vacuum general relativistic spa-
cetimes. Actually, in Ref. [29] we have shown how the
conical singularity present in vacuum three-dimensional
Einstein gravity was deformed into a geodesically comple-
te curved spacetime by solving exactly the gravitational
Born-Infeld motion equations.

Born-Infeld-like actions are not only good candida-
tes in order to deal with singularities, but they are al-
so quite natural. By its very nature, the Lagrangian
density L must be a scalar density of weight one and,
in a D-dimensional orientable manifold, the Lagrangian

L̃ is represented by an D-form which locally looks like

L̃ = L(φ, ∂jφ)dx1 ∧ ...∧dxn. Here we suppose that L de-
pends on certain fields φ and its derivatives up to order j.
In order to construct this density we have at hand a cano-
nical procedure; just take a linear combination of squared
roots of determinants of second rank tensors. Hence we
can write in general

L(φ, ∂jφ) = αk

∑

k

√
|L(k)

µν |, (1)

where | | stands for the absolute value of the determinant.
Formally, each one of the tensors in the combination (1)
can be decomposed according to

Lµν = λ0gµν(φ)+λ1F
(1)
µν (φ, ∂φ)+ ...+λjF

(j)
µν (φ, ..., ∂

jφ),
(2)

where λi, 0 ≤ i ≤ j, are arbitrary couplings at this
point. The splitting (2) emphasizes that Lµν can be vie-

wed formally as a sum of tensors F
(i)
µν (φ, ..., ∂iφ) contai-

ning derivatives up to order i, where we have written

F
(0)
µν (φ) ≡ gµν(φ). This last tensor has a prominent role

in (2) because it contains no derivatives at all.
Even though we do not account with a general rule for

the number of terms we have to consider in (2), a suffi-
cient condition in order to obtain second order differential
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equations for the fields φ results by interrupting the sum

in F
(1)
µν (φ, ∂φ) ≡ Fµν [33]. Additionally, this condition al-

so restricts the summands in (1) to three, otherwise we
would find redundant terms in the Lagrangian. So, the
Lagrangian takes the form

L = α0

√
|gµν |+ α1

√
|gµν + 2λ−1Fµν |+ α2

√
|Fµν |, (3)

where we called 2λ−1 ≡ λ1/λ0, and a redefinition of the
constants αk (k = 0, 1, 2) was performed. An additional
reduction will assure the proper low field limit of the
theory; taking α0 = −α1 and α2 = 0 the Lagrangian will
depend on just one undetermined constant (say λ), and
the action will finally acquire the form

IBIG =
λ

16πG

∫
dDx

[√
|gµν + 2λ−1Fµν | −

√
|gµν |

]
.

(4)
Note that, whatever the (at this point unspecified) tensor
Fµν is, the low energy limit (λ → ∞) of the action (4)

can be easily obtained by factoring out
√
|gµν | and using

√
|I+ 2λ−1F| = 1+ λ−1Tr(F) +O(λ−2), (5)

where F ≡ F ν
µ and I is the identity. Hence, in the low

energy limit we get the action

I↓ =
1

16πG

∫
dDx

√
|gµν |Tr(F) . (6)

It only remains to find the tensors gµν and Fµν . Note
that Fµν contains just first derivatives of the dynamical
field φ, so to look for it in a Riemannian context would be
futile; no second rank tensor built with first derivatives
of the metric will give rise through its trace to the scalar
curvature R characterizing the Hilbert-Einstein action of
general relativity (GR).
To link this low energy action to the Einstein-Hilbert

action, we can evoke the teleparallel representation of
GR. The linkage between the standard (Riemannian)
description of GR and its absolute parallelism (Weit-
zenböck) version is summarized in the equation

T = −R+ 2 e−1 ∂ν(e T
σν

σ ) , (7)

where T is the so-called Weitzenböck invariant,

T ≡ S µν
ρ T ρ

µν , (8)

with S µν
ρ defined as

S µν
ρ ≡ 1

4
(T µν

ρ −T µν
ρ+T νµ

ρ)+
1

2
δνρ T

σµ
σ − 1

2
δµρ T

σν
σ ,

(9)
and T µν

ρ are the components of the Weitzenböck tor-
sion T a ≡ dea, i.e., T ρ

µν = eρa (∂µe
a
ν − ∂νe

a
µ). This torsion

emerges out from Weitzenböck connection Γρ
µν = eρa ∂νe

a
µ

(here eρa is the inverse of eaµ, so e
ρ
ae

b
ρ = δba). In the Weit-

zenböck representation of GR, the dynamical field is the

vielbein ea, and the metric is a subsidiary field related to
the vielbein in the form

gµν = ηabe
a
µe

b
ν . (10)

This last equation determines the tensor gµν in terms
of the fundamental fields φ = ea. This implies e ≡
det(eaµ) =

√
|gµν |, which appears in (7). According to

Eq. (7), the theories described by the Lagrangian den-
sities e T and eR are dynamically equivalent, because
these two quantities differ in a total derivative. There-
fore, the low energy regime governed by action (6) will
be GR provided Tr(F) = T . This is the sole constraint
for the tensor Fµν in the Born-Infeld gravitational action
(4).
We are now in position to find Fµν . A direct inspection

shows that the more general candidate should read

Fµν = αS λρ
µ Tνλρ + β S ρ

λµ T
λ
νρ + γ gµν T, (11)

where α, β, γ are dimensionless constants such as α+β+
Dγ = 1, hence, ensuring that Tr(F) = T [34]. With the
definitions (10) and (11), the action (4) is now determi-
ned. It governs the dynamics of the vielbein field ea and
contains just first derivatives of it, thus guaranteing se-
cond order differential equations. It also assures that in
regions where F ≪ λ, the gravitational phenomena are
those predicted by Einstein’s theory. Note that the par-
ticular choice α = β = 0 trivializes the determinantal
character of action (4), for in this case we actually have
that the action becomes

IBI0 =
λ

16πG

∫
dDx

√
|gµν |

[(
1+ 2

T

Dλ

)D/2

− 1
]
, (12)

which is an f(T )-type action. In fact this constitutes the
sole f(T )-like action that can be obtained from the de-
terminantal structure (4). Finally, we should mention an
important point. The tensor (11) is not invariant under
local Lorentz transformations of the vielbein ea, so neit-
her is the action (4). However, it is mandatory to no-
te that the breaking of Lorentz invariance happens at a
Born-Infeld scale of order ℓ2BI = λ−1. This is an excee-
dingly small length scale possibly associated with ℓp, the
Planck length, where no fully satisfactory description of
the spacetime structure seems to exist currently.

In order to exhibit the power hidden in action (4),
from now on we will focus on cosmological scenarios. For
this reason we will be conservative and fix D = 4. It
is our intention to deal first with spatially flat FRW-
like spacetimes. For this purpose we have the frame
ea = diag(1, a(t), a(t), a(t)), which leads to the spatially
flat FRW line element

ds2 = dt2 − a2(t)[dx2 + dy2 + dz2], (13)

with a(t) the scale factor. Again, being very conservative
we shall consider as a source a perfect fluid with state
equation p = ωρ, where ω is the barotropic index. In this
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case we can easily obtain the initial value equation, i.e.,
the motion equation coming from varying the action with
respect to e00. By using the comoving frame, the energy-
momentum simply reads T µ

ν = diag(ρ,−ωρ,−ωρ,−ωρ),
and the initial value equation results

√
1−BH2

√
1−AH2

[1 + 2BH2 − 3ABH4]− 1 =
16πG

λ
ρ, (14)

where

A = 6(β + 2γ)/λ, B = 2(2α+ β + 6γ)/λ. (15)

This is the modified Friedmann equation governing the
dynamics of the Hubble rate H = ȧ/a. The energy den-
sity ρ is linked to the scale factor by the conservation
equation ρ̇+3(ρ+ p)H = 0. If one is dealing with a per-
fect fluid state equation this conservation law assumes
the form

ρ(t) = ρ0

( a0
a(t)

)3(1+ω)

, (16)

where ρ0 and a0 are two constants alluding to present-
day values. If we replace (16) in the right-hand side of
(14), we get a first order differential equation for the scale
factor a(t). The other motion equations coming from the
remaining tetrad components eaµ, if non-null, are just a
consequence of combining the time derivative of (14) with
(16), so they do not provide additional information.
It is then convenient to carefully inspect the equation

(14) for a case that, due to its simplicity, is of particular
interest, namely, when B = 0. In addition to B = 0, the
normalization condition α+β+4γ leads us to A = 12/λ,
so the motion equation reduces to

1√
1− 12H2

λ

− 1 =
16πG

λ
ρ. (17)

Surprisingly enough [35], Eq. (17) is the same as the ob-
tained previously in the Born-Infeld gravitational theory
with f(T ) structure discussed in Refs. [30] and [31]. This
field equation conduces to an exact solution with remar-
kable properties which we just summarize here (see the
mentioned references for details). For every barotropic
index ω > −1 (radiation and dust matter lying in this
interval) the scale factor describes a regular (geodesically
complete) spacetime without the big bang singularity and
possessing a natural inflationary stage of geometrical cha-
racter. Actually it can be easily seen that

a(t→ −∞) ∝ exp
[√ λ

12
t
]
, (18)

so there exists a maximum Hubble factorHmax =
√
λ/12

as we backtrack the cosmic evolution. This maximum
Hubble factor assures for the early Universe a λ-driven
de Sitter evolution of infinite duration, and it is respon-
sible for the geodesic completeness of the spacetime, for

every past directed timelike or null geodesic can be ex-
tended to arbitrary values of the affine parameter. As a
consequence of the presence of Hmax, it can be easily
shown that the invariants of the geometry also reach sa-
turation values given by Rmax = λ, (RµνRµν)max = λ2/4
and (Rµ

νρσR
νρσ

µ )max = λ2/6 as t→ −∞.

The characterization of isotropic and homogeneous
cosmological manifolds would not be complete if we
would cease the analysis in the spatially flat FRW mo-
dels. In order to carry on with the investigation let us
deal now with spatially curved cosmological models. The
frames adapted for this symmetry are substantially more
complicated than the simple diagonal frames correspon-
ding to the spatially flat case worked above. In Ref. [32]
it was showed that a global basis of frames for spatially
curved FRW spacetimes reads

e0 = dt,

e1 = a(t)E1,

e2 = a(t)E2,

e3 = a(t)E3, (19)

where the 1-forms E1, E2, and E3 are

E1

k
= −k cos θ dψ + sin(kψ) sin θ cos(kψ) dθ −

− sin2(kψ) sin2 θ dφ,

E2

k
= k sin θ cosφdψ −

− sin2(kψ)[sinφ− cot(kψ) cos θ cosφ] dθ −
− sin2(kψ) sin θ[cot(kψ) sinφ+ cos θ cosφ] dφ,

E3

k
= −k sin θ sinφdψ −

− sin2(kψ)[cosφ+ cot(kψ) cos θ sinφ] dθ −
− sin2(kψ) sin θ[cot(kψ) cosφ− cos θ cosφ] dφ.

(20)

This global basis leads to the line element

ds2 = dt2 − a2(t)k2[d(kψ)2 − sin2(kψ)(dθ2 + sin2 θ dφ2)],
(21)

where (ψ, θ, φ) are standard spherical coordinates. The
parameter k appearing in Eqs. (20) and (21) takes the
values k = 1 for the spatially spherical Universe and k = i
for the spatially hyperbolic one.
The equations of motion taking into account the full

parameter space (α, β, γ) are indeed very complicated for
the spatially curved manifolds under consideration, and
it is not our intention to deal with them in their full ge-
nerality. In analogy with the study made before, we shall
focus on a few cases of particular interest for our present
concerns. The fine solution encoded in Eq. (17) has an
equally nice counterpart in the curved case. Actually, the
motion equation for B = 0 reads

(1± 1
λa2 )

3/2

√
1− 12H2

λ

− 1 =
16πG

λ
ρ, (22)
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where from now on + and − correspond to the closed
and open cases, respectively. An exact solution of this
equation is rather elusive, but we can extract its most
important features by writing it in the form

ẏ2 + V (y) = 0, y =
a(t)

a0
(23)

after defining the effective potential V (y) given by

V (y) = − λ

12
y2
[
1− (1± k0 y

−2)3

(1 + β0 y−3(1+ω))2

]
, (24)

where we have defined the constants k0 = 1/λa20 and
β0 = 16πGρ0/λ.
If we focus on the high energy regime where the theory

supposes to makes a difference with respect to the GR
singular behavior, we can expand the potential (24) in
the small quantity y = a(t)/a0 (from now on we will take
ω = 1/3). Under this circumstance, Eq. (23) results in

ẏ2 − λ

12
y2 = O(y4) ≈ 0, (25)

Naturally, we have then

a(t) ≈ exp
[√ λ

12
t
]
, as a(t)/a0 → 0. (26)

Again, as in its flat counterpart of Eq. (18), we see how
the initial singularity is removed by the presence of an
inflationary early stage driven by the Born-Infeld cons-
tant λ. Note that this result is independent of the open
or closed character of the spatial slices.

Some other interesting results emerge when one con-
siders the case β = 0, α − 12γ = 0. For this particular
choice of parameters the initial value motion equation
reads

1± 1
λa2√

1± 1
λa2 − 12H2

λ

− 1 =
16πG

λ
ρ. (27)

This equation would be even harder to solve than the one
of the previous case (Eq. (22)), so again we will put it in
the form (23). Now the effective potential results

V (y) = − λ

12
y2
[
1± k0 y

−2 −
( 1± k0 y

−2

1 + β0 y−3(1+ω)

)]
. (28)

Unlike in the previous case, it is easy to see that when
y goes to zero we have now V (0) = ∓1/(12a20), where
it is important to take note of the sign inversion. This
peculiarity leads to different dynamics according to the
open or closed character of the Universe. For the closed
case we can actually expand the potential in powers of y
in the same fashion we did before, to obtain

ẏ2 − λ

12
y2 − a−2

0

12
≈ 0. (29)

In this way the high energy regime for the scale factor
is given by a(t) ≈ t, with an associated Hubble rate
H ≈ t−1. According to this picture the closed Univer-
se possesses a singularity in t = 0, and it expands for
t > 0 in an accelerated manner due to ÿ > 0.

A radically different picture emerges out when one con-
siders the open Universe. Given that the potential goes
to a positive number when y → 0, and that it is negative
when y → ∞, it a has a root somewhere. Actually, by
inspecting Eq. (28) for the minus sign we easily see that
the root results

ymin =
√
k0, ⇒ amin = 1/

√
λ. (30)

Because the “energy level” in Eq. (23) is null, we observe
that the Universe expands from the minimum size amin =
λ−1/2. The functional form of the scale factor near this
minimum can be obtained expanding the potential (28)
in the small quantity y − ymin. In this way we find that
Eq. (23) reduces to

ẏ2 − λ
√
k0
6

y +
λk0
6

≈ 0, (31)

leading to the scale factor

a(t) ≈ amin +

√
λ

24
t2. (32)

This constitutes a bounce of the scale factor in the event
t = 0, where H = 0. Unlike the closed case considered
above, the spacetime results now geodesically complete,
and the cosmic evolution starts its accelerated expansion
from a minimum volume given by a3min = λ3/2 with a
maximum energy density

ρmax ∝ a−4
min = λ2. (33)

This quantity can be interpreted as the maximum energy
that can be stored as a consequence of the minimum vo-
lume existent due to the repulsive quantum effects gover-
ning the very early Universe. The reason why this occurs
only in the context of open models remains unclear. This
and many other open questions, such as the existence of
regular, asymptotically flat vacuum black hole solutions,
will be matter of future works.

Acknowledgments. I would like to thank Rafael Ferraro
for sharing so many years of enjoyable discussions and J.
Areta for a careful reading of the manuscript. This work
was supported by CONICET.



5

[1] S. Deser and G.W. Gibbons, Class. Quant. Grav. 15

(1998) 35.
[2] J. A. Feigenbaum, Phys. Rev. D58 (1998) 124023.
[3] J. A. Feigenbaum, P.O. Freund and M. Pigli, Phys. Rev.

D57 (1998) 4738.
[4] D. Comelli, Phys. Rev. D72 (2005) 064018.
[5] D. Comelli and A. Dolgov, JHEP 0411 (2004) 062.
[6] J. A. Nieto, Phys. Rev. D70 (2004) 044042.
[7] M.N.R. Wohlfarth, Class. Quant. Grav. 21 (2004) 1927;

ibid, Corrigendum, Class. Quant. Grav. 21 (2004) 5297.
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