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a b s t r a c t

We report the chain dynamics in the necklace model that mimics the reptation of a
chain of N particles in a two-dimensional square lattice. We focus on the drift velocity
under an applied static field. The characteristics of the model allow us to determine the
effects of the forces on the chains and the resulting mechanisms that affect the drift
velocity. Results obtained through Monte Carlo simulations were analyzed and discussed
and distinct regimes as a function of the force strength and N were identified. We found
that for small total applied forces, the drift velocity scales as 1/N .When the applied force to
every particle is small but the total applied force is not, the tube deforms in such away that
the drift velocity does not depend on N . Large forces, applied to every particle, can straight
chains such that the distance between the chain ends increases faster than the number of
particles. Also, large forces can deform the chain within the tube what is directly related to
a decrease of the drift velocity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The idea that the motion of entangled polymer chains takes place by ‘‘reptation’’ was introduced by de Gennes years
ago [1]. He chose the word reptation because it describes the motion much like that of a snake moving in a contorted
roadway formed by the surrounding polymer molecules. The reptation mechanism describes the dynamics of entangled
polymer melts and also the motion of DNAmolecules in gel electrophoresis. In both cases a long linear and flexible polymer
moves in a medium of dense obstacles that confine its motion to a one-dimensional diffusion along a tube [2–4].
The first discretizedmodel to analyze a chain dynamics under reptation was introduced by Rubinsteinmore than twenty

years ago [5]. The repton model was then extended to two dimensions by Duke to adapt it to electrophoresis of DNA chains
in a gel [6,7]. The gel was pictured by Duke as a square lattice of cells and the DNA molecule was considered to be a flexible
repton chain that moves from cell to cell. Later, the necklace model that is slightly different from the repton model was
introduced [8,9]. At odds with the Duke model, in the necklace model consecutive beads cannot occupy the same site. Also,
the necklace model is more flexible regarding the jumping probability of beads at the ends of the chain relative to those of
the central beads, allowing the study of cases that could not be addressed before.
We recently studied the reptation of a chain in a square lattice extending to two dimensions the necklace model [10].

Analytical approximations for the diffusion coefficient of the center of mass of the chain, for all values of N , were proposed.
In this work, we focus on the drift velocity due to a static field. We found that the application of an external field can deeply
affect the reptation motion and induce a rich non trivial phenomenology. We specifically study how the applied forces
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Fig. 1. Scheme representing the two-dimensional necklacemodel. (a) Chain in a gel or in amelt of others polymers chains. Filled circles represent particles
of the chain, open circles holes, and crosses the gel or other fixed polymers that act as obstacles. (b) Jumping rates for end andmiddle particleswhen external
forces are applied (δ > 0). The applied force to every particle is shown. The diagram shows the components of the applied force to a particle.

affect the chain reptation and thus the resulting drift velocity. We could determine distinct mechanisms responsible for the
observed trends as a function of the force strength and chain length.

2. Model

Themodel is based on the reptation concept inwhich gel fibers play the role of obstacles that inhibit the lateralmovement
of a diffusing chain. The confinement is such that the chain moves in a tube and the dominant motion is one-dimensional.
The diffusing chain, consisting of N particles, is represented by a string of beads and holes (or vacancies) and it is placed in
a square lattice of constant a determined by obstacles (represented by crosses) as seen Fig. 1(a). For the sake of simplicity,
we will assume that the obstacles define a square network. The chain is not allowed to cross any of the obstacles but it can
move in between. The distance between two consecutive particles can be either a, 2a, or 21/2a (in the last two cases there is
a hole between the particles). Only loops of the string in which at least one obstacle is surrounded by the chain are allowed
(hernias are not allowed). Although consecutive beads or holes cannot occupy the same site, when loops form a given lattice
site can be occupied by more than one particle or hole. Each end particle has a corresponding pre-end particle, that is, the
consecutive particle of this end particle along the chain.
When external forces are not applied, the jumping rules of the model are as follows (see Fig. 1(b) with δ = 0).
• An end particle with a nearest site occupied by its corresponding pre-end particle jumps with a probability per unit time
pa/3 to each of the three nearest sites that are not occupied by the pre-end particle, see Fig. 1(b). Then, the total jumping
probability per unit time is pa. If the jump takes place, a hole is created.
• An end particle not having a nearest site occupied by its corresponding pre-end particle (i.e. there is a hole between these
two particles) jumps towards the hole with a probability per unit time pb. If the jump takes place, a hole is annihilated.
• A middle particle (particles which are not located at the end of the chain) with one of its nearest site along the chain
occupied and the other one empty jumps to the hole with a probability per unit time pc .
• A middle particle with both nearest sites along the chain occupied, or both nearest sites along the chain empty (i.e., a
middle particle between two holes), does not jump and remains at its original position.

Hence, pa, pb, and pc are the free parameters of the model. In the following we will use that the distance a between
adjacent sites of the square lattice and the unit time are both equal to 1.
A hole is created or annihilated every time an end particle jumps moving away from the chain or towards the chain,

respectively. An end particle jumping attempt that creates a hole is successful with frequency pa(1−Ph), where Ph is the hole
probability. Similarly, an end particle jumping attempt that annihilates a hole succeeds with frequency pbPh. In equilibrium
we expect the same frequency for creation and annihilation. Thus, Ph can be expressed as

Ph =
pa

pa + pb
. (1)
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When no external forces are present, the hole probability Ph is uniform along the entire chain. Under these conditions, the
average length of chains, l, is given by

l = N + Ph(N − 1). (2)

If there is an applied external field, implying a force to the right, the jumping rates of a particle to the right and to
the left will be considered to be (1 + δ)k and k/(1 + δ), respectively. k is the jumping frequency when no force is
applied, and δ ≥ 0. In what follows, in a general sense, we will refer to δ as the applied force to a particle of the chain.
However, the external force applied to a particle has a net component to the right of magnitude 2δ and another component
upwards of the same magnitude. Thus, the net force applied to every particle is 2

√
2δ, see Fig. 1(b). We can also refer to

the external force in terms of a dimensionless applied electric field E. Indeed, 1 + δ = exp(Ex/2) = exp(Ey/2), where
Ex = Ey = E/

√
2 = qE ′xa/kT = qE

′
ya/kT , where E

′
x and E

′
y are the actual electric field in the x-direction and y-direction,

respectively, and q is the associated charge to every particle. To facilitate comparison with previous work, we include both
manners to refer to the applied force. Note that for δ � 1, δ ∼ E.
First, we will discuss some general theoretical considerations used in this work. Then, we will present the case in which

the total applied force is small, i.e., Nδ → 0. Next, we will analyze the results for chains of any length with δ → 0. Finally,
we will discuss the results corresponding to large forces.

3. Diffusion coeficient

Using scaling arguments [7] we obtained an analytical approximation for the diffusion constant of the center of mass
of the chains in two dimensions. Let us consider the case of a chain that moves in a medium with fixed obstacles that
restrict the lateral motion of the chain. This situation can be approached with a chain confined in a tube. After a time, tesc,
the chain escapes from its original tube and adopts a new configuration that is not correlated with the initial one. In other
words, at the scale of time tesc the center of mass of the chain performs an ordinary random walk. Then, one can write that
r2cm ∼ D2Dt , where t ≥ tesc, r

2
cm is the mean square displacement of the center of mass and D2D is the diffusion coefficient in

two dimensions.
Considering now the one-dimensional motion of the chain along the tube, l2 ∼ D1Dtesc, where l is the average length of

the chain and D1D is the diffusion constant in its tube (i.e., D1D is the one-dimensional diffusion coefficient). At t = tesc, the
mean square displacement, r2cm, behaves as the square of themean value of the end-to-end distance of a chain, r

2 (r2cm ∼ r
2).

By combining these expressions, the diffusion constant of the center of mass of the chains behaves as

D2D = C
( r
l

)2
D1D, (3)

where C is a constant. The exact expression of D1D, valid for N ≥ 2, was found in Ref. [11] and it is given by

D1D =
papbpc

(pa + pb) [(N − 2)(pa + pb)+ 2pc ]
. (4)

When there are no external forces, r ∼ l1/2. Thus, from Eqs. (1)–(4) we can write

D2D = A
papbpc

[(N − 2) (pa + pb)+ 2pc ] [N (pa + pb)+ (N − 1) pa]
, (5)

where A is a constant. In Ref. [10] it was found that A = 1.06. For pa + pb = pc , D2D behaves as 1/N2 even for quite small
values of N (N ≥ 10). Let us note that the above arguments hold for D ≥ 2. Then, we expect that Eq. (5) is also valid in 3D
with an appropriate value of constant A.

4. Results and discussions

4.1. Small forces (δ � 1)

4.1.1. Small total force (Nδ � 1)
In the limit of very small total force (Nδ � 1) one expects that the Einstein relation holds, then one has

vdrift = D2D2
√
2Nδ, (6)

where 2
√
2Nδ is the total force applied to the chain and D2D is the diffusion coefficient in two dimensions. From Eqs. (5) and

(6), one obtains an analytic approximation for drift velocity of the center of mass of a chain of N beads

vdrift = A
papbpc

[(N − 2) (pa + pb)+ 2pc ] [N (pa + pb)+ (N − 1) pa]
2
√
2Nδ. (7)

Fig. 2 showsMonte Carlo results for the drift velocity as a function of 1/N andwith dashed lines the analytical approximation,
Eq. (7), for two values of the applied force. This approximation has been verified using Monte Carlo simulations for different
values of pa, pb, pc , and δ.
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Fig. 2. Drift velocity of chains consisting of N beads for two values of the applied force δ (or field E). Dashed lines represent the approximation given by
Eq. (7), which is valid for Nδ � 1. Solid lines correspond to the approximation given by Eq. (8), valid for every N and δ � 1. Horizontal dashed-dotted
lines correspond to the constant value of vdrift obtained for large value of N . Monte Carlo results were obtained using pa = pb = 0.25 and pc = 0.5. Error
bars are smaller than the symbols size.

Fig. 3. Ratio r/N vs. N , where r is the mean value of the end-to-end distance of a chain of N particles. The values for the parameters of the model are
pa = pb = 0.25, pc = 0.5, δ = 0.005 (open squares) and δ = 0.01 (open circles). The dashed line indicates the behavior when no forces are present
(r ∼ N−1/2). The hole probability, Ph , along the chain for N = 200 is shown in the inset (using pa = pb = 0.25, pc = 0.5, and δ = 0.005); these results
were obtained averaging over 5000 samples. The horizontal line is the expected value of Ph .

4.1.2. Small forces and large chains (δ � 1, N � 1)
The forces δ can produce two different kind of deformations: (a) the deformation of the tube, and (b) the deformation

of the chain within the tube. In the case of Nδ � 1 both deformations are negligible and the Einstein relation holds as
was above mentioned. We found that, in the case of δ � 1 and N � 1, the tube containing the chain deforms despite the
smallness of the force applied, i.e. the relation r ∼ l1/2 does not hold any longer. This can be clearly observed in Fig. 3 in
which the ratio r/N becomes constant for large values of N . As in the previous case, long chains do not deform within the
tube. This is verified by examining the hole distribution along the chains. As seen in the inset of Fig. 3, the hole probability
Ph for a chain of N = 200 is the same along the chain and the average value is that of a equilibrium. Therefore, the average
chain length, l, can be determined using Eq. (2). Note that l ∼ N for large values of N and thus, from Fig. 3, r ∼ l.
For this regime we propose the validity of an extended Einstein relation equivalent to Eq. (6). By combining Eqs. (3) and

(6) one obtains

vdrift = C
( r
l

)2
D1D2
√
2Nδ. (8)

We can determine the value of the constant C by matching this expression to Eq. (7) for small values of N . As before, the
diffusion coefficient D1D is given by Eq. (4) because, for δ � 1, there is no deformation of the chain inside the tube. The
values of the ratio r/l are obtained fromMonte Carlo results. This means that to compute vdrift we need this ratio that must
be obtained with numerical simulations. In Fig. 2 we show approximations given by Eq. (8) that, using the results of Fig. 3,
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Fig. 4. Rescaled drift velocity vdriftN2 as a function of the total force applied to the chain NE. In (a) the small forces case is shown (δ � 1). The solid line
corresponds to the re-scaled equation (7) and the dashed line indicates a behavior of the type (NE)2 . In (b) results corresponding to large forces applied to
every particle are plotted. The solid and dashed lines are the same than in (a). In both cases, the parameters of the model are pa = pb = 0.25 and pc = 0.5.

fit very well the simulations. This approximation was verified for other sets of pa, pb, pc and δ, where pa + pb = pc with
pa = pb and pa 6= pb.
Note that in the necklacemodel,within some range,we can choose the average length of the chain for the samenumber of

beads and, independently, themobility of the end beads can bemade equal to themobility of themiddle beads. This permits,
[with pa+pb = pc , see Eq. (4)] to have a curvilinear diffusivity with a dependence 1/N for anyN , which is in agreement with
the reptation theory [1,2]. In 3D, see the comment below Eq. (5), the dependence 1/N2 for N ≥ 10 has been observed in
entangled polymermelts for tracer diffusion [12], i.e. when obstacles can be considered to be immobile as in electrophoresis.
Furthermore, with this election of parameters, external forces produce no deformation in the one-dimensional case. Indeed,
in Ref. [11] we found that – in one dimension, for pa + pb = pc and any values of N and δ (N ≥ 2, δ > 0) – the chains are
dragged by external forces without any deformation (i.e.: Ph is the same along the chains). Therefore, if a deformation of the
chain inside the tube appears, it must be directly related to the two dimensional motion in which new effects are present.
For this reason in what follows we will use pa + pb = pc . Furthermore, in the necklace model, deformations, which will be
discussed below, can be readily evaluated through the hole distribution, and it is possible to distinguish tube deformation
from chain deformation.
Fig. 4 shows rescaled drift velocities vdrift N2 as a function of NE, which is proportional to the total applied force, for

pa = pb = 0.25 and pc = 0.5, with different values of δ. The drift velocity dependence with N when the applied force on
every particle is small is shown in Fig. 4(a). Two regimes clearly emerge according to the size of the chains. For relatively
short chains, when NE � 1, vdrift ∼ E/N because D2D ∼ 1/N2, see Eqs. (5) and (6). For long chains, in which E � 1, it is
found that vdrift ∼ E2. From Monte Carlo results (not shown here) we found that (r/l)2const ∼ δ, where (r/l)const is the value
of r/l for N � 1, which does not depend on N (see Fig. 3). Then, from Eq. (8), the drift velocity, for N � 1 and δ � 1,
is proportional to δ2 and independent of N , since D1D ∼ 1/N . This is in agreement with experiments of DNA migration in
electrophoresis (see [13] and references there in). It is important to note that in both regimes the chain deformation within
the tube is negligible. The large NE regime (vdrift ∼ E2) appears due to the tube deformation. The same types of regimes
were found in the Duke model (see Refs. [6] and [13]), and in the biased reptation model that has a different dynamics (see
Refs. [14] and [15]).
Fig. 2 shows that, for small δ and large enough values of N , the drift velocity takes a constant value vconst. This behavior

corresponds to the large total force regime shown in Fig. 4(a). Strictly speaking, we do not know if the drift velocity remains
constant as N goes to infinite, or vdrift decreases in this limit. Unfortunately, we cannot answer this question because the
obtaining of vdrift for larger values of N is beyond our computation facilities. In other words, we do not know if there is
another regime for E → 0, N →∞, and NE > 30.

4.2. Large forces

The rescaled drift velocities vdriftN2 as a function of the total force appliedwhen the applied force on every particle cannot
longer be considered small are shown in Fig. 4(b). The behavior is very different fromwhat was observed for smaller applied
forces. We will show that the response of the chains to large forces involves not only the deformation of the tube but of
the diffusing chain itself within the tube. Moreover, we can define that the applied force is large if the chain suffers an
appreciable deformation.
In Fig. 5 we can appreciate the chain deformation due to large applied forces. The chain deformation directly reflects on

the hole probability along the chain that not only is not uniform but can be significantly larger than that of equilibrium, see
Eq. (1). We found that the chain deformation increases with N for the same value of δ (the total force Nδ increases). The
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Fig. 5. Probability, Ph , for a hole between two particles along a chain with N = 50 in the case of large forces applied to every particle. When no forces are
applied, Ph = 0.5 (see Eq. (5)) which correspond to the solid horizontal line. The parameters of the model are pa = pb = 0.25 and pc = 0.5. Open triangles
correspond to δ = 0.2, open stars to δ = 0.5, and crosses to δ = 1.0. Chains align with the field. For δ = 0.2, not a very large field, chain ends play the
roles of head and tail alternatively during the simulation resulting in a symmetric hole distribution. For δ = 0.5 and δ = 1, one of the chain ends plays the
role of head along the whole simulation.

Fig. 6. Ratio r/N vs. N where r is the mean value of the end-to-end distance of a chain of N particles. The values for the parameters are pa = pb = 0.25
and pc = 0.5. Open triangles correspond to δ = 0.2, open stars to δ = 0.5 and crosses to δ = 1.0.

difference between the hole distributions of Fig. 5 and that in the inset of Fig. 3 is striking. Note that the inset of Fig. 3 shows
results for N = 200 and Fig. 5 for N = 50; since deformation increases with N , longer chains are even more deformed than
those of Fig. 5. Thus, we cannot longer calculate the average chain length using Eqs. (1) and (2).
It was also found that, for large forces, chains are stretched (r/N is much larger than for cases of small δ, see Figs. 3 and 6)

and chains align with the field. The reported hole distributions of Fig. 5 were obtained performing the time average of one
sample over a total time T = 109, averaging 104 configurations taken on intervals of 105 units of time. For δ = 0.2 the
chain deformation is not very pronounced and chain ends play the roles of head and tail alternatively during the simulation
resulting in a symmetric hole distribution (the roles of head and tail change around 20 times during T ). In the other two
cases, for which δ = 0.5 and δ = 1, once the chain is aligned with the field, one of the chain ends plays the role of head
along the whole simulation. We did not observe a chain re-orientation after the time T indicating that the probability for
this event is extremely low. Note that, after this time, the chain moves by drift approximately 2.5×107 lattice constants for
δ = 0.5, more than 3× 105 times the average chain length. Interestingly, the resulting chain deformation is not symmetric.
Furthermore, we found that the ratio r/N increases with N , i.e., the distance between the chain ends increases faster than
the number of particles in the chain, see Fig. 6. Of course, this cannot occur indefinitely because of the chain integrity; at
some point the tube cannot longer be straighter and the ratio r/N stops increasing.
In Fig. 4(b), due to the scales used, the details in the behavior of the drift velocity as a function of the chain length cannot

be appreciated. In Fig. 7 we present vdrift versus 1/N in log–log plot for a large value of the applied force (δ = 1). This figure
shows that for small values of N , vdrift decreases with N to a minimum. After that, vdrift increases reaching a maximum value
that is due to the tube straightening or, in other words, to a longer end-to-end distance of the chain. For a window of N ,
longer chains move faster than short ones. This behavior has been observed experimentally (see, for example, Ref. [16]).
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Fig. 7. Drift velocity as a function of the inverse of the number of particles of the chain for large δ in a log–log plot. Monte Carlo results where obtained
using pa = pb = 0.25, pc = 0.5 and δ = 1.0.

We associate this phenomenon to tube straightening when the distance between the chain ends increases faster than the
number of particles in the chain as shown in Fig. 6. Finally, vdrift decreases again, what is correlated with a noticeable chain
deformation.
As commented above, for pa+pb = pc , chains are dragged by external forces without any deformation in one dimension.

Thus, chain deformation is a phenomenon that must be directly related to the two-dimensional character of the present
model. The observation that the average hole probability increases (Fig. 5) indicates the presence of some regions in the
chains with a mobility lower than average in such a way that the applied forces stretch the chains. This idea is that of
self-trapping of Noolandi et al. [16], in which fragments of the chain stop migrating during some time as they get trapped
in loop-like conformations. As a consequence, the drift velocity reduces with N as self-trapping becomes more likely. Our
modeling predicts this phenomenon to take place for very large fields but, to our knowledge, experimental results have not
been reported.

5. Conclusions

The characteristics of necklace model allow us to identify the effects of the forces on the chains and the resulting
mechanisms that affect the drift velocity. In particular, the hole distribution along the chain and the end-to-end distance of
the chain give us the information on the chain deformation within the tube and on the tube deformation, respectively.
For the chosen condition of the parameters in the model, pa + pb = pc , the one-dimensional diffusivity is simply related

to N as D1D ∼ 1/N . For small total applied forces, i.e. Nδ � 1, r ∼ l1/2 and l is proportional to N; then, vdrift scales as 1/N .
For small forces (δ � 1), we propose the approximation given by Eq. (8). The vconst regime shown in Fig. 2 is due to the
linear relation between the end-to-end distance of the chain and its chain length. Indeed, for small applied forces but large
N , when the condition Nδ � 1 is not longer valid, r/l ∼ constant and thus vdrift converges to a constant value, in agreement
with Monte Carlo data. In short, the behavior shown in Fig. 4(a) is due to the crossover from r ∼ l1/2 to r ∼ l regimes. No
other effects are present in these regimes; in particular, the distribution of holes along the chain remains unaffected and is
the same found when no force is applied. This is the reason why in the approach that leads to Eq. (8) we can use the same
one-dimensional diffusion constant, D1D, for both regimes.
For large forces, when the condition δ � 1 does not hold, the distance between the chain ends can increase faster than

the number of particles in the chain and thus the drift velocity becomes larger with N . Eventually this effect cannot occur
indefinitely and the ratio r/l becomes constant again. Large forces have another effect: the chainwithin the tube is deformed
as the hole distribution is not longer constant along the chain indicating self-trapping. Under this condition, the mobility is
reduced and the drift velocity drops with N as longer chains are more and more deformed.
In the present paper only results with pa = pb = 0.25 and pc = 0.5 are shown. But, the general conclusion of the present

work were verified for other values of pa, pb and pc , for which the relation pa + pb = pc hold (with pa = pb and pa 6= pb).
In Ref. [10] we presented two versions of the necklacemodel, the non interactive and the self avoiding cases. In this work

we focus on the non interacting case because D2D ∼ 1/N2 as observed in experiments. Self-avoidance leads to a different N
dependence, D2D ∼ 1/N3/2 [10], that directly reflects on the drift velocity for small fields. Conversely, for large fields, chains
are stretched, so self-avoiding chains have the same behavior than non-self avoiding ones.
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