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A B S T R A C T

We present a theoretical analysis of the equation of state (EOS) of metals using a quasi-harmonic Einstein
model with a dimensionless cohesive energy versus distance function (F(z)) involving the Wigner-Seitz radius
and a material-dependent scaling length, as suggested in classical works by Rose, Ferrante, Smith and
collaborators. Using this model, and “universal” values for the function and its first and second derivatives at the
equilibrium distance (z=0), three general interrelations between EOS parameters and the cohesive energy are
obtained. The first correlation involves the bulk modulus, and the second, the thermal expansion coefficient. In
order to test these results an extensive database is developed, which involves available experimental data, and
results of current ab initio density-functional-theory calculations using the VASP code. In particular, the 0 K
values for volume, bulk modulus, its pressure derivative, and the cohesive energy of 27 elements belonging to
the first (Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn), second (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd) and third (Hf, Ta, W,
Re, Os, Ir, Pt, Au) transition row of the Periodic Table are calculated ab initio and used to test the present
results. The third correlation obtained, allows an evaluation of the third derivative of F(z) at z=0 for the current
elements. With this new information, a discussion is presented of the possibility of finding a “universal” F(z)
versus z function able to account accurately for the pressure derivative of the bulk modulus of the transition
elements.

1. Introduction

The knowledge of the cohesive properties and the equation-of-state
(EOS) parameters of solids is a subject of permanent interest in solid-
state science. In this field, empirical, semi-empirical as well as
theoretical approaches have been applied to reveal rather general
(often called “universal”) features of the systematics and interrelations.
In particular, Gschneidner [1] showed long ago that the experimental
cohesive energy (Ecoh), the bulk modulus (BT), and the inverse atomic
volume (v) of the elements exhibit the same general behavior when
plotted versus the group number in the Periodic Table. In another
pioneering work, Moruzzi et al. [2] demonstrated that these trends can
be well accounted for by density-functional-theory (DFT) ab initio
calculations, and that BT for the elements can be described as a single
function of the interstitial charge density [2]. In turn, Miedema and
collaborators [3,4] showed empirically that a specific combination of
EOS parameters for various types of metals, viz., the ratio B v/T could be

represented by a single function of a parameter representing the
electron density at the boundary of the Wigner-Seitz cell. This
“universal” feature was one of the bases of the Miedema powerful
semi-empirical approach to cohesion in metals [3].

More recently, the ab initio approach to cohesive properties and
EOS parameters of elements have become a standard tool in the
development of thermodynamic databases of interest in, i.a., the
calculation of phase diagrams [5,6]. In addition, the accuracy of the
ab initio predictions using DFT calculations has been the subject of a
considerable attention. In particular, a detailed assessment of such
predictions for the elemental crystals has been presented, which might
be adopted as benchmark for new correlations (see below) [7].
Moreover, there has been a continuous interest in the application of
models and approaches to the EOS parameters of solids able to
account, in a simple way, for the main features of the microscopic
picture of cohesion developed in the theoretical work. These methods
might lead to reasonably accurate estimates of lacking data and often
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reveal physically relevant trends. As a key example of this kind of
studies, it might be mentioned that Sigalas et al. [8] analyzed the
results of augmented plane wave calculations to correlate Ecoh and BT
in terms of a simple model involving a volume-dependent interstitial
electron density and the bonding valence of the elements.

Very recently, the present authors performed an analysis of the
systematics of cohesive properties and EOS parameters for a large
number of Me Xa b type intermetallic phases formed by Me=Cu, Ni with
X=In, Sn [9]. To this aim, an ab initio database obtained by DFT
calculations was adopted. Two findings of that study may be high-
lighted, which are part of the motivations of the present work. First, it
was shown that Ecoh, BT, and v of these compounds are smoothly
varying functions of the “average group number” (AGN), a variable
calculated as the weighted average of the number of valence electrons
involved in the VASP calculations. Second, it was found that a
strikingly simple interrelation holds between these three properties,
viz., BT is proportional to the ratio E v/coh .

Motivated by these recent findings, the general purpose of the
current work is to study theoretically the interrelations between
cohesive properties and EOS parameters of the 3d, 4d and 5d-
transition metals using, for the sake of consistency, the same ab initio
technique previously adopted to treat the intermetallic compounds [9].
Specifically, the work aims at establishing rather general correlations
between Ecoh, BT, and v, and also explore the possibility of treating the
thermal expansion coefficient α. To this end two theoretical methods
are applied. In the first place, a simple thermostatistical model, viz., a
quasi-harmonic Einstein solid with a volume-dependent cohesive
energy is used to derive various relations between BT or α and Ecoh.
In the second place, in order to test the predictions of this model, ab
initio calculations are performed for 27 elements, viz., Sc, Ti, V, Cr, Fe,
Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os,
Ir, Pt and Au.

The structure of the paper is as follows. In Section 2, we describe
the thermostatistical model and in Section 3 we obtain the EOS of this
idealized solid and the key parameters involved, viz., BT, B P(∂ /∂ )T and
α. On these bases we establish theoretically three correlations involving
the EOS parameters. In Section 4, we describe the experimental and
theoretical database used to test the correlations. In particular, the
results of systematic ab initio calculations are presented. Finally, in
Section 5 the thermostatistical predictions are compared with experi-
mental data and the ab initio results. In particular, the current results
are compared with the database reported as Supplementary Material in
the recent paper by Lejaeghere et al. [7]. Section 6 is devoted to a
discussion of the “universal” implications of the present results. In
Section 7 we summarize the work and present the conclusions.

2. Thermostatistical model

Consider a finite sample of volume of an infinite Einstein solid with
a volume per atom v. This set of Einstein oscillators will be treated in
the framework of the quasi-harmonic approximation (QHA), which
assumes that the atomic vibrations are harmonic but the frequency ω is
a function of the volume of the solid [10]. This implies that the Einstein
characteristic temperature (θE), defined by the relation θ v( )E ω v k= ( )/ B
[11,12] depends upon v. By adopting the canonical formalism, we
express the Helmholtz energy (A) per atom of the system as [13,14]:

⎡
⎣⎢

⎤
⎦⎥A u k T x e= + 3

2
+ ln(1 − )B

x
0

−

(1)

where x θ v T= ( )/E . The quantity u0 is related to the cohesive energy of
the solid Ecoh as follows:

u E F z= ( )coh0 (2)

where Ecoh is evaluated at T=0 and at the volume v0 corresponding to
the equilibrium with a pressure P=0. F is a dimensionless function,
whose properties are to be established. Following Rose et al. [15] F will

be expressed as a function of the dimensionless variable z, defined as
z r r l= ( − )/0 , where r v π= (3 /4 )1/3 is the Wigner-Seitz radius, r0 is the
Wigner-Seitz corresponding to v0 and l is a material-dependent scaling
length.

In order to obtain the EOS and the compression and expansion
parameters from Eq. (1) it is necessary to evaluate, at v v= 0, the
function u0, and its first and second derivatives with respect to volume:
u′0 and u″0. According to Eq. (2) this implies the evaluation at z=0 of
the function F(z) and its derivatives F z′( ) and F z″( ) with respect to z.
The following material-independent (referred to in the following as
“universal”) values were adopted. By definition, F (0) = −1, whereas the
equilibrium condition at P=0 requires F′(0) = 0. The value F″(0) = 1,
early proposed by Rose et al. will be adopted in the present work
because this is the value one would obtain if the F(z) vs. z function was
strictly parabolic [16]. This is compatible with the present adoption of a
quasi-harmonic solid. We remark, however, that one of the correlations
obtained in the present study allows a systematic evaluation of the
third derivative of the function F(z) from the current experimental and
theoretical database. The implications of these results upon the
possibility of designing a “universal” F(z) for the transition metals
are discussed in Section 6.

3. Thermophysical properties and interrelations

3.1. Equation of state (EOS)

The equilibrium pressure (P) of the solid will be obtained from Eq.
(1) by applying the identity P A v= −(∂ /∂ )T . This yields:

P u k θ
v

f= − ′
2

+ 3 B E0
1 (3)

where,

⎛
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e
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and γ d ω v d v d θ v d v= − ln ( )/ ln = − ln ( )/ lnE E . The parameter γE, which
is a kind of Grüneisen parameter, will be assumed, as a first
approximation, to be constant, with values roughly comparable to the
usual thermodynamic Grüneisen parameter γG. We remark, however,
that the current γE and the γG parameter should in general be
considered as different quantities [17].

3.2. Isothermal bulk modulus

The isothermal bulk modulus (BT) is obtained from Eq. (3), viz.,
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where f x e γ e∂ /∂ = − /( − 1)x
E

x
1

2. By applying Eq. (5) at T=0 and v v= 0,
and replacing u″0 for the second derivative of Eq. (2) evaluated at z=0,
we obtain:
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v λ
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9
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where B k θ v γ γ* = 3/2( / )( + )B E E E0
2 and λ l r l π v= / = (4 /3 )0 0

1/3.
Considering in the first place Eq. (6) we note that the B* term is two

orders of magnitude smaller than the first term. As a consequence, by
keeping only the leading term in the sum we obtain the approximate
expression:

⎛
⎝⎜

⎞
⎠⎟B E

v λ
≃ 1

9
coh

0
0

2 (7)

We remark that a correlation between BT and the E v/coh ratio was
obtained empirically by Brahzkin and Lyapin [18] by analyzing
experimental data and determining values of the proportionality
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constants appropriate for various groups of elements. In addition, their
result was given some justification by relying on simple models of the
energy vs. volume of the elements that had been discussed in ref. [19].
More recently, Wacke et al. [20] motivated the correlation by dimen-
sional arguments, based on interpreting the bulk modulus as a
volumetric energy density related to the thermodynamic compression
work. The present work offers a theoretical justification of the empirical
results, and a systematic test of the interrelation by using an extensive
experimental and theoretical database.

3.3. Isobaric thermal expansion coefficient

The isobaric thermal expansion coefficient α is obtained from Eqs.
(3) and (5) as

⎛
⎝⎜

⎞
⎠⎟ ⎡

⎣⎢
⎤
⎦⎥

α P
T

B
k x

f
x

u v k θ f γ
f
x

x
= ∂

∂
=

−3
∂
∂

″
2

+ 3 (1 + ) +
∂
∂

v
T

B

B E E

−1
2 1

0
2

1
1

(8)

By applying Eq. (8) at a temperature equal to the characteristic
Einstein temperature of the solid, viz., at T θ/ = 1E and neglecting, as a
first approximation, the difference between the equilibrium volume at
T θ= E and the equilibrium volume v0 corresponding at 0 K, we get:

α
k γ

E
λ

k θ γ γ
=
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9
+ (0.48 + 3.24 )

B E

coh
B E E E
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2
2

(9)

Then, by keeping only the leading term in the denominator of Eq.
(9), which is approximately two orders of magnitude larger than the
second term, we obtain the approximate expression

α βE≃ coh1
−1 (10)

Gschneidner [1] and later on Van Uitert et al. [21] empirically
correlated the thermal expansion coefficient with the inverse tempera-
ture of fusion (Tf). In view of the trends in the variation of Tf across the
Periodic Table, it is reasonable to expect a similar correlation between
α and Ecoh

−1 . This expectation has recently been tested in a phenomen-
ological fashion by constructing α versus Ecoh plots for metals and
ceramics [22]. The present work shows that such correlation can, in
fact, be derived from a very general thermostatistical account of the
cohesive and vibrational properties of solids.

3.4. Pressure derivative of the bulk modulus

The pressure derivate of the bulk modulus is obtained from the
identity
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Starting from Eq. (3) and making T K= 0 and v v= 0, we obtain
P v u k θ v γ γ γ(∂ /∂ ) = − ‴ /2 + (3 /2 )( + )(1 + )B E E E E

2 2
0 0 0

2 2 . By inserting this re-
sult in Eq. (11) together with the third derivative of u0 evaluated at z=0,
we obtain
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Eq. (12) yields the most general relation between the pressure
derivative of the bulk modulus and the cohesive properties of the solid.
Two approximate expressions will be derived in the following. The first
expression is obtained by combining Eq. (12) with Eq. (7), viz.,
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The second expression is obtained by neglecting the third term in
Eq. (13), which yields:
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30 (14)

We remark that Eq. (14) has previously been reported in [15,16].
The current work shows that this expression involves the approxima-
tion B B*⪡ 0.

3.5. Account of the electronic contribution to thermophysical
properties

Before the present results are compared with experimental or
theoretical values, it is emphasized that the description of the
Helmholtz energy (Eq. (1)) does not include the electronic contribution
to the entropy of the solid, which is usually present in the metallic
elements. It order to obtain a rough estimate of the effect of such
contribution upon the EOS parameters of interest here, suppose that
the actual electronic contribution to entropy can be described at low
temperatures as Φ v T( ) , where the electronic heat-capacity coefficient Φ
is a function of volume. This would lead to a Φ T− /2 2 term in the
Helmholtz energy of the element, and a Φ T(1/2) ′ 2 contribution to P.
The corresponding contribution to BT, described by a v Φ T(− /2) ″ 2 term,
would tend to zero when approaching zero kelvin. This suggests that
the existence of an electronic contribution to the bulk modulus of
metals does not, in principle, preclude a meaningful comparison
between experimental or ab initio BT values at T = 0 K and the results
of the present treatment.

In the same way, we can analyze the possible effects upon α1 of an
electronic contribution to entropy. Assuming that the electronic con-
tribution to pressure would yield a Φ T(1/2) ′ 2 term we evaluate a
contribution to P T(∂ /∂ )V equal to Φ T′ . This is equivalent to say that
the expression for α1 for metals (Eq. (9)) would have a material-
dependent additional Φ θ′ E term in the numerator. We conclude that
this term would simply contribute to the proportionality coefficient of a
correlation between α1 and Ecoh without affecting the existence of the
correlation itself.

Finally, the already considered electronic entropy of the metallic
elements would yield an additional contribution, described by a

v B Φ T(−1/2)( / ) ″T
2 2 term in the expression for dB dP( / ) + 1 (Eq. (11)).

This term would vanish at T=0 K. Hence, the existence of an electronic
entropy contribution would not preclude a meaningful comparison
between experimental or ab initio B P(∂ /∂ )T for metals at T = 0 K and
the results of the present treatment.

4. Thermophysical database

4.1. Experimental information

The experimental cohesive energy values listed in Ref. [23] were
corrected to include the zero-point energy. To this end the standard
correction term k θ9/8 B D [10], where θD is the Debye temperature, was
added to the experimental values. The necessary θD information was
taken from Ref. [23].

Since an appropriate database with thermal expansion data at
T θ= E was not available, only a preliminary test of the correlation will
be made, by approximating α1 for the elements with their respective
room-temperature (RT) values. A similar limitation is found concern-
ing the information on the bulk modulus. Accordingly, when compar-
ing with experimental data we will assume, as a reasonable approx-
imation, that B B≃ RT0 and B B′ = ′RT0 . The experimental values of v0,
BRT and αRT are taken from Ref. [23] and B′RT from Ref. [24].

4.2. Theoretical values from ab initio calculations

Theoretical values of the 0 K cohesive energy and EOS parameters
for the elements Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru,
Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt and Au in their stable structure
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at 0 K, were obtained in the present work by spin polarized total energy
DFT calculations, performed applying the projector augmented wave
method (PAW) [25,26] and using the VASP code [27]. For the
exchange-correlation energy we adopted the generalized gradient
approximation (GGA) due to Perdew and Wang (GGA-PW91) [28].
The choice of the cutoff energy was tested until the changes in the total
energies and in the cohesive energies were less than 2 meV/atom. For
the solids the Brillouin zone integration was mapped on well-converged
(within 1 meV/atom) Monkhorst–Pack k-point meshes [29] and the
Methfessel–Paxton technique [30] with a smearing factor of 0.1 to
define the occupation of the electronic levels. We used the Rose–Vinet
formula to evaluate B0 and B′0 from the ab initio total energy vs.
volume values. To evaluate the cohesive energy per atom the calcula-
tion of the total energies of the isolated atoms is required. For this
purpose we consider an isolated atom in a sufficiently large cubic
supercell (a lattice parameter of up to 20 A was considered). The cutoff
energy was carefully checked independently from the bulk calculations
to guaranty the required convergence criteria. The Brillouin zone was
mapped only at the Γ point, and the Gaussian method with a very small
smearing factor (0.001 eV) was used to occupy the electronic levels as
recommended. Since in some cases the magnetic atomic groundstates
might differ from the configurations for which the potential was
generated, the correct atomic magnetic moment was set by fixing the
difference between spins up and down along the run.

The calculated properties of the transition elements are listed in
Table 1.

5. Results

5.1. Bulk modulus

In Fig. 1 we plot using symbols the experimental and theoretical
values of B0 for several elements as a function of their ratio E v/coh 0.
Each dashed line corresponds to a single value of the λ parameter
entering into Eq. (7). Various aspects of the results in Fig. 1 are
discussed in the following. In the first place, the experimental and
theoretical data in this graphic lend support to the idea that linear
relations between B0 and the E v/coh 0 ratio, with different proportionality
constants, can be established, as previously reported on purely
empirical grounds in Refs. [18,20]. Moreover, Fig. 1 suggests that the
metallic elements with similar λ values belong to the same group in the
Periodic Table and have the same structure. The latter observation
provides a new, phenomenological interpretation of the correlation
between B0 and the E v/coh 0 ratio, in the framework of the approach by

Rose et al. According to the present work, the observation that several
elements can be described by the same proportionality constant
between B0 and the E v/coh 0 ratio, is a manifestation of the fact that
their cohesive energy vs. volume function can be scaled by adopting
similar values of the λ parameter.

It is interesting to note that in the work by Wacke et al. [20] the
correlation between B0 and E v/coh 0, for various metals was described by
using two proportionality relations, viz., B E v= (4.068 ± 0.193) /coh 0 and
B E v= (2.01 ± 0.116) /coh 0. The values given by their suggested formulas
(solid lines) with their reported uncertainty (dotted lines) are com-
pared in Fig. 2 with the individual experimental and theoretical values
included in the current database. It is evident that there is a group of
the elements (in particular with the bcc structure) which are not
described by the lines. In fact, Fig. 2 suggests that the equations given
by Wacke et al. [20] should rather be interpreted as manifestations of
the maximum and minimum values of the λ parameter appropriate for
these transitions metals. Finally, in Fig. 2 we also plot using symbols
the ab initio results presented in the most recent study of the elemental
solids by Lejaeghere et al. [7]. There is a general agreement with the
predictions of their PAW-VASP calculations based on the PBE ex-
change-correlation potentials, which adds to the confidence on the
current methodology.

5.2. Thermal expansion coefficient

In Fig. 3, experimental values of the logarithm of αRT for various
elements according to ref. [1] are plotted vs. the logarithm of the Ecoh
from Ref. [23]. The experimental trends in this graphic suggest that the
present dataset can be described using Eq. (10) with a reasonably well
defined average value for the β parameter. Specifically, a linear least-
squares fit to the data, represented by the dashed line in Fig. 3, yields a
slope −1.09 ± 0.06, which agrees very well with the theoretical slope of
−1, and β ≈ 0.2. Since the approximation α α≈ RT1 surely contributes to
the scatter of the datapoints in Fig. 3, we suggest that a new database
with assessed α1 values is necessary for a rigorous test of the present
correlation, and to refine the evaluation of the β coefficient for the
elements.

6. Discussion of “universal” features

So far, the predictions of the thermostatistical model for B0, E v/coh 0
and αRT were based on the “universal” values F (0) = −1, F′(0) = 0 and
F″(0) = 1, without assumptions about F‴(0). The values of F‴(0) will be
discussed in the following by using the results in Section 3. Since the

Table 1
Ab initio equilibrium volume per atom (in Ȧ /atom3 ), bulk modulus (in GPa), its pressure derivative and cohesive energy (in eV/atom) for the current set of transition metals. The fifth
value is the λ parameter.

Sc Ti V Cr Fe Co Ni Cu Zn
24.01 17.28 13.17 11.69 11.33 10.82 10.87 12.05 15.38
58.2 111.5 189.5 198.7 187.6 216.5 195.4 136.9 53.6
3.9 3.9 3.8 3.9 5.8 4.7 4.9 4.9 6.5
4.36 5.5 5.5 4.02 5.28 5.54 4.84 3.49 1.11
0.235 0.225 0.198 0.175 0.210 0.205 0.201 0.194 0.155

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
32.63 23.36 18.1 15.97 14.53 13.89 14.27 15.52 17.94 23.03
41.8 97.4 172.3 263.5 297.5 310.6 252.6 168.0 91.8 36.7
2.8 3.1 3.7 3.1 4.4 3.6 4.9 5.2 5.3 5
4.33 6.44 7.12 6.38 7.18 7.22 6.03 3.71 2.55 0.765
0.238 0.225 0.201 0.164 0.172 0.172 0.172 0.159 0.166 0.127

Hf Ta W Re Os Ir Pt Au
22.34 18.29 16.23 15 14.38 14.62 15.82 18.15
112 196.6 302.4 369.6 397.7 345.3 244.8 140.8
3.4 3.6 4.1 4.3 4.5 4.8 5.4 6.2
6.76 8.39 8.45 8 8.6 7.68 5.55 3.03
0.219 0.203 0.175 0.160 0.163 0.164 0.159 0.145
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aim of the current section is to bracket the possible values for F‴(0), the
simplest result given by Eq. (14) will be used. This choice also allows us
to compare the present findings with those in Refs. [15,16]. Eq. (14)
shows, in the first place, that a “strictly parabolic” F(z) function,
described by the condition F‴(0) = 0, would yield B P(∂ /∂ ) = 10 .
However, this value is not supported by the measured B P(∂ /∂ )T for
elements, which are typically 3–6 times larger [10]. This indicates that
an accurate account of the relation between the pressure derivative of
the bulk modulus and other EOS parameters requires that F‴(0) is
given values different from zero, i.e., the dimensionless function F
should describe a non-parabolic, truly anharmonic scaled-energy/
scaled-distance relation.

In order to gain insight on the magnitude of the anharmonicity
effect upon the description of F(z), the F‴(0) for each transition metal
was evaluated by analyzing the experimental and the ab initio results in
terms of Eqs. (14) and (7). The resulting values are plotted in Fig. 4
using symbols. The spread of the data-points is large, reflecting the
uncertainties involved in the measurements, as well as in the procedure
of extracting B P(∂ /∂ )T from the energy vs. volume relations obtained ab
initio.

In spite of these uncertainties, it is possible to determine a probable
range of values for F‴(0), by considering those cases in which the use of
experimental and theoretical values yielded similar results. By applying
this criterion, a probable range of F‴(0) for the transition metals is
determined, and indicated by the horizontal dashed lines in Fig. 4.

The present results indicate that in order to account for the relation
between B P(∂ /∂ )T and the other EOS parameters it is necessary to adopt
negative values of the third derivative of the F(z) vs. function at z=0.
Such general result agrees with that of a previous analysis of specific

Fig. 1. Bulk modulus vs. the ratio of the cohesive energy and the volume per atom for the transition elements. The square symbols represent experimental values (here we took

B B≃ RT0 ) and the triangles represent theoretical values calculated in the present work. The dashed lines were drawn by adopting average values of the λ parameter.

Fig. 2. The B0 vs. E v/coh 0 relation according to experimental (squares) and the present

theoretical (triangles) values. The solid lines represent the values given by the equations
suggested by Wacke et al. [20] and the dotted lines represent the uncertainty of their
correlations. The values obtained by using the ab initio results of Lejaeghere et al. [7] are
also plotted (asterisks).

Fig. 3. Logarithm of the room-temperature thermal expansion coefficient vs. the
logarithm of Ecoh. The dashed line represents a linear least-squares fit with slope
−1.09 ± 0.06.

Fig. 4. The negative third derivative of F(z) evaluated at z=0 evaluated from Eqs. (7) and
(14) by using experimental (squares) and the present ab initio values (triangles) of the
thermophysical properties. The dashed lines indicate the approximate limits of the
currently determined range of F‴(0) values.
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F(z) vs. z values obtained ab initio for the elements of the 4d-transition
series [16]. Moreover, the current work indicates that the F‴(0) values
for the transition elements are material-dependent, and fall in the
range F−2.5 < ‴(0) < − 1.5. This result may be compared with two
previous assumptions about the F(z) function. In the first place, Rose
et al. described the F(z) vs. z function for elements by using the
standard Rydberg function ( z z−(1 + )exp(− )), which yields
F‴(0) = −2.0. In the second place, they also tested an extended form
of Rydberg function of the type z az z−(1 + + )exp(− )3 , and chose the a
parameter so that F‴(0) = −2.3. Indeed, these choices are well
accounted for by the currently determined range.

Finally, we remark that even if the present work does not support
the possibility of a strictly “universal” binding energy function for the
transition elements, the standard Rydberg function is found to be a
reasonably good approximation to F(z). This is demonstrated in Fig. 5
where the standard Rydberg function (with F‴(0) = −2.0) is compared
with the extended functions corresponding to F‴(0) = −1.5 and
F‴(0) = −2.5. It is evident that the effects of the assumptions about
F‴(0) are particularly significant for values of z outside the range

z−0.25 < < 0.25.

7. Concluding remarks

The main goal of the present work is the theoretical study of various
correlations between the EOS parameters of solids using a quasi-
harmonic Einstein model with a volume-dependent cohesive energy.
By adopting the dimensionless F(z) function of the scaled distance z
introduced by Rose et al. [15], and the “universal” values F (0) = −1,
F′(0) = 0, and F″(0) = 1, we obtain the EOS of the solid, the parameters
B0, B′0 and αT, and various very general correlations. One correlation,
expresses the proportionality between two cohesive properties (B0 and
E v/coh 0) and the other one, the fact that the thermal expansion
coefficient at T θ= E is proportional to the inverse of the cohesive
energy.

In order to test the first of these material-independent predic-
tions of the thermostatistical model we perform 0 K ab initio
calculations for the elements of the 3d, 4d and 5d-transition rows
of the Periodic Table in their stable structure. It is found that the
thermostatistical predictions are supported by the current ab initio
results, and agree very well with the most recent benchmarking
study of the elemental solids [7], as well as the available experi-
mental data. Moreover, the present results suggest that the existence
of the proportionality relation between B0 and E v/coh 0 is a conse-
quence of the fact that their characteristic λ parameters, related to

the atomic volume (v0) and the scaling length l (viz. λ l π v= (4 /3 )0
1/3)

are remarkably similar.
A preliminary comparison with thermal expansion data shows that

the second correlation derived from the thermostatistical model
accounts for the experimental trends at room-temperature.

Finally, the current work also yields a correlation between the
cohesive properties and the B P(∂ /∂ ) parameter. By analyzing both
experimental and ab initio results it is concluded that negative,
material-dependent values should be given to F‴(0). This contradicts
the possibility of finding a single, i.e., “universal” F(z) vs. z function
able to describe accurately the pressure derivative of the bulk modulus
of the elements of the transition series. On this basis the use of various
forms of the extended Rydberg formula, viz. z a z z−(1 + + )exp(− )3 , to
represent the F(z) vs. z function is discussed.
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