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a b s t r a c t

Jensen–Shannon divergence is a well known multi-purpose measure of dissimilarity be-
tween probability distributions. It has been proven that the square root of this quantity is a
truemetric in the sense that, in addition to the basic properties of a distance, it also satisfies
the triangle inequality. In this work we extend this last result to prove that in fact it is
possible to derive a monoparametric family of metrics from the classical Jensen–Shannon
divergence. Motivated by our results, an application into the field of symbolic sequences
segmentation is explored. Additionally, we analyze the possibility to extend this result into
the quantum realm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Measures of dissimilarity between probability distributions constitute an important topic of research in Probability
Theory, Statistics and Information Geometry. Among some fields of application of this kind of measures we can mention,
evaluation of risks in statistical decision problems, signal detection, data compression, coding, pattern classification, cluster
analysis, etc. Furthermore, many problems of statistical physics can be established in terms of a measure of distance or
distinguishability between two probability distributions.

In the realms of Statistics and Information Theory, an extensively applied measure of dissimilarity between probability
distributions, is the Jensen–Shannon divergence (JSD) [1,2]. This measure turns out to be a symmetrized, smoothed, well-
behaved and bounded version of the Kullback–Leibler divergence [3,4]. JSD has been successfully applied in a wide variety of
research fields, such as, analysis and characterization of symbolic sequences and segmentation of digital images. Particularly,
it has been exhaustively used in the study of segmentation of DNA sequences. Remarkably, in statistical physics JSD has been
used as a measure of the length of the time’s arrow [5] and also in the definition of a measure of complexity [6]. In addition,
the generalization of JSD within the framework of the non-extensive Tsallis statistics [7] has been studied in [8,9].

In this work we show that it is possible to derive a monoparametric family of metrics from classical Jensen–Shannon
divergence. A key aspect of our approach for the demonstration of this assertion is to consider the JSD as a particular case of
a Csiszár divergence [10–12].

In information geometry there exists a natural Riemannian structure associated with a local metric known as Fisher’s
metric [13,14]. Čencov showed that Fisher’s metric is the only Riemannian metric on the probability distributions space
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P for which certain natural statistical embeddings are isometries [15]. Besides this formal fact, Fisher’s metric is directly
related with the practical parameters’ estimation problem via the Cramer–Rao bound [13,14]. Furthermore, the existence of
Fisher’s metric allows the space P to possess the character of metric space. Indeed, by evaluating the length of a geodesic
associatedwith Fisher’s metric, joining two points on the probability distributions space, we can provide away ofmeasuring
the distance between two arbitrary points belonging to the space P . It should be emphasized that we make a distinction
between the localmetric (whichmeasures how separated are two near points from each other) and ameasure of the distance
between two arbitrary points. The distance defined through this procedure verifies the properties of a metric (cf. Section 2.1
where we summarize these properties). It is worth tomention that the inverse procedure, i.e., to derive a Riemannianmetric
from a metric, is not always possible. Additionally, it has been shown that having a metric defined on P (and over any
arbitrary space) is of crucial importance to establish convergence criteria in iterative processes [16].

This paper is organized as follows. In Section 2, we introduce the basic theoretical background related to our work. Next,
in Section 3 we prove the main result of this work, i.e., that it is possible to construct a monoparametric family of metrics
from the classical expression of JSD. Then, in Section 4 we briefly explore the possibilities of applying our results in two
different contexts. On one hand, in Section 4.1 we explore the segmentation of symbolic sequences. On the other hand, in
Section 4.2 we study the extension of the monoparametric family of metrics into the quantum realm. Finally, in Section 5
we summarize our results.

2. Theoretical framework

2.1. Divergences, distances and metrics

From a mathematically rigorous viewpoint, ametric (or sometimes, a truemetric) d on a set χ is a function d : χ × χ →

R≥0 such that for any x, y, z ∈ χ the following properties are satisfied

1. Non-negativity: d(x, y) ≥ 0
2. Identity of indiscernibles: d(x, y) = 0 if and only if x = y
3. Symmetry: d(x, y) = d(y, x)
4. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

In the context of classical information, usually χ represents the set of probability distributions and x or y represent an
entire probability distribution such as P = {p1, p2, . . . , pn} (pi ≥ 0 ∀i,

∑n
i=1pi = 1). Often, if a distance measure d only

satisfies the property 1, is called a divergence. If, additionally, d satisfies the properties 2 and 3 then d is called a distance
[16–18]. It is worth to mention that throughout literature the term distance is used many times as equivalent to metric. Due
to this use can bemisleading in some contexts, for the sake of clarity, throughout this workwewill use the terms divergence,
distance or metric, according to the specific meaning needed.

2.2. Csiszár’s divergences

Csiszár’s divergences, also known as f−divergences, constitute an important class of measures of distinguishability
between probability distributions [10,11]. Let F be the set of convex functions f : R+ ↦→ R̄ which are finite on R0 and
continuous onR+, where R̄ = (−∞, ∞],R+ = [0, ∞) andR0 = (0, ∞). The Csiszár’s f−divergence between the probability
distributions P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} is defined as [10–12]

Df (P,Q ) =

n∑
i=1

qi f
(
pi
qi

)
. (1)

From its definition, it can be seen that Df (P,Q ) is a useful functional form which encompasses most of the commonly used
divergencemeasures betweenprobability distributions, such as, Kullback–Leibler divergence, Variational Distance, Hellinger
distance, χ2-divergence, Jensen–Shannon divergence, among others [2–4,18,19].

2.2.1. Basic properties of Csiszár’s divergences
In what follows we will summarize some basic properties of Csiszár’s divergences directly related with the main result

of this work. Further analysis of the properties of f−divergences can be found in references [20–24].
Let f ∗

∈ F , the *–conjugate (convex) function of f , be defined as:

f ∗(u) = u f
(
1
u

)
for u ∈ R0. (2)

If f (1) = 0, f is strictly convex at 1, and f ∗(u) = f (u), then Df (P,Q ) satisfies the following basic properties [23–25]:

1. Non-negativity and Identity of indiscernibles: Df (P,Q ) ≥ 0 with Df (P,Q ) = 0 ⇐⇒ P = Q
2. Symmetry: Df (P,Q ) = Df (Q , P)
3. Uniqueness: Df1 (P,Q ) = Df (P,Q ), ⇐⇒ ∃c ∈ R / f1(u) = f (u) + c(u − 1)
4. Range of values: f (1) ≤ Df (P,Q ) ≤ f (0) + f ∗(0).
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Bearing in mind the properties of a metric described in Section 2.1 it can be seen that properties 1 and 2 are essential in
order to seek for ametric based on a Csiszár divergence. The following theorem addresses precisely the additional conditions
that a Csiszár divergence needs to satisfy in order for [Df (P,Q )]α to be a metric (cf. Section 2.1).

Theorem 1. Let Df (P,Q ) denote a Csiszár divergence (cf. Section 2.2 and Section 2.2.1). If f (1) = 0 and f is strictly convex at
1, f ∗(u) = f (u), and there exists α ∈ R0 such that the function

hα(u) =
(1 − uα)1/α

f (u)
(3)

is nonincreasing for u ∈ [0, 1), then dα(P,Q ) .
= [Df (P,Q )]α , in addition to properties 1 and 2, also satisfies the triangle inequality

dα(P,Q ) ≤ dα(P, R) + dα(R,Q ). Therefore, dα(P,Q ) is a metric [23–25]. ■

2.2.2. KL divergence
The Kullback–Leibler divergence (KLD) between two probability distributions P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . ,

qn} is defined as [3,4]:

DKL(P,Q ) =

n∑
i=1

pilog2

(
pi
qi

)
. (4)

It is straightforward to show that DKL(P,Q ) is a Csiszár divergence (cf. Eq. (1)) taking the function f (u) as:

fKL(u) = ulog2(u) (5)

for u ∈ {R+ ∪ {0}}.
The KLD constitutes a paradigmatic case of a widely used measure of dissimilarity between probability distributions

which is not a metric. For example, DKL(P,Q ) does not fulfill the basic property of symmetry (2) essential for a metric. In
addition, it should be noted that this divergence also possesses another undesired features. For example, if for any j there
exists a qj = 0 for which pj ̸= 0, then DKL(P,Q ) is undefined. Therefore, the probability distribution P must be absolutely
continuous with respect to the probability distribution Q in order for DKL(P,Q ) to be well defined [4]. However, it is worth
to mention that this latter undesired feature of KLD can be avoided if the convention 0 (−∞) = 0 is adopted.

2.2.3. Classical Jensen–Shannon divergence
The Jensen–Shannon divergence (JSD) between two probability distributions is defined as follows [1,2]

DJS(P,Q ) =
1
2

[
DKL

(
P,

P + Q
2

)
+ DKL

(
Q ,

P + Q
2

)]
. (6)

After some algebra, amore explicit version of JSD can bewritten in terms of Shannon entropyH = −
∑

ipilog2pi as follows

DJS(P,Q ) = H
(
P + Q

2

)
−

1
2
H(P) −

1
2
H(Q ). (7)

In last equation, the dissimilarity between both probability distributions P and Q is evaluated assuming that both
distributions have the sameweight (1/2). If, instead,we consider arbitraryweightsπ1 ≥ 0 andπ2 ≥ 0, such thatπ1 +π2 = 1,
then Eq. (7) can be generalized as follows [1,2]:

D(π1,π2)
JS (P,Q ) = H (π1 P + π2 Q ) − π1H(P) − π2H(Q ). (8)

It is easy to prove that the expression (7) can be written in the form of a Csiszár divergence (cf. Eq. (1)) with the function
f (u) defined as:

fJS(u) =
1
2

[
(1 + u) + ulog2(u) − (1 + u)log2(1 + u)

]
(9)

for u ∈ R+.
From Eq. (6) it can be seen that DJS(P,Q ) is a symmetric version of DKL(P,Q ). Originated in the field of Information

Theory [1,2], JSD is always well defined and bounded. Unlike KLD, as JSD satisfies the properties 1, 2 and 3 (cf. Section 2.1),
it is in fact a distance. Additionally, JSD has several interesting interpretations. For example, in statistical inference theory it
gives both the lower and upper bounds to Bayes’ probability error, whereas in the framework of information theory JSD can
be related to mutual information [26].

3. Monoparametric family of metrics from classical Jensen–Shannon divergence

It is well known that the square root of the classical JSD, i.e., [DJS(P,Q )]1/2 (cf. Eq. (7)) is a (true) metric, i.e., it satisfies the
properties 1, 2, 3 and 4 (cf. Section 2.1) [25,27]. Inwhat followswewill extend this result to show that dα(P,Q ) .

= [DJS(P,Q )]α
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Fig. 1. Plot of − dhα (u)
du (cf. Eq. (11)), as a function of u ∈ [0, 1) and α ∈ (0, 1/2], in the case of Jensen–Shannon divergence. It can be seen that the quantity

hα(u) is nonincreasing for α ∈ (0, 1/2]. According to Theorem 1 this result indicates that the quantity [DJS (P,Q )]α for α ∈ (0, 1/2] is a metric.

for α ∈ (0, 1/2] is a (true) metric, i.e., we will prove that is possible to construct a monoparametric family of metrics from
the classical expression of JSD. A key aspect of our approach for the proof is to consider the JSD as a particular example of
a Csiszár divergence. This allows us to use the Theorem 1 (cf. Section 2.2.1) to derive the conditions on the values of the
parameter α for the function dα(P,Q ) to be a (true) metric.

Fig. 1 shows a plot of the quantity −dhα/du, as a function of u ∈ [0, 1) and α ∈ (0, 1/2] in the case of the JSD (cf. Eqs. (3)
and (11)). It can be seen that the quantity hα(u) is nonincreasing for α ∈ (0, 1/2]. Thus, according to Theorem 1, the quantity
[DJS(P,Q )]α should be a metric for α ∈ (0, 1/2]. In what comes next, we state this hypothesis as Proposition 1 and next we
formally prove it.

Proposition 1. Let DJS(P,Q ) denote the Jensen–Shannon divergence between two probability distributions P = {pi ∈ R | pi ≥

0;
∑n

i=1pi = 1} and Q = {qj ∈ R | qj ≥ 0;
∑n

j=1qj = 1}. Then, the quantity

dα(P,Q ) .
= [DJS(P,Q )]α (10)

is a (true) metric for all α ∈ (0, 1/2]. ■

Proof. The proof is based on Theorem 1 (cf. Section 2.2.1). Therefore, we need to prove that the function hα(u) (cf. Eq. (3))
corresponding to the JSD is non-increasing for all u ∈ [0, 1) ⊂ R and α ∈ (0, 1/2]. Thus, we shall analyze the sign of the
derivative of the function hα(u). After some algebra, we obtain:

dhα(u)
du

= −
(1 − uα)

1
α −1. {ulog2u + (u + uα)[1 − log2(1 + u)]}

2u[fJS(u)]2
. (11)

Clearly, the sign of dhα

du depends upon the sign of

ulog2u + (u + uα)[1 − log2(1 + u)] (12)

because (1 − uα)
1
α −1 and u [fJS(u)]2 are positive for u ∈ [0, 1) and α > 0. Thus, in order to determine the conditions for

dhα

du ≤ 0 we shall analyze the behavior of Eq. (12) as a function of α and u.
Starting from Eq. (12) we have the following sequence of inequalities:

ulog2u + (u + uα)[1 − log2(1 + u)] ≥ 0 ⇔ (13)
uα [1 − log2(1 + u)] ≥ ulog2(1 + u) − u − ulog2(u) ⇔ (14)

uα log2

(
2

1 + u

)
≥ ulog2

(
1 + u
2u

)
⇔ (15)

uα
≥ u

log2
( 1+u

2u

)
log2

( 2
1+u

) = u
ln

( 1+u
2u

)
ln

( 2
1+u

) . (16)

In the case α = 1/2 it has been proven that [DJS(P,Q )]α is a metric [25,27]. Thus, inequality (16) is satisfied for the
particular case α = 1/2. Next, making use of the fact that for u ∈ (0, 1), if α ≥ β then uα

≤ uβ , we obtain the following
inequality

uβ
≥ u1/2

≥ u
log2

( 1+u
2u

)
log2

( 2
1+u

) , (17)
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Fig. 2. Plot of∆(u) (cf. Eq. (19)) as a function of u for some values of α = 1/2+δα with δα ∈ (0, 1/2). These results support the conjecture that [DJS (P,Q )]α
is not a metric for α ∈ (1/2, 1).

for β ∈ (0, 1/2]. As a consequence, hα(u) turns out to be non-increasing in [0, 1) for all α ∈ (0, 1/2]. Therefore,

dα(P,Q ) = [DJS(P,Q )]α

is a metric for all α ∈ (0, 1/2]. □

Proposition 2. For α ≥ 1, [DJS(P,Q )]α is not a metric. ■

Proof. For α ≥ 1 we need to prove that inequality (16) is violated. Making use of the fact that for u ∈ (0, 1), if α ≥ 1 then
uα

≤ u, ln(x) is a monotonically increasing function of x, and (1 + u)/2u > 2/(1 + u) > 1 for u ∈ (0, 1), it follows that

uα < u
ln

( 1+u
2u

)
ln

( 2
1+u

) . (18)

Thus, inequality (16) is not satisfied in this case. Therefore, [DJS(P,Q )]α is not a metric for α ≥ 1. □

This result is in agreement with the obtained by Khosravifard and co-workers in [28]. They conclude that Variational
Distance (also known as Kolmogorov Distance) is the unique Csiszár divergence which additionally is a metric [28].

Conjecture 1. For 1/2 < α < 1, [DJS(P,Q )]α is not a metric. ■

In the case α ∈ (1/2, 1) a number of counter–examples can be found showing that inequality (16) is violated for some
sub-intervals of values of u ∈ (0, 1), depending on the particular value of α ∈ (1/2, 1). These results support the conjecture
that [DJS(P,Q )]α is not a metric for α ∈ (1/2, 1). However, so far we have not been able to prove this conjecture in a closed
way. In order to present some examples of Conjecture 1, we define the following function:

∆(u) .
= uα

− u
ln

( 1+u
2u

)
ln

( 2
1+u

) . (19)

Fig. 2 shows some plots of the function ∆(u) for different values of the exponent α
.
= 1/2 + δα with δα ∈ (0, 1/2). It

can be seen that ∆(u) < 0 for some subintervals of u ∈ [0, 1) showing that inequality (16) cannot be fulfilled for all values
of u ∈ [0, 1). The size of the subinterval of values of u for which ∆(u) < 0 is enlarged as the value of δα is increased from
0+ to 1/2−. In fact, for values of δα ≥ 0.2 inequality (16) begins to be unsatisfied for almost all values of u ∈ [0, 1). Thus,
[DJS(P,Q )]α is not a metric for at least some values of the exponent α belonging to the interval (1/2, 1).

4. Applications

In this sectionwe briefly explore two possible applications of ourmain result, i.e., [DJS(P,Q )]α is ametric for α ∈ (0, 1/2].
In Section 4.1 we explore the segmentation of symbolic sequences whereas in Section 4.2 we study the possibility to obtain
a monoparametric family of metrics in the quantum realm.
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4.1. Segmentation of symbolic sequences

A symbolic sequence is said statistically stationary if the frequency (probability) of occurrence of different symbols is the
same along the entire sequence. In symbolic sequences resulting from real processes stationarity is not the most common
situation. Thus, it is of great practical interest to provide a method to detect non-stationarity. In Ref. [26] I. Grosse and co-
workers developed amethod based on the Jensen–Shannon divergence that allows the detection of changes in the statistical
properties of symbolic sequences. This method and some modifications have been extensively used in the analysis of real
and simulated time series [8]. Typical applications range from the detection of epileptic crisis to the study of the alignment
of the axis of an electric motor [29].

The monoparametric family of metrics introduced in the previous section (cf. Proposition 1) motivated us to investigate
the powers of D(π1,π2)

JS (P,Q ) (cf. Eq. (8)), in the range of the exponent 0 < α ≤
1
2 , as suitable quantities for studying the

presence of non-stationarity in symbolic sequences. To this end, we implemented Monte Carlo simulations described as
follows.Wegenerated 500binary sequences of 1000 symbols each one. The first 500 symbols have a probability of occurrence
p0 = 0.8 and p1 = 0.2 for symbols 0 and 1, respectively. The remaining 500 symbols have a probability of occurrence
q0 = 0.2 and q1 = 0.8. We introduced a mobile cursor along each sequence, denoting the position of this cursor with the
letter ℓ, 1 ≤ ℓ ≤ 1000. For each position given by ℓ we define two weights π1 =

ℓ
1000 and π2 =

1000−ℓ
1000 . Then, we introduced

the quantity

d′

α(ℓ) ≡

⎡⎣−

2∑
i=1

(π1fj + π2gj) log(π1fj + π2gj) + π1

2∑
i=1

fj log fj + π2

2∑
j=1

gj log gj

⎤⎦α

(20)

where fj is the calculated frequency of occurrence of the symbol j to the left of the cursor and gj is the calculated frequency
of the symbol j to the right of the cursor. Finally, we evaluated the average d′

α(ℓ) over all the realizations of the sequences.
In Fig. 3 we plot d′

α(ℓ) as a function of ℓ for different values of α. As the quantity d′

α=1(ℓ) has been used in other works (see
for example Ref. [26]), for the sake of comparison, in Fig. 3 (a) and (b) we also show the results corresponding to α = 1.
In Fig. 3 (a) we clearly observe that the maximum occurs at the position ℓ = 500, i.e., just the place where the probability
distribution of the generated sequences changes from {p0, p1} to {q0, q1}.
Now, whenwe face the problem of analyzing an unknown sequence, we do not have in general any a priori knowledge about
its possible stationary character, i.e., the location of probable segmentation points. Thus, when a likely segmentation point
is found, the procedure needs to decide if such a point is statistically significant, i.e., if it is significantly greater than expected
by chance. Following Ref. [26], for an observed value d′

α = x, the statistical significance sα(x) is defined as

sα(x)
.
= Prob{d′

α ≤ x}. (21)

Looking at Eq. (21), sα(x) is interpreted as the probability of obtaining x or a lower value under the hypothesis that all
subsequences are generated from the same probability distribution. As a result, following Ref. [26], the significance sα(x)
for large values of N(≥ 102) can be estimated as [26]

sα(x) ∼
γ (ν/2, L (ln 2) x1/α)

Γ (ν/2)
(22)

being ν = (N − 1)(m− 1), L the length of the sequence,m the number of subsequences and N the number of symbols in the
used alphabet, whereas γ (a; x) and Γ (a) represent the incomplete and complete gamma function, respectively [30].

Once we established the criterion to decide the statistical significance of potential segmentation points, the procedure
for the analysis of stationary features in an unknown sequence proceeds as follows. We calculate the value of d′

α(ℓ) for each
position ℓ of the cursor along the entire sequence, as described earlier in this section. Next, we select the particular point
at which d′

α reaches its maximum value d′max
α and we compute its statistical significance smax

α . If the value smax
α exceeds a

given threshold s0 the sequence is partitioned at this point and the procedure continues recursively for each one of the
two resulting subsequences. Otherwise, the sequence remains unpartitioned. The process is finished when none of the
subsequent potential cutting points has a statistical significance exceeding s0. In this case, we say that the sequence has
been segmented at a significance threshold s0.

Fig. 3(b) shows the dependence of the maximum value of d′
α found during the entire segmentation process of the

simulated sequences described earlier in this section, as a function of α. It can be seen that this maximum increases as the
exponent α decreases. In addition, for a given threshold value s0, it is straightforward to see from Eq. (22) that the statistical
significance of d′

α monotonically increases as the value of α is decreased. This behavior is in complete agreement with the
results showed in Fig. 3(b). Thus, the method based on the statistical significance of the maximum values of d′

α reached
along the entire procedure turns out to be sensitive to the choice of the parameter α. The results also suggest that a suitable
election of the value of α might improve the proposed scheme. However, it is worth tomention that anothermethods can be
found in literature for this kind of tasks. For example, a procedure based upon the calculation of the derivatives around the
maximum value of a segmentation process is presented in Refs. [31,32]. Further studies on this matter will be the subject of
future research by the authors.
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(a) (b)

Fig. 3. (a) Average results for the segmentation of 500 binary sequences by means of d′
α (cf. Eq. (20)). Each sequence of 1000 symbols was generated

by means of the Monte Carlo method. The maximum segmentation value occurs precisely for the cursor position ℓ = 500, i.e., the position where the
probability distribution for the generated sequences changes from {p0, p1} to {q0, q1}. (b) Maximum segmentation value of d′

α as a function of the exponent
α.

4.2. Mono-parametric family of metrics in the quantum realm

It is well known that two quantum states can be discriminated unambiguously if, and only if, they are orthogonal.
Thus, in the realm of Quantum Mechanics, distance measures need to be devised to allow us to determine how close two
quantum states are from each other. At present, there is no general agreement about the use of a unique or ideal measure
of distinguishability between quantum states. Moreover, different distance measures seem to be useful depending on the
particular application, whether a theoretical one, like a bound of what can be physically feasible for a given process, or the
output of a quantumprotocol experimentally implemented. Therefore, from a conceptual point of view it is useful to develop
new measures of distance between quantum states and then analyze their properties and possible applications.

On one hand, the probability distributionswhich determine the possible results to be obtained performingmeasurements
on a quantum system with a state represented by a density matrix ρ depend not only on ρ but also on the set of measure-
ments which can be performed on the system. On the other hand, the most general way of representing measurements in
the quantum realm is by means of the Positive Operator-Valued Measurement (POVM) formalism [19,33,34]. Therefore, it
is possible to extend the use of classical JSD into the quantum realm by means of two probability distributions defined as
follows:

P(E, ρ) = {pi|pi = Tr(Eiρ)} (23)

Q (E, σ ) = {qi|qi = Tr(Eiσ )} (24)

where E = {Ei}Ki=1 represent some POVMmeasurement (
∑M

i=1Ei = I) [19,34].
Thus, a distinguishabilitymeasure between the quantumstatesρ andσ canbe obtained from the classical JSDby assigning

probabilities according to Eqs. (23) and (24), and then optimizing over all possible POVMs. Since this procedure has the
freedom of choosing the particular POVM distinguishing between the two probability distributions with more certainty, the
following quantity can be introduced [35,36]:

DJS1(ρ, σ ) = max
{Ei}

DJS(pi, qi), (25)

where the maximum is taken over the entire set of POVM’s. Physically DJS1 yields the best discrimination between the states
ρ and σ that can achieved by means of measurements. It is clear from the definition of DJS1(ρ, σ ) that the results of our
Proposition 1 (cf. Section 3) can be used to obtain a monoparametric family of metrics in the quantum realm in the form
[DJS1(ρ, σ )]α with α ∈ (0, 1/2].

Among the potential applications of the metric property of [DJS1(ρ, σ )]α we can mention its use as a tool for testing the
convergence of iterative algorithms in quantum computation tasks [36–38] and to evaluate the performance of complex
tasks of quantum information processing which can be decomposed into sequences of operations of lesser complexity [39].

5. Concluding remarks

In this work we extended the previous and well-known result that the square root of the classical Jensen–Shannon
divergence, i.e., [DJS(P,Q )]1/2, between two probability distributions P and Q is a metric by explicitly proving that it is
possible to derive an entire monoparametric family of metrics from the classical JSD. Indeed, we demonstrated that the
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quantity [DJS(P,Q )]α is ametric for all α ∈ (0, 1/2] in the sense that, in addition to the basic properties of a distance (Positive
Definiteness, Symmetry and Identity of Indiscernibles, cf. Section 2.1), it also satisfies the Triangle Inequality. Furthermore,
we explicitly demonstrated that the quantity [DJS(P,Q )]α is not a metric for all α ≥ 1. The key aspects of our proofs were to
consider the Jensen–Shannon divergence as a particular case of a Csiszár divergence. We also conjectured that this quantity
is not ametric for α ∈ (1/2, 1) by providing some general examples supporting this hypothesis. However, so far we have not
been able to obtain an analytical proof of this conjecture. This issue will be the subject of further studies. Also, motivated by
our findings we briefly explored an application into the field of segmentation of symbolic sequences by introducing the α–
power of a quantity based on the generalized Jensen–Shannon divergence. Thus, the quantity d′

α (cf. Section 4.1) was studied
as a tool for the detection of possible stationary features in symbolic sequences. The method used for segmentation is based
on the statistical significance of the maximum values of d′

α reached along the entire procedure. On one hand, our results
indicate that this method is sensitive to the particular choice of the parameter α. On the other hand, they also suggest that a
suitable election of the parameter α might improve this segmentation scheme. Additionally, we analyzed the possibility of
extending the monoparametric family of metrics we derived from classical Jensen–Shannon divergence into the quantum
realm. As a result, we also found a monoparametric family of metrics in the quantum realm, based upon the classical JSD,
which can be derived from a quantum distance introduced in Refs. [35,36] (cf. Eq. (25), Section 4.2). This last finding also
deserves further study and the results will be presented elsewhere.
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