
Physics of the Dark Universe 15 (2017) 47–52

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

Gravito-magnetic monopoles in traversable wormholes fromWIMT
Jesús Martín Romero b, Mauricio Bellinia,b,*
a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata, Argentina
b Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

a r t i c l e i n f o

Article history:
Received 12 August 2016
Received in revised form 6 December 2016
Accepted 7 December 2016

Keywords:
Wormholes
Extra dimension
Magnetic monopole
Gravitational waves
Einstein–Rosen bridge

a b s t r a c t

Using Weitzenböck Induced Matter Theory (WIMT), we study Schwarzschild wormholes performing
different foliations on an extended (non-vacuum) 5D manifold. We explore the geodesic equations for
observerswhich are in the interior of a traversablewormhole and how these observers can detect gravito-
magnetic monopoles which are dual to gravito-electric sources observed in the outer zone of some
Schwarzschild Black-Hole (BH). Thedensities of thesemonopoles are calculated andquantized in theDirac
sense. This kind of duality on the extended Einstein–Maxwell equations, relates electric and magnetic
charges on causally disconnected space regions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Lorentzian wormholes known as Schwarzschild wormholes or
Einstein–Rosen bridges are connections between areas of space
that can be modeled as vacuum solutions of the Einstein field
equations, that are intrinsic parts of the maximally extended ver-
sion of the Schwarzschild metric describing an eternal black hole
with no charge and no rotation. The Einstein–Rosen bridge was
discovered by L. Flam [1] in 1916, a fewmonths after Schwarzschild
published his solution and rediscovered by Einstein and Rosen
in 1935 [2]. The mathematician H. Weyl proposed the wormhole
theory in 1921 [3], in the framework of the mass analysis of the
electromagnetic energy. In 1962 Wheeler and Fuller shown that
this kind of wormhole is unstable if it connects two parts of the
same universe [4]. In the pure Gauss–Bonnet gravity, which is an
extension of General Relativity involving extra spatial dimensions,
sometimes studied in the context of brane cosmology, wormholes
can exist even with no matter [5]. Stable static solutions of thin-
shell wormholes with charge, have been obtained recently in F (R)
gravity [6]. Wormholes were also considered as geometric models
of elementary particles, handles of space trapping inside an electric
flux, say, which description may indeed be valid at the Planck
scale [7]. Wormholes can also describe initial data for the Einstein
equation [8,9], whose time evolution corresponds to the black hole
collisions of the type observed in the recent GW150914 event [10].
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On the other hand, the central idea of Induced Matter Theory
(IMT) [11] is that ordinary matter and physical fields, which are
present in our 4D space–time can be geometrically induced by a fo-
liation over a 5D space–timewhich is at least Ricci-flatwith respect
to the Riemannian connections. The theory is formulated taking
into account a non-compact extra dimension, but is compatible
with a compact extra dimension too. The 5D physical vacuum is
defined by the Ricci null tensor, which implies a zero 5D Einstein
tensor. Such condition must be viewed as a particular case of the
hypotheses of the Campbell–Magaard embedding theorem of a 5D
Einstein manifold (5D)Rab = λ (5D)gab, with λ = 0. An extension
of this formalism is WIMT [12], which is based in the Weitzen-
böck’s geometry. Some inputs of the Weitzenböck geometry were
included in the Appendix A. This makes possible the use of IMT-
like formalism for any 5D space–time, even if this is not flat in the
Riemannian sense.

In this work we study the dual sources from Gravitoelectrody-
namics using WIMT inside and outside an effective 4D traversable
Schwarzschild wormhole using different foliations on a 5D ex-
tended Schwarzschild Black-Hole (BH). This issue is very important
because it is possible to show that a gravito-magnetic monopole
which is in the interior of an effective 4Dwormhole is a dual source
to a gravito-electric source, which is outside the horizon of the
effective 4DSchwarzschild BH. The paper is organized as follows. In
Section 2we revisit the formalism of Gravitoelectrodynamics from
WIMT. In Section 3 we introduce the traversable wormhole from
an extended 5D Schwarzschild metric, and we study the dynamics
of the observers which adopt some specific foliations in can leave
in the interior of a traversable wormhole and in the exterior of a
Schwarzschild BH.
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2. Gravitoelectrodynamics fromWIMT

The Riemann–Weitzenböck curvature tensor has the same form
than the Riemannian curvature tensor, but expressed in terms
of Weitzenböck connections, denoted by (W )Γ a

dc . In a coordinate
(holonomic) basis the Riemann–Weitzenböck curvature takes the
form
(W )Ra

bcd =
(W )Γ a

dc , b −
(W )Γ a

db , c +
(W )Γ n

dc
(W )Γ a

nb −
(W )Γ n

db
(W )Γ a

nc, (1)

which is zero. Hence, it is possible to define a 5D vacuum in the
Weitzenböck sense (W )Ra

bcd = 0. Is easy to see that the space–time
associated to the metric of the Eq. (9) is not Ricci-flat in a Rieman-
nian. WIMT is an interesting tool in the cases that we cannot apply
IMT in a direct way. This is when (5DR)RA

BCD ̸= 0. In this case it
is possible to transform our problem to a Weitzenböck geometry
with the Eq. (A.12), obtaining that (5DWe)RA

BCD = 0, in order to
induce the effective tetra-manifold which is the representation of
a space–time 4Dm and the tensor objects linked to the physical
elements in the manifold.

2.1. Magnetic monopoles in a Weitzenböck geometry

We consider the action S , on a 5D non-vacuum Riemann mani-
fold

S =

∫
d5x

√
|g|

[ (5)R
16π G

−
1
4
FabF ab

− JbAb
]
, (2)

where (5)R is the scalar curvature, F ab
= ∇

aAb
− ∇

bAa is the
gravitoelectromagnetic tensor, and Jb are the five components of
the gravitoelectromagnetic currents. The Maxwell equations, in
the language of differential forms must be written as

∗d(F ) =
(m)J,

∗ d(∗F ) =
(e)J. (3)

Here, F is the analog to the Faraday 2-form, d is the exterior
covariant derivative and ∗ the adjunction or duality operation in
dimension k. The p-form is a tensor object W , of order p and
cotangent, which is anti-symmetric and is described by

W =
1
p!
wi1 ... ip e

−→

i1 ∧ ... ∧ e
−→

ip ,

where the wedge product is the anti-symmetrization of the tensor
product. The exterior covariant derivative associated to a covariant
derivative ‘‘;’’, is

d(W ) =
1
p!
wi1 ... ip ;k e

−→

k
∧ e

−→

i1 ∧ ... ∧ e
−→

ip ,

and the adjunction in a manifold of dimension k, is defined by

∗ W =

√
|g|

(k − p)! p!
εj1 ... jpip+1 ... inw

j1 ... jp e
−→

ip+1 ∧ ... ∧ e
−→

ik  
k−p

. (4)

The adjunction operation takes a p-form and produces a (k − p)-
form. The Faraday 2-form is defined from the exterior covariant
derivative of a 1-form which in its tangent shape is the penta-
vector A = (ϕ,

−→
A )

F = d(A).

In the case that the connection is symmetric, then d(F ) = d(d(A)) =

0, which implies the absence of magnetic monopoles in the theory.
The source term (m)J , is a cotangent vector (or co-vector) of the
magnetic current (e)J , which is the electric one. In both cases (∗)J0 =

ρ∗, the first component of the co-vector is the charge density.
All topics exposed in the present section must be directly in-

terpreted in dimension k = n + 1, and after making the foliation

that leads us to the effective currents in dimension k−1 = n. In the
present workwe aboard the special case inwhich n = 4 and k = 5.
From the Eq. (3), we could see that the electric part of the equation
∗d(∗F ) =

(e)J , in 5D, implies that the 5D-dual of F (remembering
that F is a 2-form), is a 3-form. The exterior covariant derivative
of the obtained 3-form is a 4-form and the adjoint or 5D-dual of
such 4-form is a 1-form, so that we obtain that (5D e)J

−−→
is a co-vector

field. The foliation conduces us to the effective co-vector field. On
the other hand, for the magnetic part ∗d(F ) =

(m)J , the exterior
covariant derivative of a 2-form is a 3-form and his 5D-dual is a 2-
form. In this case (5Dm)J

−−−→
−−−→

is a 2-cotangent tensor field. Anyway, is not

difficult to prove that such object contains the same information
that a co-vector field defined as
(5Dm)J
−−−→

=
(5Dm)J
−−−→
−−−→

(ň, ), (5)

where ň is a vector field, tangent to 5DM , but normal to 4Dm in
each point. The Eq. (5) grants that we obtain the right equations
for the effective fields induced in 4Dm, after making the foliation.

2.2. The 5D metric: inner and outer zones

We consider a five dimensional manifold called 5DM with a
metric characterized by g = gab dxa ⊗ dxb, which is described
by a coordinate basis of the cotangent CT5DM vector space. The
basis is symbolized by {dxa},1 with the length element (5D)dS2 =

gab dxa dxb, according to

(5D)dS2 = f (r) dt2 − f (r)−1 dr2 − r2 dθ2

− r2 sin(θ )2 dϕ2
− dψ2, (6)

where r ≥ 0, and f (r) given by

f (r) = 1 −
2m
r
. (7)

The critical value rsch = 2m, implies that g00 → 0 and g11 → ∞,
so that the manifold is separated in two different zones. We call
‘‘outer zone’’ for r > 2m, and ‘‘inner zone’’ for r < 2m.

3. Inner geometry

In this case we consider the metric of (6) over the outer zone
of the manifold. If we extend the definition in (27), we obtain that
u2

:= r−2m and then the coordinate u assume complex values. To
avoid such problem we use a new transformation defined accord-
ing to

u2
:= 2m − r, (8)

with 0 ≤ r < 2m. Using the transformation (8) in the Eq. (6), we
obtain

(5D)dS ′2
=

u2

u2 − 2m
dt2 − 4(u2

− 2m) du2

− (2m − u2)2 (dθ2 + sin(θ )2 dϕ2) − dψ2, (9)

which is the metric that describes the inner zone of 5DM .2 Now,
we shall study the effective metric obtained for 4Dmint , by making
some constant foliations.

1 We consider that the indexes a = 0, 1, 2, 3, 4 run over the 5 coordinates
with index 0 corresponding to the time. The coordinate basis for the tangent space

5DTM is {
−→e a} = {

−→
∂
∂ xa } = {

−→
∂
∂ t ,

−→
∂
∂ r ,

−→
∂
∂ θ
,
−→
∂
∂ ϕ
,
−→
∂
∂ ψ

} expressed in extended spherical
coordinates for 5DM . We shall use small primed indexes a′

= 0, 1, 2, 3, 4 to denote
another coordinate basis of 5DTMandbig indicesA = 0, 1, 2, 3, 4 tomake reference
to an ortho-normalized basis of 5DTM, which in general must be non-coordinate.
2 In analogy with our development for the transformation (27), the new trans-

formation (8) acts over the basis of 5DCTM , in the inner zone. We named such
basis dxa = {dt, dr, dθ, dϕ, dψ} and dxā = {dt, du, dθ, dϕ, dψ}, which must
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3.1. Foliation θ = θ0

Our interest is centered in the foliations of the θ = θ0 type
which grants that 4DmT is at least multiple connected (must have
holes), but representing a true nexus betweendifferent outer zones
which are effective BH 4Dmext ψi in the outer geometry. If we
consider the foliation θ = θ0 =

π
2 on the metric (9)

(4D)dS ′2
=

(5D)dS ′2
| θ= π

2

=
u2

u2 − 2m
dt2 − 4(u2

− 2m) du2

− (2m − u2)2 dϕ2
− dψ2. (11)

The effective inner metric will describe an effective manifold
4Dmint which is Lorentzian and invertible. Furthermore, this mani-
fold could be a nexus between different Einstein–Rosen bridges or
Schwarzschild BH, obtained from different constant foliations over
ψ for the outer zone.3

The geodesic curves for the inner zone are described by

∂2ϕ

∂s2
− 4

u
2m − u2

∂u
∂s
∂ϕ

∂s
= 0, (12)

∂2t
∂s2

+ 4
m

(2m − u2)u
∂u
∂s
∂t
∂s

= 0, (13)

∂2u
∂s2

+
1
2

mu
(2m − u2)3

(
∂t
∂s

)2

−
u

2m − u2

(
∂t
∂u

)2

−
u
2

(
∂ϕ

∂s

)2

= 0, (14)

∂2ψ

∂s2
= 0, (15)

in which s is the length of the effective 4Dm line element. The
simplest solution is t = t0, u = u0, with ϕ = ϕ0, ψ = ψ0 + ks,
which, when k = 0 is reduced to the trivial case in which any
coordinate remains constant. The most interesting case is that in
which, themagnetic charge rotates around the compact coordinate
ϕ advancing along the extra dimensionψ . This helicoidal geodesics
along the extra coordinate can be identified as the one of a mag-
netic charged particle moving into a traversable magnetic field,
with trajectory:

ψ(s) = ψ0 + Ks, (16)

ϕ(s) = ϕ0eiRs, (17)

u(s) = ±

√
2m

(
1 − Ne−

1
2 R

2s
)
, (18)

t(s) = t0
(
1 + e−

1
2 K

2s
)
. (19)

Here, the constants K and R, are constants of integration, which are
supposed to be real. The constant N is in the range 0 ≤ N < 1,
because this condition is necessary and sufficient to obtain that
−

√
2m < u < +

√
2m, the definition range of u. We must notice

that u → 2m when s → ∞, which is the value of the coordinate
associated to r = 0. Then, by making the assumption that |K | ≫

be related with the help of the vierbeins: dxa = eaā dx
ã , where

[eaā] =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 −2u 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠ . (10)

Must be remarked that this expression is only valid for the inner zone.
3 An interesting case by which cannot is possible to obtain a wormhole is that in

which the foliation is ψ = ψ0 . This case is studied in the Appendix B.

R2, we must view the geodesics as helical trajectories with axis
along ψ , with a value of u varying very slowly, and making rev-
olutions in compact coordinate ϕ. Under the last assumptions the
geodesic trajectory of a charged particle is approximately helical
and very similar to the ‘‘string’’ of a Dirac monopole, but inside the
wormhole. Curiously, the affine parameter s is a strictly decreasing
function of the time and vice versa; the time t0 is ‘‘reached’’ for
s → ∞, where t0

2m is an integration constant. An interesting
question must arise: Could be the effective exterior electric charge
the effect of the inner monopole traveling along an helical tra-
jectory in the wormhole? Of course, this phenomena cannot be
as a consequence of causality, because the inner and the exterior
regions are causally disconnected, but can be understood from
the point of view of a topological induction, because both regions
(the inner and the outer), are obtained as different foliations of an
unique 5D spacetime. Finally, as we shall see later [see, Eq. (39)],
this topological choice, supported by the experimental evidence, in
which both charges cannot coexist in causally connected regions,
makes possible the quantization of the gravito-electric and gravito-
magnetic charges.

3.2. Gravito-magnetic currents for the inner observer

We consider the transformation that relates the coordinate
basis of 5D CTM bridge {dxā} with an ortho-normalized, (non-
coordinate) basis denoted by {eA}: eA = ēAā dx

ā

[ēAā ] =

⎛⎜⎜⎜⎜⎜⎜⎝
−

u
√
u2 − 2m

0 0 0 0

0 2
√
2m − u2 0 0 0

0 0 2m − u2 0 0
0 0 0 (2m − u2) sin θ 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (20)

TheWeitzenböck connections can be obtained using the Eqs. (A.4)
and (A.6). By checking the zero curvature tensor and calculating the
torsion, we obtain that the anti-symmetric components (5DWe)T A

BC ,
are

(5DWe)T 0
01 = −

1
2

(
1

u
√
2m − u2

+
u

(2m − u2)3/2

)
,

(5DWe)T 2
21 =

u
(2m − u2)3/2

,

(5DWe)T 3
31 =

u
(2m − u2)3/2

,

(5DWe)T 3
32 = −

1
2m − u2

cos θ
sin θ

. (21)

This is valid for sin θ ̸= 0. Otherwise, the torsion tensor coefficients
are null. Furthermore, by using the (A.8) it is easy to obtain the con-
tortion tensor (A.13) and all the components (5DWe)T ā

b̄c̄
. According

to (3), the form of the magnetic 5D currents in the Weitzenböck
geometry is

[∗ (d(F ))]AB =
1
3
εABCDEJDEC , (22)

with

JDEC =
(5DWe)T K

DCEK (AE) +
(5DWe)T K

CEEK (AD) +
(5DWe)T K

EDEK (AC )
+ EC ( (5DWe)TN

EDAN ) + EE( (5DWe)TN
DCAN ) + ED( (5DWe)TN

CEAN ).
(23)

Here, we have applied WIMT with the inner and constant foliation
characterized by θ = θ0 =

π
2 , which is in agreement with the

scenario of 3.1. Hence, the effective magnetic current is

(4Dm)−→J =
1
3!
εa2cde

−→e a J2cde
⏐⏐
θ= π

2
, (24)
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with components: (4Dm)J I
=

1
3! ē

I
a ε

a2cdeJ2cde
⏐⏐
θ= π

2
. Here, we have

used (5), taking into account that the vector is normal to the 4Dmint
points in the θ-direction. Once applied the foliation,we obtain that

ϱm =
2u2

(2m − u2)3/2

(
∂ A4

∂ϕ
+
∂ A3

∂ψ

)
, (25)

Jϕ =
u

(2m − u2)3/2
∂A0

∂ϕ
+

1
2

(
1
u2 +

1
2m − u2

)
∂A2

∂t
. (26)

The expression (25) is the gravito-magnetic charge density, and
(26) represents the associated current in the ϕ-direction. The cur-
rent is similar to whole in a coil along the extra direction ψ , with
Ju = 0 andJϕ ≫ Jψ ∼= 0. This is compatiblewith helical geodesic
present in previous section.

4. Outer geometry: Effective 4D Schwarzschild BH

In the outer zone we are dealing with the usual coordinate
transformation, which characterizes the Einstein–Rosen bridge.
Such transformation is given by

v2 := r − 2m. (27)

On the outer zone r −2m is a positive number and v = ±
√
r − 2m

allows us to obtain two different and possible values of v for any
r > 2m, so that −∞ < v < ∞. The value v = 0 is obtained in
r = rsch = 2m by removing the inner zone. We obtained a fifth-
dimensional extension of the Einstein–Rosen bridge in the sense
that, if we apply a constant foliation ψ = ψ0 on the metric (6), we
recover a fourth-dimensional manifold with the usual metric for a
wormhole.

After making the transformation (27) for the outer zone, we
obtain that the metric (6) becomes4

(5D)dS ′2
=

v2

v2 + 2m
dt2 − 4(v2 + 2m) dv2

− (2m + v2)2 (dθ2 + sin(θ )2 dϕ2) − dψ2. (29)

After making the foliation ψ = ψ0 in the metric (29), we obtain

(4D)dS ′2
=

(5D)dS ′2
|ψ=ψ0

=
v2

v2 + 2m
dt2 − 4(v2 + 2m) dv2

− (2m + v2)2 (dθ2 + sin(θ )2 dϕ2), (30)

which is the usual Einstein–Rosen metric that describes a space–
time bridge. Now, we can define the area of the spherical shell
related to the effective wormhole neck, described by (30)

Aext (v) = 4π r(v)2, (31)

where r(v) = v2 + 2m. Hence, taking into account (27), the area
takes minimum value at v = 0

Amin = 16π m2. (32)

4 Transformation (27) acts over the basis of 5DCTM in the outer zone. We call
respectively, original and transformed basis: dxa = {dt, dr, dθ, dϕ, dψ} and dxã =

{dt, dv, dθ, dϕ, dψ}, where the vierbein eaã , help us to transform a coordinate in
the other: dxa = eaã dx

ã , with

[eaã] =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 2v 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠ . (28)

Notice that this expression and treatment is only for outer zone.

Themaximum area is not bounded and is reached over the asymp-
totic planes. On the other hand, v → ±∞, and it is easy to see that
(4D)dS ′2

→
(4D)dS ′2

|Minkowsky. Since v is bi-valuated for each r , there
are two plane spaces located for the extreme values of v. They are
separated by a bridgewith variable neck size, according to (31).We
remark that the transformation (27) over the exterior space–time
causes that, in the new coordinate, the inner zone is completely
removed and the entire boundary is reduced to a single point with
v = 0.

4.1. Gravito-magnetic currents for the effective outer zone

Gravito-magnetic 4D-effective currents for the outer metric
must be obtained from the paper [13] [see the equation (46),
therein], and (LC)(m)J0|ψ0

= ρm takes form

ρm =

{
−

√
f (r)
r

∂A3

∂θ
+

√
f (r)

r sin(θ )
∂A2

∂ϕ
−

cos(θ )
r2sin2(θ )

∂A1

∂ϕ

}
, (33)

by normalizing a constant scale factor. In order to obtain the
currents for the present case, we must set f (r) = 1 −

2M
r and

r = v2 + 2m and transform to the bridge base {dxÃ} with the
vierbeins. For the exteriorWu–Yang potentials5 [the readers could
see [14]], we obtain that an exterior observer sees exterior fields
compatible with an inner gravito-magnetic density

ρm = −
2v2

(v2 + 2m)3/2
∂A3

∂θ
. (34)

This expression (34) grants that, in the outer zone the observer
must perceives an effective gravito-magnetic monopole, which is
in general not zero. In association with Wu–Yang potentials we
must see that such gravito-magnetic charge ensures the accom-
plishment of the Dirac quantization condition qe qm =

n
2 , with

n ∈ Z.
Nowwe are going to follow the geometric product quantization

presented in art. [15] by doing (ge) J
−→

(gm) J
−→

=
(ge)J
−→

·
(gm) J

−→
+

(ge) J
−→

∧
(gm) J

−→
which is the geometrical product of the gravito-

electric 1-form and the gravito-magnetic 1-form of current result-

ing in the sumof an scalar and a 2-form.With
(
(ge) J

−→

(gm) J
−→

)2
= n2

in which the square is taken in the multi-tensor sense6 and we

5 In a previous work we have checked the consistency of our equation of gravito-
magnetic current for a 4D BHwith the 4DWu–Yang potentials. These ones describe
a localized magnetic monopole with charge qm
−→
A

(N)
= qm

(1 − cos(θ ))
r sin(θ )

−→e ϕ =
qm
r

A(N)
3

−→e ϕ ,

−→
A

(S)
= −qm

(1 + cos(θ ))
r sin(θ )

−→e ϕ =
qm
r

A(S)
3

−→e ϕ .

Here, labels (N) and (S) indicate the North or South hemisphere, on which are valid
the potentials.
6 A multi-tensor object must be expressed as the sum of a scalar function and

tensors of different nature:

T = A + Bn e
−→

n
+ Cnm e

−→

n
⊗ e

−→

m
+ Dnmp e

−→

n
⊗ e

−→

m
⊗ e

−→

p
+ · · · (35)

where e
−→

n is running over a basis of the co-tangent space,⊗ is the tensor product of
such elements and A, Bn, Cnm,Dnmp are arbitrary scalar functions in F(M). We must
obtain a scalar defined by

T 2
= A2

+ BnBn′

−→
−→g ( e

−→

n, e
−→

n′

) + CnmCn′m′

−→
−→g ( e

−→

n, e
−→

n′

)
−→
−→g ( e

−→

m, e
−→

m′

)

+DnmpDn′m′p′

−→
−→g ( e

−→

n, e
−→

n′

)
−→
−→g ( e

−→

m, e
−→

m′

)
−→
−→g ( e

−→

p, e
−→

p′

) + · · ·

= A2
+ BnBn′gnn′

+ CnmCn′m′gnn′

gmm′

+ DnmpDn′m′p′gnn′

gmm′

gpp′

+ · · · , (36)

which is a generalized expression of a inner product for multi-tensorial objects of
any kind. We must notice that such product coincides with the usual inner product
for a pure vector or co-vector.
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obtain that

ρe ρm =

√
n2 − m2

2
, (37)

with n > m, n and m could be zero or integer positive numbers.
Is easy to see that m must be zero in Eq. (37) in order to agree
with the Dirac quantization condition, this assertion is equivalent
to say that the gravito-magnetic and the gravito-electric currents
must be orthogonal. Such scenario is including the trivial case in
which ρm = 0 and the most general one in which ρm ̸= 0 but the
monopoles distribution is static.

In similar manner we must obtain an expression analog to
Eq. (37) for the inner zone.

In order to clarify the dual nature of the formalism and re-
late both, the inner and outer zones, we shall suppose that the
inner charge is completely magnetic. If we work using an ortho-
normalized basis, with the Lorentz gauge in mind, we obtain

ρe = α ε04CDEJDEC . (38)

Now, if we take into account the limit on the frontier between both
zones, we obtain

ρe = α ϱm, (39)

where ρe is the electrical density of charge in the outer zone
and ϱm is the magnetic density of charge inside the wormhole.
Furthermore, α is a factor of proportionality, dependent of the
coordinates. Additionally, we have supposed that the electrical
density of charge, ϱe = 0, is zero in the inner zone, and then
ρm = 0 in the outer zone. This is a different kind of duality of
the extended Einstein–Maxwell equations, that relates electric and
magnetic charges on causally disconnected space regions.

5. Final comments

We have studied traversable wormholes over an effective
Schwarzschild space–time using a foliation θ = π/2 on an ex-
tended 5D non-vacuum space–time. In this space–time, the elec-
trodynamics can be extended to a gravito-electrodynamics theory,
described by a 2-form Fab tensor and a 3-form Fabc dual tensor.
In Sections 2 and 3 we study the gravito-magnetic currents in
the frame of WIMT and the induced geodesics which must take
the form of an helical trajectory in the inner zone for a charged
particle, then we make a question ‘‘Could be the effective exterior
electric charge the effect of the inner monopole traveling along
an helical trajectory in the wormhole?’’. At the end of Section 4.1
we present the possibility that the gravito-electric and gravito-
magnetic charges are causally disconnected and positively answer-
ing to the question formulated at the end of Section 3.1, in the
case where gravito-electric and gravito-magnetic currents are or-
thogonal. The associated dynamics of the gravito-electromagnetic
potentials Ab make possible to describe gravito-magnetic currents
in presence of a stable gravito-magneticmonopole in the interior of
thewormhole, but the relativistic observer which is placed outside
the BHmust be not sensitive to the gravito-magnetic charge inside
the BH, perceiving only the effective electric charge. This effect
could be possible because both kinds of charges (the gravito-
electric and gravito-magnetic ones) are topologically induced from
a unique 5D spacetime. In particular, the quantization condition
arises as an effective manifestation of the current expression be-
tween the components of the penta-velocity of the observer. At
the beginning of Section 3.1 we have obtained an induced gravito-
magnetic monopole in the framework of WIMT which must be in
general non zero and compatible with the Wu–Yang fields, with
the samemagnitude of charge and quantization of charge included.
This effective exterior monopole is treated under geometric quan-
tizationwhich is reduced to the Dirac quantization condition in the
static case.
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Appendix A. Weitzenböck Geometry

TheWeitzenböck geometry must be constructed from the vier-
beins, which are the coefficients that express the relation between
{
−→
E A} and {

−→e a}. These are two different basis of TM .
−→
E A = eaA

−→e a,
−→e a = ēAa

−→
E A. (A.1)

The vierbeins comply with the property

eaA ē
A
b = δab, ebB ē

A
b = δAB . (A.2)

The transformation of any arbitrary tensor T in T p
m(M), from one

basis to another is

T a1 ... ap b1 ... bm = ea1A1 . . . e
ap
Ap ē

B1
b1
. . . ēBmbmT

A1 ... ApB1 ... Bm . (A.3)

Furthermore, the Weitzenböck connections are defined by

(We)Γ a
bc = eaN

−→e c(ēNb ). (A.4)

In this way is defined a very special parallel transport condition
founded in:

eaA;a = 0. (A.5)

Following the Eq. (A.4), we obtain

(We)Γ A
BC = 0, (A.6)

and then

(We)RA
BCD = 0. (A.7)

In the usual Weitzenböck scenario the arrival basis {
−→e a} is a

coordinate basis of the TM , with certain metric gab of our interest.
The departure basis {

−→
E A}, must be non-coordinate but ortho-

normalized. Then, the metric components in such basis are ηAB. In
such context the torsion is

(We)T a
bc = eaA ē

B
b ē

C
c

(We)T A
BC = eaA ē

B
b ē

C
c CA

BC , (A.8)

where CA
BC are the structure coefficients of the basis {

−→
E A}, that

comply with the algebra

[
−→
E B,

−→
E A] = CC

AB
−→
E C . (A.9)

The non-metricity of the connection is

(We)Nabc = ēAa ē
B
b ē

C
c

(We)NABC = ēAa ē
B
b ē

C
c ηAB ,C , (A.10)

where we have used (A.8), and in (A.10) we have employed the
Eq. (A.6). It is usually used the ortho-normalized basis {

−→
E A}. Then,

due to the fact that ηAB = −1, 0,+1 and ηAB ,C = 0, from the
Eq. (A.10), we obtain

(We)NABC = 0. (A.11)

All the earlier exposed items characterize the Weitzenböck geom-
etry as a torsional geometry (A.8), with (in usual cases zero) the
non-metricity (A.11), and a Weitzenböck–Riemann flat curvature
tensor (A.7). The last assertion is fundamental for WIMT. The
Weitzenböck connections and the Levi-Civita ones are related by

(We)Γ A
BC =

(R)Γ A
BC +

(We)KA
BC , (A.12)
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where (We)KA
BC is the contortion tensor, which in the present case is

enterally torsional due to the Eqs. (A.8) and (A.11). They take the
form

(We)KA
BC = −

gAM

2
{
(We)T L

CM gBL +
(We)T L

BM gLC −
(We)T L

CB gML}. (A.13)

Appendix B. Inner zone: Foliation ψ = ψ0

We consider the metric (9) that describes the inner zone. If we
make the foliation ψ = ψ0, we obtain

(4D)dS ′2
=

(5D)dS ′2
|ψ=ψ0

=
u2

u2 − 2m
dt2 − 4(u2

− 2m) du2

− (2m − u2)2 (dθ2 + sin(θ )2 dϕ2), (B.1)

which represents the inner metric for the Einstein–Rosen worm-
hole. In present case −

√
2m ≤ u ≤ +

√
2m, and the new

coordinate takes is u → 0 when r → rsch. On the other hand for
r = 0, u is bi-valuated: u(r = 0) = ±

√
2m. The spherical area

associated to the neck of the wormhole is defined in analogy to the
Eq. (31)

Aint (u) = 4π r(u)2, (B.2)

but taking into account (8). Therefore, we obtain r(u) = 2m − u2.
For the minimum value of u = −

√
2m the area of the neck also

reaches a minimum at

Aint (u = −
√
2m) = 0. (B.3)

It grows until the maximum value u = 0, given by

Aint (u = 0) = 16π m2, (B.4)

which is the same value thanwhole of (32) for the outerminimum.
Hence, it decrease until a minimum for the maximum value of
u = +

√
2m:

Aint (u = +
√
2m) = 0. (B.5)

The inner geometry is the same as in a capsule localized inψ = ψ0.
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