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Abstract
The interaction between a single magnetic atom and the metal environment (including a
magnetic field) is analyzed by introducing an ionic Hamiltonian combined with an effective
crystal-field term, and by using a Green-function equation of motion method. This approach
describes the inelastic electron tunneling spectroscopy and the Kondo resonances as due to
atomic spin fluctuations associated with electron co-tunneling processes between the leads and
the atom. We analyze in the case of Fe on CuN the possible spin fluctuations between states
with S = 2 and 3/2 or 5/2 and conclude that the experimentally found asymmetries in the
conductance with respect to the applied bias, and its marked structures, are well explained by
the 2↔ 3/2 spin fluctuations. The case of Co is also considered and shown to present, in
contrast with Fe, a resonance at the Fermi energy corresponding to a Kondo temperature of
6 K.

(Some figures may appear in colour only in the online journal)

1. Introduction

Inelastic tunneling spectroscopy of single magnetic atoms
[1–3] and single molecule magnets [4, 5] has recently been
used to explore the magnitude, and its anisotropies, of their
intrinsic spin. In the single magnetic atom case, Fe, Mn or Co
have been deposited on a CuN surface, so that the electrons
injected with a STM tip across a single atom interact with
the magnetic spin, creating spin-flip processes that reveal
themselves in the tip–metal tunneling conductance measured
as a function of the bias voltage.

These seminal experiments have been analyzed by
different groups, combining an atomic crystal-field effect
with an effective interaction between the tunneling electrons
and the atomic spin, described by means of an exchange
coupling [6, 7], a spin-assisted Hamiltonian [8–11] or
using strong coupling theory [12]. All these approaches
are reminiscent of the scattering theory approach used by
Kondo [13] to explain experimental results concerning the
resistivity of dilute magnetic impurities in metals.

Although all these calculations have offered a deep
insight into the properties of the scattering mechanism

associated with the interaction of the tunneling electrons
and a single magnetic atom, only a few works [7, 15] have
addressed the problem of analyzing the low-energy scattering
processes related to the corresponding zero bias Kondo
resonance; this has been performed starting with an effective
spin-assisted Hamiltonian and using either renormalization
group techniques [7] (see also [14] for the case of molecular
nanomagnets) or third-order perturbation theory in that
Hamiltonian [15].

In this paper we reconsider the problem of the inelastic
scattering of electrons by a magnetic atom, including the
low-energy processes associated with the Kondo resonance
(if it exists), by introducing an ionic Hamiltonian [16] to
describe the d-electrons of the magnetic atom, and analyze
the tunneling current for a metal/atom/tip configuration using
a Green-function equation of motion method [17, 18]. In
this approach, the inelastic interaction between the incoming
electron and the atomic spin is described by means of a
co-tunneling process [9], whereby first an electron is injected
from one lead into the atom, which changes its electron spin
from S − 1/2 to S (or from S to S − 1/2); in a second step,
another electron jumps from the atom into the second lead,
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leaving the atom with its initial spin but in a different state
(see figure 2 and the corresponding discussion in the text
below). As a test of our approach, we discuss first the Fe case,
which shows no Kondo effect but presents some interesting
asymmetries in the conductance spectra with respect to the
applied bias; in a second example we consider Co and analyze
its Kondo resonance.

2. Theory

Our starting point is the following ionic Hamiltonian
including all the atom d-orbitals:

H =
∑
k,α,σ

εkα ĉ+kασ ĉkασ + Hatom

+

∑
k,α,m,σ

(Vkαm
_c+kασ

_c mσ + c.c.). (1)

The first term in equation (1) describes the electrons of the
leads, ĉ+kασ (ĉkασ ) being the creation (annihilation) operator
associated with the state kασ (α = 1, 2 refers to the tip and
the metal, respectively); Hatom describes the d-electrons of the
atom and the last term the interaction between the leads and
the atom (Hint). In this term, Vkαm defines the coupling be-
tween the conduction, kασ , and the localized, mσ , electrons;
ĉ+mσ (ĉmσ ) denotes the creation (annihilation) operator of the
localized d-electrons in the orbital m with spin σ .

The critical point is the description of the d-electrons,
and this point marks an important difference of our proposal
with respect to other works based on an effective exchange
coupling of the atomic spin to the reservoirs [6–11]. For the
free atom we consider the following Hamiltonian:

H0
atom =

∑
m,σ

εm
_n mσ +

∑
m

Ud
_n m↑

_n m↓

+
1
2

∑
m6=m′,σ

Jd
_n mσ

_n m′−σ

+
1
2

∑
m6=m′,σ

(Jd − Jx
d)

_n mσ
_n m′σ

−
1
2

∑
m6=m′,σ

Jx
d
_c+mσ

_c m−σ
_c+m′−σ

_c m′σ .

Here, in the expression of H0
atom, n̂mσ = ĉ+mσ ĉmσ and

the intra-atomic Coulomb interactions Ud and Jd, as well as
the intra-atomic exchange interaction Jx

d, are assumed to be
constants independent of the m-orbital index. The last term,
related to spin-flip processes, restores the invariance under
rotation in spin space.

A crucial approximation to analyze H0
atom and its

interaction with the leads is to assume the exchange
interaction, Jx

d, to be large enough to make the first Hund-rule
operative. Then, the atomic lower energy configurations
correspond to the states of maximum electron spin, say S.
Consider the Fe case; DFT calculations [7] for this atom on
CuN(100) show that the electron charge in the d-states is
between 6 and 7, suggesting that the atomic spin fluctuates
between 2 (six electrons) and 3/2 (seven electrons). Those
DFT calculations also indicate that the largest occupancies
appear for the dx2−y2 and dz2 orbitals, with occupancies for

Figure 1. Diagram of the processes that change the atom spin
between S = 2 and S = 3/2, with the hopping elements normalized
to the maximum value.

the minority spin of 0.72 and 0.49 electrons, respectively.
We describe the atomic states of Fe with S = 2 or 3/2
by means of different kets associated with the d-orbitals,
|dx2−y2, dz2, dzy, dxy, dzx〉, in the following way (including
also spin variables):

|S = 2,M = 2〉 = | ↑↓,↑ 0,↑ 0,↑ 0,↑ 0〉

|S = 2,M = 1〉 = 1
2 [| ↑↓, 0 ↓,↑ 0,↑ 0,↑ 0〉

+ | ↑↓,↑ 0, 0 ↓,↑ 0,↑ 0〉 + | ↑↓,↑ 0,↑ 0, 0 ↓,↑ 0〉

+ | ↑↓,↑ 0,↑ 0,↑ 0, 0 ↓, 〉] . . .

|S = 2,M = −2〉 = | ↑↓, 0 ↓, 0 ↓, 0 ↓, 0 ↓〉

(2a)

and:

|S = 3/2,M = 3/2〉 = | ↑↓,↑↓,↑ 0,↑ 0,↑ 0〉

|S = 3/2,M = 1/2〉 =
1
√

3
[| ↑↓,↑↓, 0 ↓,↑ 0,↑ 0〉

+ | ↑↓,↑↓,↑ 0, 0 ↓,↑ 0〉 + | ↑↓,↑↓,↑ 0,↑ 0, 0 ↓〉]

. . .

|S = 3/2,M = −3/2〉 = | ↑↓,↑↓, 0 ↓, 0 ↓, 0 ↓〉.

(2b)

The effect of the atom–leads interactions is to make
electrons jump between the leads and the atom, changing the
atom state between S = 2 and 3/2. All these processes are
indicated schematically in figure 1. Notice that by injecting (or
removing) one electron in (from) the atom, the value of M can
only change by ±1/2, depending on the spin of the electron.
Moreover, using the atom–leads interaction (Hint) we can
calculate the matrix elements associated with the different
processes shown in this figure. This allows us to write H0

atom
and Hint as follows [17]:

H0
atom =

∑
M

εS|S,M〉〈S,M|

+

∑
m
εS−1/2|S− 1/2,m〉〈S− 1/2,m|

Hint =
∑

k,α,M,σ

[
VkαMσ ĉ+kασ |S,M〉〈S− 1/2,M − σ | + c.c.

]
.

(2c)

2
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Figure 2. In this figure we show a co-tunneling process for Fe:
(a) with one electron jumping from the tip to the dz2-orbital (spin
down) and, (b) with the electron of spin up jumping from the same
orbital to CuN. In this process the atomic spin changes from
S = 2,M = 2 to S = 2,M = 1, and it fluctuates to
S = 3/2,M = 3/2.

Here we find that [17] VkαMσ =

√
5(S+M∗sign(σ ))

2S Vkα,
√

5Vkα

being the interaction between the kα-wavefunction and the
dz2-state that yields the atomic 2↔ 3/2 transitions as defined
by the wavefunctions (2a) and (2b).

It is interesting to note that a similar interacting
Hamiltonian, as given by equation (2c), is obtained if instead
of |S = 2,M = 2〉 = | ↑↓,↑ 0,↑ 0,↑ 0,↑ 0〉, we assume we
have:

|S = 2,M = 2〉 = α| ↑↓,↑ 0,↑ 0,↑ 0,↑ 0〉

+ β| ↑ 0,↑↓,↑ 0,↑ 0,↑ 0〉

for the atomic ground state, with the dx2−y2 state occupancy
fluctuating with the atomic spin fluctuations 2 ↔ 3/2, as
well. The only change we find in this case for the interacting
Hamiltonian appears in Vkα , which is now an average of the
hopping interactions between kα and the dz2 and dx2−y2 states.

The arguments presented above for the Fe case can be
generalized to other magnetic atoms; in this way we find that
equation (2c) holds for all these cases if the d-shell occupancy
is more than half filled. In the other limit, for an atomic d-shell
having less than half-filled occupancy, Hint in equation (2c)
should be changed to:

Hint =
∑
k,α,
M,σ

[
VkαMσ ĉ+kασ |S− 1/2,M − σ 〉〈S,M| + c.c.

]
; (3)

this shows that there is an electron–hole symmetry between
the cases having either more or less than a half-filled shell. In
the following we shall work with holes for Fe or Co, using
Hint as given by equation (3).

We should also mention that in this way of proceeding,
the current across the magnetic atom is the result of a
co-tunneling process whereby two electrons are tunneling
between the leads and the magnetic atom: in a first step, an
electron tunnels from the atom to one of the leads and, in a
second step, another electron jumps from the second lead to
the atom (see figure 2).

All eigenstates |S,M〉 of Hamiltonians (2c) and (3)
are degenerate in M. This degeneracy is broken by the

crystal-field effect that is obtained by adding to H0
atom the

Zeeman plus the anisotropy energy [1]:

Hatom = H0
atom + gµBB̂ · Ŝ+ DŜ2

z + E(Ŝ2
x − Ŝ2

y). (4)

In equation (4) E and D are two constants describing the
crystal-field effect; the gyromagnetic factor is g and µB is the
Bohr magneton. Ŝ is the spin operator of the adsorbate and
Ŝx,y,z its projections on Cartesian axes.

In the basis set diagonalizing Hatom, ϕS
i =

∑
Mai

S,M|S,M〉

and ϕS−1/2
j =

∑
Maj

S−1/2,M|S− 1/2,M〉 with eigenvalues ES
i

and ES−1/2
j , Hint can be written as follows:

Hint =
∑

k,α,M,σ

[
VkαMσ ĉ+kασ

∑
j

|ϕ
S−1/2
j 〉〈ϕ

S−1/2
j |

× |S− 1/2,M − σ 〉

×

∑
i

〈S,M||ϕS
i 〉〈ϕ

S
i | + c.c.

]

=

∑
k,α,σ,i,j

[
Tkασ jic

+

kασ |ϕ
S−1/2
j 〉〈ϕS

i | + c.c.
]
. (5)

The coupling term introduced in equation (5) is defined as

Tkασ ji

=

∑
M

aj∗
S−1/2,M−σai

S,M

√
(5/2S) (S+M ∗ sign(σ ))Vkα. (6)

Due to the anisotropy effects, this coupling acts between all
the different ϕS

i and ϕS−1/2
j states into which the degenerate

levels, |S ·M〉 or |S− 1/2,m〉 are split.
A Keldysh–Green function approach [19] is a convenient

way of treating out-of-equilibrium problems such as the
one posed by the inelastic tunneling current effects through
the magnetic atom. In our analysis, we use Hamiltonian
equation (1) written in the basis set ϕS

i and ϕ
S−1/2
j and

introduce the following Green functions:

Gij(t, t′)

= i2(t′ − t)
〈{
|ϕS

i 〉〈ϕ
S−1/2
j |t′; |ϕ

S−1/2
j 〉〈ϕS

i |t

}〉
;

Fij(t, t′) = i
〈[
|ϕS

i 〉〈ϕ
S−1/2
j |t′; |ϕ

S−1/2
j 〉〈ϕS

i |t

]〉
,

where {}/[] indicates the anticommutator/commutator of the
corresponding operators defined in t′ and t; the function F
is the specific Green function yielding the non-equilibrium
properties of the system. G and F have been calculated using
the equation of motion method up to second order in the
interaction Tkασ ji. By following the steps already discussed
in [17, 18], one arrives at the following Green function:

Gij(ω) =

〈nS
i + nS−1/2

j 〉

+

∑
k,α,σ
m6=j

Tkασmi〈|ϕ
S
i 〉〈ϕ

S−1/2
m |ckσ 〉

ω̃ − εkα − ES−1/2
m + ES−1/2

j

3
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−

∑
k,α,σ
m6=i

Tkασ jm〈|ϕ
S
m〉〈ϕ

S−1/2
j |ckσ 〉

ω̃ − εkα − ES
i + ES

m


×

ω̃ − ES
i + ES−1/2

j −

∑
k,α,σ

|Tkασ ji|
2

ω̃ − εkα

−

∑
k,α,σ
m6=i

|Tkασ jm|
2
〈nkασ 〉

ω̃ − εkα − ES
i + ES

m

−

∑
k,α,σ
m6=j

|Tkασmi|
2
〈1− nkασ 〉

ω̃ − εkα − ES−1/2
m + ES−1/2

j


−1

(7)

where 〈nkασ 〉(=fα<(ω)) is the Fermi distribution function for
the kα-states and$ = ω− iη with η→ 0. All the calculations
described below are done for T = 0.5 K; due to this low
temperature and the weak surface–atom coupling (see below)
we find a negligible occupation of the atomic excited levels,
〈nS

i 〉 or 〈nS−1/2
j 〉. Close to the equilibrium and within a second

order in the interaction Tkασ ji, the crossed terms (namely

〈|ϕS
i 〉〈ϕ

S−1/2
m |ckσ 〉 and 〈|ϕS

m〉〈ϕ
S−1/2
j |ckσ 〉) appearing in the

numerator of equation (7) are given by:

〈|ϕS
i 〉〈ϕ

S−1/2
n |ckασ 〉

'
1
π

T∗kασni

∫
∞

−∞

dω′ fα≺(ω′)Im
Gin(ω

′)

ω̃′ − εkα
.

We should stress that equation (7) yields the advanced
Green function for a less than half-filled shell; the case for
more than five d-electrons in the atom can be described using
the electron–hole symmetry of the problem, by reversing in
equation (7) the sign of all the energies.

The tip-metal current Iσα , calculated across the α-contact,
is defined by the equation:

Iσα = −
2e

h̄
Im
∑
k,i,j

T∗kασ ji〈|ϕ
S
i 〉〈ϕ

S−1/2
j |ckασ 〉, (8)

which can be written in terms of Gij and Fij as follows [18]:

Iσα
2e/h

=
1
2

∑
i,j

∫
∞

−∞

dε0ασ ji(ε)Im[Fij(ε)

− 2(2fα<(ε)− 1)Gij(ε)] (9)

where we have introduced0ασ ji(ε)= π
∑

k|Tkασ ji|
2δ(ε−εkα).

In equation (8), Iσα =
∑

i,jI
σ
αij, Iσαij represents a partial current

associated with the (i, j)-channel. Current conservation for
each channel, Iσ1ij = −Iσ2ij, allows us to write equation (9) as
follows:

Iσ
2e/h

=

∑
i,j

∫
∞

−∞

dε 0σ ji [f1<(ε)− f2<(ε − eV)] ImGij (ε) , (10)

where 0σ ji = 201σ ji02σ ji/
(
01σ ji + 02σ ji

)
defines an ef-

fective broadening associated with the Tkασ ji-hoppings.

Equation (10) is similar to the one proposed by Meir and
Wingreen [20]; but in our approach we find a combination
of similar contributions for the different (i, j)-channels.
Equations (7) and (10) summarize the properties of the
magnetic atoms as described in this paper: while equation (7)
yields the characteristics of the spectral density, equation (10)
yields its transport properties. The conductance (G =
dI/dV), in the limit of low temperatures and small bias
voltages, can be approximated by the expression G/G0 =∑

i,j,σ0σ ji ImGij(eV),G0 being the conductance quantum.
It is interesting to consider the limit of no crystal-field

effect (E = D = 0) and zero magnetic field (B = 0). In this
case the following two terms that include the factor 〈nkασ 〉 in
equation (7),∑
k,α,σ
m6=i

|Tkασ jm|
2
〈nkασ 〉

ω̃ − εkα − ES
i + ES

m

−

∑
k,α,σ
m6=j

|Tkασmi|
2
〈nkασ 〉

ω̃ − εkα − ES−1/2
m + ES−1/2

j

, (11)

reduce to (5/2S)
∑

kα|Vkα|
2
〈nkασ 〉/(ω̃ − εkα), which can be

associated with a Kondo resonance if εS−εS−1/2 < 0 (electron
picture) [16]. The effect of the environment on the magnetic
atom is to split εS and εS−1/2 into the levels ES

i and ES−1/2
j ,

and the Kondo resonance into the different structures afforded
by the two terms of equation (11). Notice that the different
energies, ES

i − ES
m and ES−1/2

m − ES−1/2
j , are associated with

the excitation energies of the magnetic atom, either for the
spin S (i → m) or the spin S − 1/2 (m → j), as created
by the co-tunneling processes included in our Hamiltonian.
Moreover, for εS − εS−1/2 < 0 and ES

i = ES
m, the first term of

equation (11) yields a Kondo resonance, while for ES−1/2
j =

ES−1/2
m , the second term yields in our calculations a small

depression in the density of states, referred to, in this paper,
as an anti-resonance.

3. Results and discussion

We first discuss the case of Fe on CuN [1]; the ground
state has six d-electrons (four holes) with S = 2, and
following [1] we take in Hamiltonian (5) g = 2.11,D =
−1.55 meV and E = 0.31 meV. For the sake of completeness
we have explored the different possible spin fluctuations
for Fe by considering two cases: 2 ↔ 3/2 or 2 ↔ 5/2,
with the atom fluctuating between two spins by taking
(donating) one electron from (to) the substrate. In the ionic
Hamiltonian for the hole fluctuations, these cases correspond
to taking: εS=2 − εS=3/2 > 0 or εS=5/2 − εS=2 < 0. The
α-lead–atom interaction width is defined by the quantity
0α = π

∑
k|Vkα|

2δ(ε − εkα). The atom–tip interaction 01 is
negligible compared with the atom–metal one 02, therefore it
is a good approximation to take 0σ ji = 2ησ ji01 with ησ ji =

|
∑

Maj∗
S−1/2,M−σai

S,M

√
(5/2S) (S+M ∗ sign(σ ))|2. Then the

conductance results from the different contributions, which
are determined basically by the atom–surface interaction,

4
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Figure 3. (a) shows the most important contributions, G(i, j), to the
differential conductance in G0-units for Fe and the 2↔ 3/2
fluctuating case (see text) (in Fe, G(i, 1) = G(i, 2) and G(5, 1) is
negligible). The arrows show the energies associated with the
energy steps. (b) shows the differential conductance for the 2↔ 3/2
(black curve) and the 2↔ 5/2 (dashed line) spin fluctuations. Red
circles [1] and gray dot line (supporting online material of [1]) show
the experimental data for a zero magnetic field.

but weighted by the strength of the atom–tip coupling. In
our calculations we use a flat band approximation with a
half-bandwidth of3 = 10 eV, and the values εS=2−εS=3/2 =

εS=2 − εS=5/2 = 2 eV, 02 = 32 meV and 01 = 2.2 meV,
which were chosen in order to adjust the experimental
conductance curve in the absence of a magnetic field (B =
0 T) (for D = E = 0, these values yield a d-level broadening
of 0.2 eV).

In part (a) of figure 3, we show for the 2 ↔ 3/2
spin fluctuating case the most important contributions to the
conductance associated with the terms 2ησ jiImGij (eV). In all
these cases the step structures correspond to the excitations
between the hole ground state, 6.4 meV, and the other excited
levels (conductance steps are associated with the excitation
energies 0.2, 3.9, 5.7 and 6.6 meV for S = 2). The most
important contributions to the conductance are provided by
the Green functions G11 (=G12) and Gm1 (=Gm2), with m =
2, 3, 4, shown in the panel (a) of figure 3 (i = 1 defines the
ground state for S = 2 and j = 1, 2 the ground degenerate
levels for S = 3/2; for this case, E3/2

j = 3.6, 3.6, 0.3 and
0.3 meV).

It is interesting to realize that G11 (or G12) yields that
important contribution because of the ground state occupancy
〈nS

1〉 ∼ 1 (see equation (7)); this leads to all the steps for ω =

ES
1−ES

m associated with
∑

k,α,σ
m6=i

|Tkασ jm|
2
〈nkασ 〉

ω̃−εkα−ES
1+ES

m
because, for that

occupancy, in the Green functions G11 or G12 the magnetic
atom is excited from the ϕS=2

1 state to an intermediate state

ϕ
S=3/2
m (as created by the transfer of one electron from one

contact to the atom); in the second co-tunneling step, the atom
jumps to a ϕS=2

m6=1 state (with one electron being transferred
from the atom to the other contact).

On the other hand, for Gm1, with m 6= 1, we find 〈nS
m〉 ∼

0 in equation (7); however, for this case the crossed term

〈|ϕS
1〉〈ϕ

S−1/2
1 |ckασ 〉 provides the relevant contribution that

makes Gm1 important. In this case, in the Green function
Gm1 the magnetic atom is excited from the ϕS=2

m6=1 state to

ϕ
S=3/2
m (when an electron is injected in the atom), while

in a second step the atom jumps to the ϕS=2
1 state (and

one electron is transferred to the other lead). This leads to
the step frequencies ω = ES

m − ES
1 , just the opposite of the

ones found for G11 or G12. The steps associated with G11
or Gm1 are not, however, exactly symmetric with respect to
each other because of the different weights associated with
the corresponding Green functions, depending on either 〈nS

1〉

for G11 or (−
∑

k,α,σ
Tkασ11〈|ϕ

S
1 〉〈ϕ

S−1/2
1 |ckσ 〉

ω̃−εkα−ES
m+ES

1
) for Gm1. Then, our

model predicts an asymmetric behavior in the bias voltage
of the conductance (see figure 1), in agreement with the
experimental findings [1]. On the other hand, we find that
the small structures appearing at ±3.3 meV are associated
with virtual excitations between the spin S = 3/2 states. It
is interesting to realize that, in the presence of a crystal
field, a Kondo resonance or an anti-resonance emerge when
the crystal field creates degenerate S and/or S − 1/2 ground
states. In the case of Fe on CuN there is no degenerate
ground state for S = 2 and, consequently, there is no Kondo
resonance, while a small anti-resonance structure associated
with the second term of equation (11) appears due to the
degeneration for the S = 3/2 states, as can be seen from
figure 3. The resulting conductance spectrum is presented
in panel (b), where we compare the two possible spin
fluctuations, 2 ↔ 3/2 and 2 ↔ 5/2, with the experimental
evidence [1] (including the one presented in the supporting
online material [1]). Notice the more pronounced structures
and the asymmetric behavior afforded by the 2↔ 3/2 case,
in better agreement with those data.

The strong dependence of the spin excitations on field
direction observed experimentally is also well reproduced by
our calculations, as can be seen from figure 4. Figure 4 shows
the conductance as a function of the bias voltage for different
values of the applied magnetic field B along the N direction
(Bz) in part (a) and along the hollow direction (Bx) in part (b).
The behavior is the same as observed experimentally, three
(1→ 2, 1→ 3 and 1→ 4) of the four steps associated with
the excitations from the lower energy eigenstate of the crystal
field Hamiltonian for S = 2 appear at the predicted threshold
energies (see figures 4(a) and (b)). In the case of B along the
N direction, the 1→ 2 excitation dominates at very low B
and disappears when B increases, whereas 1→ 3 dominates
at large B. The step energies extracted from the conductance
spectra of figure 4 are also in very good agreement with
the experimental values. We should also mention that in this
paper we have only considered magnetic fields up to 7 T, as
measured in the experimental data; this leaves apart a possible
Kondo effect that has been suggested [7] to appear for higher
fields along the x-axis, due to the crossing of two atomic levels
for S = 2.

The case of Co (S = 3/2) [2] is particularly interesting
because of the twofold degeneracy associated with the M =
±1/2 ground states, which appear due to the hard-axis
anisotropy (D > 0). This suggests that a Kondo resonance
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Figure 4. Computed conductance for a Fe atom on a CuN
monolayer on Cu(100). The conductance for increasing magnetic
field B is vertically displaced for representation purposes. The B
field is oriented along the N axis in part (a) and along the hollow
axis on the surface in part (b). The dotted curves are the
experimental results of [1]. The inset in (a) shows an expanded view
of the theoretical curve around V = 0 mV in the case of B = 3 T to
show that the 1–2 excitation still exists at an energy of 1.5 meV, in
agreement with the experiment.

should appear for the Co 3/2 ↔ 1 fluctuations, as is
found in our calculations (see figure 5); for this case D =
0.0279 eV,E = 0; εS=3/2 − εS=1 = 1 eV, 02 = 40 meV
and 01 = 0.7 meV [2]. Our theoretical calculations show
a reasonable agreement with the experimental evidence,
although the calculated Kondo resonance at the Fermi energy
is somewhat smaller than the experimental one: this is a
well-known effect of using a second-order approximation in
the equation of motion solution [18]. We can get, however,
a good estimation of the Kondo line width TK, by realizing
that for a twofold degeneracy TK ≈ (31)

1/2 exp[−π |ε3/2 −

ε1|/21] [15], 1 = 502 being the d-resonance width.
This yields TK = 0.5 meV, in good agreement with the
experimental line width of the Kondo resonance. On the
other hand, we stress again that the asymmetry observed
in the differential conductance at the steps appearing for
ω = ±

(
ES

1 − ES
m

)
(figure 5) is due to the different weights

associated with the corresponding Green functions: either

〈nS
1〉 for G11, or (−

∑
k,α,σ

Tkασ11〈|ϕ
S
1 〉〈ϕ

S−1/2
1 |ckσ 〉

ω̃−εkα−ES
m+ES

1
) for Gm1. We

should also comment that the relevant interaction strengths
for the Kondo resonance and the spin fluctuations have the
same order of magnitude, as they correspond to the values
of |Tk,σ,j,2|

2 and |Tk,σ,j,m>2|
2, respectively. Figure 5 also

shows the conductance as a function of the bias voltage for
different values of the applied magnetic field B along the
hollow direction (Bz). Good agreement with the experimental
data is observed for high fields; for low magnetic fields,
however, because of the second-order calculation of the

Figure 5. Computed conductance (full line) for a Co atom on a
CuN monolayer on Cu(100). The conductance for increasing
magnetic fields along the hollow axis (z) is vertically displaced for
representation purposes. Our theoretical Kondo resonance is smaller
than the experimental one [2] (dotted line) because of our
second-order approximation in the equation of motion method. The
Kondo temperature (6 K) calculated from the parameters used to fit
the experimental data is in good agreement with the experimental
Kondo line width.

Kondo resonance, the signature around the Fermi level is not
so well reproduced.

4. Conclusions

In summary, we have introduced an ionic Hamiltonian
for a magnetic atom and shown that it can be used to
describe appropriately the inelastic processes associated with
the interaction of the magnetic atom and the electrons
tunneling between a STM tip and a metal. We have
used a Green-function equation of motion method, up to
second order in the metal–atom interaction, to analyze those
processes; it should be stressed that going beyond that order
is necessary to improve the agreement between the theoretical
results and the experimental data. Our approach has allowed
us to analyze the Kondo resonance (Co case) and the spin
excitations of the atom (Fe and Co cases) under an applied
bias voltage, with and without a magnetic field. In particular,
we have analyzed for the Fe/CuN case its possible 2↔ 3/2 or
2↔ 5/2 spin fluctuations, concluding from the step structures
and asymmetric spectra that the first is the dominant one. Our
analysis for Co/CuN has allowed us to calculate also its Kondo
temperature (6 K), a value that is found in good agreement
with the experimental evidence.
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