Received: 10 April 2016

Revised: 30 October 2016

Accepted: 8 November 2016

DOI: 10.1002/gea.21620

RESEARCH ARTICLE

WILEY

Gravity and the formation of the archaeological record: Main
concepts and methodological tools

lvanaL.Ozan

Instituto de Geociencias Basicas, Aplicadas y
Ambientales de Buenos Aires (IGEBA), Consejo
Nacional de Investigaciones Cientificas y Tec-
noldgicas (CONICET), Departamento de Cien-
cias Geoldgicas, Universidad de Buenos Aires,
Ciudad Universitaria, Buenos Aires, Argentina
Correspondence

lvanaL.Ozan, IGEBA-CONICET, Departa-
mento de Ciencias Geoldgicas, Universidad de
Buenos Aires, Pabellon 2, Ciudad Universitaria
(C1428EGA), Buenos Aires, Argentina.

Email: ivanalozan@gmail.com

Scientific editing by Cristian Favier Dubois

Abstract

This contribution aims to discuss how gravity-driven processes affect the archaeological record
with the goal of building a broad conceptual and methodological framework for dealing with these
contexts. A wide compilation of cases regarding gravity-driven processes is analyzed to recognize
relevant environmental factors, the way they affect the properties of the record, and long-term
archaeological expectations. Only by understanding the specific mechanisms and processes that
occur in each context can an accurate methodological approach be chosen on which to base inter-
pretations. A careful taphonomic study of the spatial distribution, frequency, size, diversity, and
orientation of materials comprising the archaeological record is the first step to recognizing for-
mation processes. Actualistic studies provide a framework for discussing the timing and intensity
at which processes occur. A detailed geomorphological description is required to interpret sedi-
mentological and micromorphological analysis, which in turn helps understanding of the relative
subaerial permanence of the record, its temporal resolution, and preservation potential. Inter-
preting surface and buried materials requires the understanding of pedogenetic processes. Broad
in/off-site spatial sampling strategies definitely yield a more realistic picture about the variety of

processes in slope settings.

KEYWORDS

1 | INTRODUCTION

For more than 40 years it has been recognized that underestimating or
misunderstanding the role of natural processes can bias the interpre-
tation of human behavior made from the archaeological record. Thus,
determining if the data are appropriate for our theoretical goals is a
fundamental step in every archaeological agenda (Butzer, 1971, 1982;
Davidson & Shackley, 1976; Renfrew, 1976). The present contribution
will discuss gravity-driven processes in archaeological settings in order
to build a broad conceptual and methodological framework for deal-
ing with the archaeological record affected by them. For this purpose,
a wide range of case studies concerning gravity-driven processes that
take place on slopes is considered in order to understand relevant envi-
ronmental factors, the way they affect properties of the archaeological
record, and the consequent archaeological expectations related to dif-
ferent processes. Since there are already many useful studies regard-
ing this topic, critical synthesis can create operative models upon which
to work.

The importance of understanding gravity-driven processes in
archaeological contexts lies in their significant impact on the spa-
tial properties of the archaeological record. In addition, as some of

geomorphology, pedology, sedimentology, surface/burial archaeological record, taphonomy

these processes operate on specific particle sizes, densities, or shapes,
archaeological assemblages can be differentially affected. It is gravity-
driven processes that can control the spatial arrangement, density, and
size of the material culture. These archaeological properties, in turn,
are indicative of past human behavior since they help the understand-
ing of activity areas, nature, and intensity of human occupation, thus
contributing to broader interpretations such as defining mobility sys-
tems or biogeographical issues. For instance, the proposed late Pleis-
tocene archaeological artifacts from northeastern Brazil are, for some
authors, geofacts introduced by gravity (Aimola, Andrade, Mota, &
Parenti, 2014; Boeda et al., 2013; Lahaye et al., 2015). Less contro-
versially, the study of natural and anthropogenic deposits accumu-
lated by gravity-driven processes can also offer indirect data about
paleoenvironmental conditions (e.g., Bertran, 2005; Bertran, Hetu,
Texier, & Van Steijns, 1997; Bertran, Laurent, Lenoble, Masson, & Vallin,
2010; Lenoble, Bertran, & Lacrampe, 2008; Texier & Meireles, 2003).
The archaeological record on slopes is often associated with a
colluvial talus of outcrops (caves, rock shelters or walls), though
it can also be located in other accumulation geoforms such as
dunes and moraines (Fig. 1). In all cases, gravity is the major
factor in two main types of processes: (1) collective or mass
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FIGURE 1 (a)Slope of Cerro Cabeza de Ledn; note the abundance of
rocks along the hillslope (Tierra del Fuego, Argentina; photo courtesy
of K. Borrazzo). (b) Vegetated hillslope of Tres Arroyos Site (Tierra del
Fuego, Chile); note the erosion scarps due to soil creeping. (c) Semiveg-
etated hillslope of Céndor 1 Site; (Santa Cruz, Argentina; photo cour-
tesy of R. Barberena). (d) Soil creeping and slides scars on a moraine
slope at Marazzi 2 (Tierra del Fuego, Chile). (e) Slides at Marazzi 2 Site;
note that the older slide was dissected by ariver. (f) Semivegetated hill-
slope of La Vieja Cave (Aysén, Chile); note intensive sheep action (circu-
lar nonvegetated depressions) and the abundant rock fall. (g) Colluvial
fan at the entrance of Bafio Nuevo 1 Cave (Aysén, Chile). (h) Hillslope of
Cerro Ventana Site with patches of vegetation (Santa Cruz, Argentina,
photo courtesy of N. Cirigliano). (i) Vegetated low-angle hillslope of
Cerro Sin Nombre (Tierra del Fuego, Argentina). (j) Rocky hillslope of
Fell Cave (Santa Cruz, Chile) [Color figure can be viewed at wileyon-
linelibrary.com]

movement processes (creeping, landslides, flows, solifluction that
comprises frost-creep, and gelifluction); and (2) individual particle
processes (rolling, bouncing, falls, and toppling; Hungr, Corominas, &
Eberhardt, 2005; Hutchinson, 1988; Nardin, Hein, Gorsline, &
Edwards, 1979; Ritter, Kochel, & Miller, 2006; Sharpe, 1938; Sum-
merfield, 1991; Varnes, 1978; Wainwright, Parsons, Powell, & Brazier,
2001; among others).

The occurrence, speed, extent, and frequency of slope processes
depend on several interconnected factors and triggers, such as cli-
mate (precipitation, humidity, temperature and wind intensity through
the year), abundance and type of vegetation, soil development, micro-
topography, substrate granulometry, mineralogy, drainage condition,
slope angle, slope shape (e.g., rectilinear, concave, etc.), availability of
solid loose material, human impact (deforestation, overgrazing, soil
depletion, etc.), and earthquake occurrence (its frequency and inten-

sity).

From a geoarchaeological perspective, many studies have discussed
gravity-driven processes in archaeological contexts (Butzer, 1971;
Goldberg & Macphail, 2006; Rubin de Rubin & Da Silva, 2004; Straus,
1995; Waters, 1992; among others). However, less attention has been
given to constructing conceptual models to deal with slope archae-
ological settings in general. The main reason for this is probably
the complex interplay among several factors, which restricts a broad
model application; even on the same slope, a slight topographic change
can give rise to a different pattern in the archaeological assemblage
(Bertran et al., 2015).

2 | THE ARCHAEOLOGICAL RECORD AND
GRAVITY-DRIVEN PROCESSES

Archaeological sites on slopes could be considered as a particular
taphonomic mode (sensu Behrensmeyer & Hook, 1992), namely, a set
of environmental features that determine specific preservation condi-
tions. For instance, by considering bone and lithic assemblages in cold
semiarid contexts (North Isla Grande de Tierra del Fuego, Argentina),
Borrazzo and Borrero (2015) defined a cliff taphonomic mode, empha-
sizing hillslope dynamics. The authors noted that surface lithic assem-
blages on slopes exhibited low frequencies of small artifacts, while
these were frequent in the below-ground samples at the same site
(also Borrazzo, 2009, 2010). This pattern was explained due to the
high burial potential of small size materials along vegetated slopes. This
example draws attention to the importance of considering on-going
processes in these contexts, as the type and size of debris give relevant
technological information related to the function and the intensity of
human occupation.

With some minor exceptions, all cultural material is deposited on
the surface and, depending on the environmental conditions, can be
buried, unearthed and re-buried many times. Thus, a clear distinction
between the buried and surface archaeological records is not com-
pletely possible, though processes that occur in one or other con-
text act differently. In the next paragraphs, a synthesis of slope for-
mation processes of the buried and surface archaeological records is
presented.

2.1 | Buried archaeological record

The presence of vegetation (grass cover, shrubs or trees) plays a
substantial role in particle downslope movement (artifacts and natural
clasts) because it increases friction and thus decelerates or inhibits
the transport of particles along the hillslope (Bertran & Texier, 1999b;
Heydari, 2007), while roots stabilize and fix the matrix. Generally,
the presence of vegetation is a consequence of climatic conditions,
and both climate and vegetation are important soil formation factors
(Birkeland, 1999). Therefore, the presence of vegetation is closely
associated with soils. In turn, soil bioactivity, together with the slow or
absent movement of surface particles, promotes the sinking of natural
and cultural clasts (e.g., Balek, 2002). Interestingly, this process oper-
ates at short time intervals (about 1 year) and even in poorly developed

soil profiles, as was demonstrated in the actualistic research conducted
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on vegetated slopes carried out by Martin and Borella (1999) and
Massone, Jackson, and Prieto (1993) in Tierra del Fuego (at Cerro
Cabeza de Ledn Site and Tres Arroyos Site, respectively; Fig. 1a and
b). Similarly, at the Tres Arroyos Site, Martin (2006) analyzed buried
human remains placed along the hillslope (10°-18°). She concluded
that, after body deposition, a rapid carnivorous action occurred, pro-
moting disarticulation and displacement of skeletal elements. Finally,
once stability was reached, a rapid burial took place.

If the archaeological record is buried, a unimodal vertical distri-
butions of artifacts in the lower A/ AC soil horizons (or lower Ab/
ACb horizons) must alert us to consideration of soil biomechanical
dynamics. It is well known that due to their depth and abundance of
organic matter, these epipedons are the most affected by soil fauna,
which sieve out the gravel fraction causing it to sink through soil
horizons (Balek, 2002; Canti, 2003; Darwin, 1896; Favier Dubois,
2017; Kutschera & Elliott, 2010; Stein, 1983; Van Nest, 2002). Thus,
although high burial rates preserve the archaeological record against
subaerial weathering and temporal scattering, soil dynamics may also
modify the vertical distribution and create a cumulative palimpsest
(Bailey, 2007). This aspect is well illustrated at Marazzi 2 and Cerro
Sin Nombre Sites (northern Tierra del Fuego, Chile and Argentina;
Fig. 1d, e, and i), where low weathering stages of buried materials were
recorded along with unimodal vertical distributions (Fig. 2).

It should be mentioned that the presence of a single mode in the
vertical distribution of artifacts can also be derived from a single
archaeological level. In this case, a single taphonomic story should be
expected, as the record was deposited in a single synchronic episode.
Additionally, cryoturbation and argilloturbation (Lenoble et al., 2008;
Texier et al., 1998; Waters, 1992), can also sort artifacts by size and
affect the vertical distribution and composition of the assemblage. In
the latter scenarios, the recognition of expansive clays (smectite clay
minerals) and/or frost action features (such as lenticular microstruc-
tures) may help to detect argillo/cryoturbation processes. In turn, pH,
humidity, rooting, and microbial attack constitute biochemical hazards
promoting destruction of buried material (e.g., Borrazzo, 2006, 2010;
Gutierrez, 2004; Hedges, 2002; Karkanas, 2010; Lyman, 1994,
Shahack-Gross, Bar-Yosef, & Weiner, 1997), thus burial archaeological
record is not completely safe.

For the last two decades, a French team has focused on long-
term experiments in periglacial environments resulting in the most
systematic set of data concerning slope processes in extreme non-
vegetated environments affecting the archaeological record (Bertran
& Texier, 1995; Bertran & Texier, 1999a, 1999b; Bertran et al., 1997,
Bertran, Bordes, Barre, Lenoble, & Mourre, 2006, 2010; Bertran,
Lenoble, Todisco, Desrosiers, & Sgrensen, 2012, 2015; Lenoble, 2005;
Lenoble & Bertran, 2004; Lenoble et al., 2008; Texier et al., 1998).
These actualistic studies found that, on slopes in periglacial settings,
solifluction can create lobes that move irregularly at 1-10 cm/yr. This
slow but constant process buries archaeological material and, after
a certain time, mixing must be expected. In addition, a coarsening-
upward trend has been observed within 1 year (Bertran et al., 2010;
Lenoble et al., 2008; Texier et al., 1998). Experiments recorded that
3.6% of artifacts buried 10 cm deep were “frost-jacked” to the ground

surface only 1 year after the beginning of the experiment, while 22.7%
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of artifacts buried at 5 cm progressively reached the ground surface
during five subsequent years (Texier et al., 1998).

As noted in the introduction, downslope particle movement can be
caused by transport of particles individually, or by the movement of the
entire soil matrix. Soil creeping (Fig. 1d) is characterized by the accu-
mulation of minimal displacements over long time periods, typically a
few millimeters or centimeters per year, and affects the whole arti-
fact assemblage (Lenoble et al., 2008). By contrast, fast processes such
as earth flows can drastically invert archaeological stratigraphies, as
reported in Wadi Ziglab (northwestern Jordan) where Roman artifacts
were buried over 1 m deeper than a Neolithic site only 200 m away,
but located beyond the margins of the colluvial slopes (Field & Banning,
1998).

Among mass movement processes, landslides have specific effects
on the archaeological record. For the Marazzi 2 Site (Tierra del Fuego,
Chile), Morello et al. (2009) describe how rotational slides (Fig. 1e)
along a cliff reduce the lateral extension of the site but preserve the
vertical spatial relationships among the archaeological material con-
tained in the pedo/sedimentological matrix. In contrast, the Espiritu
Santo and Canadén Alfa 1 Sites, also located along cliffs in north-
ern Tierra de Fuego (Argentina), show a reduction in the distribution
of the archaeological material due to falls and topples, which indeed
destroyed the spatial relation of the record contained in the matrix
(Borrazzo, 2010; Borrazzo & Borrero, 2015).

Finally, it is worth mentioning that gravity-driven process can also
contribute to good preservation of the buried archaeological record.
Rockfalls from caves or rockshelters can “seal” archaeological deposits,
such as in the Kal Anar Rockshelter, where Epipaleolithic deposits were
preserved due to a rockfall from the roof (Heydari, 2007). Similar situ-
ations of collapsed blocks have been reported at Sitio do Meio, Piaui,
Brazil (Aimola et al., 2014) and Cueva del Medio, Ultima Esperanza,
Chile (Martin et al., 2015).

In sum, some archaeological cases indicate that the degree of
preservation of the archaeological record buried in slopes, as well as its
spatial properties, need to be examined first. As was mentioned, even
along slopes the soil biomechanical action may contribute to rapid par-
ticle burial (e.g., Canti, 2003), so this is not a guarantee of spatial sta-
bility and preservation once within the soil matrix. Relative substrate
hardness and animal trampling may accelerate sinking processes (e.g.,
Borrero, 2007; Nielsen, 1991; Otaola & Tripaldi, 2016). In contrast, in
environments that lack soil development, more mixing and subaerial
weathering could be expected, depending on the slope angle and biotic
factors. Rockfalls or block collapses may offer good preservation con-
ditions of the deposit underneath, whereas mass movement processes
can even cause a stratigraphic inversion. On the other hand, both rota-
tional and translational slides can affect the extent and spatial integrity
of an archaeological site, although they allow the integrity of the matrix

containing the archaeological record to be preserved.

2.2 | Surface archaeological record

Between the deposition of anthropogenic or natural material and their
burial, there is a varying probability of downslope movement. Rick’s

(1976) model proposed that, in slopes with little vegetation, lack of
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FIGURE 2 \Vertical frequency distribution of the archaeological material of Marazzi 2 Site, Sector 2 (51, S2, S3, S4, and S5 are pits placed at the
footslope). Abscissa axis shows the soil horizon (A-C-Ab-ACb-C1) by depth in centimeters. The unimodal pattern is interpreted as a result of the
soil biomechanical effect [Color figure can be viewed at wileyonlinelibrary.com]

frost action, and overland flows, denser and heavier artifacts were
more likely to move and thus to be found further downslope. How-
ever, the processes involved in sorting artifacts along slopes are vari-
able. Onthe hillslope below Ccurimachay Rockshelter, Peru, Rick found
that an inverse relation between artifact weight and slope angle may
occur when a slope is steeper than 16°-17°, and particles are heav-
ier than 2-8 g. As well, Hétu and Vandeklac (1989) found that compact
and isometric particles reach the footslope more frequently than platy-
shaped elements (also see Van Steijn, Bertran, Francou, Hétu, & Texier,
1995). At slope angles higher than 32-35°, rolling is able to occur. At
lower slope angles, stones remain close to the impact point on the hill-
slope. Other processes act to redistribute the debris downslope (debris
flows, overland flows, solifluction, creeping), resulting in specific spatial
patterns and size distribution. For instance, mass movement generally
leads to poor downslope sorting.

Surface transects conducted at the Céndor 1 Site (Southern Patago-
nia, Argentina; Fig. 1c) recorded the weight and frequency of lithic arti-
facts along with the presence of vegetation, natural traps, and slope
angle (Barberena, 2008). Major lithic abundance was concentrated at
the middle of the hillslope, decreasing downslope, and heavier mate-
rial occurred at the footslope, independent of the angle (4°-16°) and
the presence of natural traps. Despite angles being below the critical
thresholds proposed by Rick (1976), this case fits relatively well with
that model, so there are other critical variables beyond slope angle.
Barberena (2008) drew attention to biotic factors (e.g., animal kicking),
as Bertran et al. (2015) did for periglacial context in Southwest France
(see below). In contrast with Rick’s model, the most abundant mate-

rial was found in the upper and middle hillslope at the Cerro Cabeza
de Ledn Site. Here, the presence of natural traps such as rocks or a
denser vegetated cover were the main reason for the observed distri-
bution, independent of slope angles and clast weights (Favier Dubois,
1998; Martin & Borella, 1999). Microtopographic changes over the hill-
slope may also explain the distribution of the archaeological record,
as demonstrated by Oria et al., (2014) on a <10° slope at Amalia 5
Site (Tierra del Fuego, Argentina), where the record was more concen-
trated in sectors of the hillslope with lower angles (also see Martin,
2006).

An experimental study was carried out at the Cerro Sin Nombre Site
(Fig. 1i), quantifying surface natural clasts weathered from the sand-
stone shelter and distributed down the hillslope at the upper, medium,
and lower levels (Fig. 3). Table | summarizes the slope angles of each
transect, its grass cover percentages, absolute clasts frequencies, size
range distributions, clast orientations with respect to the slope (only
registered for elongated clasts) and some additional data concerning
estimations of relative frequencies of burial gravel and blocks. Alto-
gether, this survey showed that (1) clast frequencies decrease toward
the footslope (namely, there are more clasts near the primary source);
(b) there is no order in the size range distributions with respect to the
slope angle, nor the hillslope level; (c) there is aweak direct relationship
between the abundance of clasts found on the surface and the abun-
dance of buried clasts; and (d) clast orientation is mainly subparallel to
the slope, although it does not seem to be conditioned by slope angle
or grass cover. Even though these data are preliminary, one could state
that since clast movement along this vegetated hillslope (<15°) is low,
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FIGURE 3 Superficial clast quantification at the Cerro Sin Nombre Site. (a) Satellite image of the sandstone outcrop with the location of the four
transects carried out on the hillslope. (b) Detail of the upper, medium, and lower levels of each transect. (c) Example of natural clasts recorded on
the surface. (d) Orientation rose diagrams corresponding to low (0-5°), high (9-15°), and total (0-15°) angle slopes [Color figure can be viewed at

wileyonlinelibrary.com]

one would expect a low horizontal displacement of the archaeological
record, as was suggested by a previous taphonomic study (Ozén, Bor-
rero, Borrazzo, & L’Heureux, 2015). The grass cover, the tabular shape
of the sandstone and its high weathering rate could reduce the capac-
ity for clast movement and increase the likelihood of sinking. Notably,
only 10 archaeological stone artifacts were found on surface, versus
the ~900 recovered in the excavations.

Concerning the role of water, a fining downslope pattern of clasts
has been proposed as a consequence of overland flows (e.g., Bertran
et al., 2012; Fanning & Holdaway, 2001; Schick, 1986), although in con-
texts with rare vegetation. In western New South Wales (Australia),
it was found that even at low gradients (<5°), artifact size and slope
angle were significantly related, but in a different way to Rick’s model
(Fanning & Holdaway, 2001). The authors noted that smaller particles
transported by overland flows moved farther downstream than larger
particles, and this effect increased with slope angle (see also Nash &
Petraglia, 1987; Schick, 1986; Wainwright & Thornes, 1991).

In another experiment, particle size distributions of different Pale-
olithic experimental debitage were analyzed by Lenoble (2005) and
Bertran et al. (2012), determining that a strong sorting would not be
expected in anthropogenic discard. On the contrary, overland flow
rapidly causes a weak longitudinal grain size gradient, from coarser to
finer fractions downslope, with variable thresholds depending on the
flow speed, particle size, shape, microtopography, soil saturation, and
rain intensity (Fanning & Holdaway, 2001; Lenoble, 2005; Middleton &
Southard, 1984; Schick, 1986; Texier et al., 1998). Similarly, in the case
of the Cerro Sin Nombre Site described above, histograms of the size
range of archaeological artifacts were made to analyze natural biases.
Figure 4 presents the Bertran et al. (2012) experimental knapping size
range histogram compared with the Cerro Sin Nombre Site and the
particle size distribution of lithic assemblages affected by overland

flows (Lenoble, 2005). This comparison shows that in the case of Cerro
Sin Nombre some hillwash processes could have disturbed the anthro-
pogenic pattern by affecting the smaller size range of the expected
knapping pattern. Of course, technological or other human behavior
could have also affected the distribution.

Bertran et al. (2015) conducted a 5-year study in periglacial and
alpine contexts (French Pyrenees) in order to analyze taphonomic
issues concerning bones and flint artifacts within a cave and its imme-
diate exterior. They carefully measured climatic variables and placed
experimental material in several subareas within each context, includ-
ing slopes between 15° and 34°. Lithic displacement outside the cave,
down a 22° slope, was between 1 and 3.5 cm/yr, while bones showed
a greater displacement of 15.5 cm/yr. Fresh bones were displaced
even further, at a rate of over 25 cm/yr, as they were also affected by
scavenging (Bertran et al., 2015). Additionally, the authors found that
experimental artifacts were also affected by creeping (from 2.1to 13.6
cm/yr) due to the impact of debris falling as a result of rockwall weath-
ering at the entrance space of the cave. Interestingly, they observed a
relationship between the weight of fallen debris and the average arti-
fact movement. Furthermore, Lenoble et al. (2008), by setting an exper-
imental knapping station on a solifluction lobe, demonstrated a downs-
lope translation of the gravity center, resulting in an artifact density
decrease.

Finally, shelters and vegetation are strong animal attractors so that
trampling, kicking, and fractures may be expected on slopes associ-
ated with them (see also Borrero, 1990, 2001, 2003, 2007; Baliran,
2014; Bertran et al., 2015; Fiorillo, 1988; Gifford-Gonzalez, Dam-
rosch, Damrosch, Pryor, & Thunen, 1985; Lenoble & Bertran, 2004;
Martin, 2006; Nielsen, 1991; Olsen & Shipman, 1988; Oria et al., 2014,
Oria, Salemme, & Vazquez, 2015; Otaola, 2014; Otaola & Tripaldi,
2016). Rapid and significant displacement of bone fragments as a



o WiLEY-L
Bertran et al. 2012 CSN Site
%
i ‘ 1 1 max. || —1
1l IR -
: =ooEs0 |—
min. %-ggg =]
SEC
60 8355 |[— —
g
30
40
20
T 10
g b i i N | B g
-5 5-10  10-20 20-315 315-50 =50 S 5-10 1020 2030 30 »50
dimensional class (mm) Size range (mm)
astomm G & Depth (em).
(w>14mm) 1 o¢ experimental data m-20
L =30 ||
0.2 rilwash material ma0 ||
ultimate stages of
residualisation 40 m-50
(3 \ 0.4 m-60 | |
\ | m-70 ||
-—
m-80
FMC u
FMC o
downslope W-100 | |
redeposited 08
material
0 doas’ 1 0
F: & 0.8 06 0.4 02 oM <5 <10 <20 <30 30-50 50
4mm>d>2mm 10mm >d >4 mm i
‘5.7 mm > w > 2.8 mm) _lag deposits, 14 mm > w > 57 mm) Seerange{mm)
residual concentrations
(first stages of
Lenoble 2005 residua'\igatiun)
c FMC d
FIGURE 4 (a)Size-range histogram of experimental knapping using different techniques (Bertran et al., 2012). (b) Size-range histograms of buried

lithic assemblages of the Cerro Sin Nombre Site, with S, excavation units. (c) Diagram presenting some lithic assemblages affected by natural pro-
cess on slopes such as water flow, hillwash, among others (modified from Lenoble, 2005). (d) Size-range histograms of the Unit S8 (Cerro Sin Nom-
bre) considering the frequencies by depth [Color figure can be viewed at wileyonlinelibrary.com]

consequence of scavenging was also recorded in longitudinal studies
carried out in Mendoza, Argentina (Otaola & Tripaldi, 2016), and in the
cold semiarid steppe of Tierra del Fuego (Martin, 2006; Massone et al.,
1993; Fig. 1d). Also in the region of Tierra del Fuego, Borrero (2007)
observed also a significant burial rate within a year, due to animal tram-
pling in muddy substrates. Biotic factors are probably more intense
in vegetated areas, though they are also present in nonvegetated

slopes.

3 | DISCUSSION: PROCESSES,
EXPECTATIONS AND METHODOLOGIES

Geological, climatic, and biological factors imprint any hillslope deposit
comprising both natural and cultural materials. Their complex inter-
action does not allow the differentiation of clear boundaries between
these factors when analyzing the record. Nonetheless, all these fac-
tors comprised processes that impact the archaeological record, mod-
ifying its spatial properties and integrity. By critically integrating the
information from the study cases discussed above, Table Il summa-
rizes the interplay among these processes, including their characteris-
tics, controlling variables, impact on the archaeological record, archae-
ological expectation, and suitable methodological perspectives for
detecting and understanding the type and degree of postdepositional

modifications.

Despite the fact that some processes are assumed to act all
along the hillslope, they are never absolutely continuous, so one
would expect a variety of taphonomic stories, sedimentation rates,
temporal resolution, and pedogenetic developments within a single
archaeological locality, over areas of tens to a couple hundred meters
in diameter (Bertran et al., 2015; Borrazzo, 2010; Favier Dubois, 1998;
Martin & Borella, 1999; Ozan et al., 2015; Straus, Akoshima, Petraglia,
& Séronie-Vivien, 1988). Thus, an extensive sampling strategy based on
ageomorphicinspection of the area will definitely yield a more realistic
picture.

Of course, several of the processes presented separately in
Table Il may occur together, and some may even overlap and obliter-
ate the signature of previous ones (e.g., bioturbation alters eolian bed-
dings). Moreover, exceptional and catastrophic phenomena can rapidly
change the situation, for example, the flooding caused by beaver dams
in Tierra del Fuego (Borrero, 2007). Hence, the most frequently occur-
ring processes are not necessarily those most represented in the
sedimentological, micromorphological, or geochemical records. Once
again, the broader the sampling area, the more likely one is to identify
the range and diversity of processes that modify the properties of the
archaeological record.

Most of the study cases reviewed are based on actualistic research,
so there are ample data from which to establish some archaeological
expectations of the influence of each process. These long-term expec-
tations are theoretical and assume that the archaeological record was

deposited at the upper end of any hillslope. As can be observed in
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Table Il, most of the expectations concern the existence of palimpsests
and higher frequencies of the archaeological material at the foot-
slope. Sedimentological, micromorphological, and taphonomic eval-
uation may reduce equifinality. In the next paragraphs, the main
methodological approaches to recording processes and their impact
are detailed.

3.1 | The archaeological record: Taphonomy

A careful examination of the macro- and microscopic archaeological
record constitutes a fundamental step to alert one to preservational
biases (Bertran et al., 2012; Borrazzo, 2010; Paddayya & Petraglia,
1993; Fig. 5a and b). In a sloping site, low artifact diversity, high sort-
ing, a strong axis orientation, high and/or different weathering stages
recorded at the same depth (e.g. Fig. 5a), and/or unimodal vertical dis-
tributions are some of the properties that should call attention to post-
depositional modifications. Additionally, comparison (frequency, size,
spatial distribution, orientation, degree of weathering, etc.) between
natural gravel and artifacts offers insights into depositional agents
and, therefore, reworking processes of the archaeological record (e.g.,
Bertran et al., 2012; Borrazzo, 2009; Ozén, et al. 2015; cf. Lahaye et al.,
2015).

The distinction between surface and buried archaeological records
has to be treated with caution. Here, taphonomy is one construc-
tive way to discuss the relative subaerial permanence of any par-
ticle. In other words, as all of the buried record was on the sur-
face at some time in the past, only the study of specific properties
can tell us how long it was on the surface, and then, how appro-
priate is the distinction between surface and buried assemblages
(Borrazzo, 2010, 2013; Borrazzo & Borrero, 2015). Even though lithic
and bone assemblages must be considered separately, some relevant
indicators of subaerial/burial permanence are weathering degrees,
root marks, carnivore/ rodent marks, cracks, presence of lichens, abra-
sion (degree of roundness), exfoliation, chemical precipitations (car-
bonates, iron and manganese oxides, etc.), varnishes, horizontal and
vertical dispersion of the assemblage, disarticulation, and degree of
fragmentation (e.g., Behrensmeyer, 1978; Binford, 1981; Blumens-
chine, 1989; Borrazzo, 2006, 2009, 2010; Borrero, 1990; Gifford,
1981; Hiscock, 1985; Lyman, 1994). A considerable number of inves-
tigations have also been published concerning microtaphonomical
issues, such as recrystallization processes, mineral neoformations, dis-
solution rates, histological preservation, microfissures, among other
features (e.g., Berna, Matthews, & Stephen, 2004; Estévez, Villa-
gran, Balbo, & Hardy, 2014; Hedges, 2002; Hedges & Milliard, 1995;
Karkanas, 2010; Stiner, Kuhn, Weiner, & Bar-Yosef, 1995; Villagran
etal,2011).

3.2 | Geomorphology and sedimentology

Along with taphonomy, geomorphology and sedimentology also
contribute to understanding the dynamics of deposition and ero-
sion. A detailed geomorphological description carried out at the
appropriate spatial scale, that is, consistent with the extent of the

archaeological site, is recommended prior to sampling and subsequent

sedimentological and micromorphological analysis. Landforms provide
context for individual deposits.

Among sedimentological approaches, granulometric studies are
central to determining the transport capacity (sorting) of natural
agents, as well as whether particle size distributions within the
archaeological record are biased by natural processes. In a primary
archaeological context, one should not expect agreement between the
particle size histograms of the archaeological artifacts and the sed-
imentary matrix that contains them. However, in some cases of sig-
nificant transport, the size composition of an archaeological assem-
blage can be different from that of the host sediment. To monitor this
possibility, the sampling strategy should cover a broader area, beyond
the archaeological site “boundaries,” and take into account the diverse
associated landforms. To analyze artifact transportation, special atten-
tion should be given to the record itself (e.g., rounded edges, abrasion,
etc.). If thin sections are available, type of minerals, particle shape, and
orientation can also be described, offering useful information about
erosive unconformities, sediment sources, and syn/postdepositional
processes (Fig. 5¢ and d). The study of clast orientation with respect
to the slope constitutes a complementary tool toward the understand-
ing of single or collective slope processes. Although clast orienta-
tion is not unequivocal—for example, isotropic orientations of vege-
tated slopes may obliterate evidences of other processes—abundant
research points out that processes such as creeping, solifluction, mud-
slides, debris flows, and dry grain flows leave slope-parallel preferred
orientations, and rockfall and runoff movements leave planar to plu-
rimodal orientations (Bertran & Texier, 1995; Bertran et al., 1997;
Bertran et al., 2015; Lenoble & Bertran, 2004; Texier et al., 1998).

3.3 | Soil studies

Both surface and buried archaeological material placed on soils need to
be interpreted in the light of pedogenetic processes (Holliday, Ferring,
& Goldberg, 1993). Macro- and microscopic observations of profiles
give information about biochemical processes (e.g., bioactivity inten-
sity, pH, REDOX, etc.) that could bias the integrity of the archaeological
record, whereas the degree of soil development also offers a relative
time frame for the human occupation palimpsests (Bailey, 2007). The
more developed the soil, the longer the time span of upper horizons, so
the more likely there is to be mixture of the temporal record (see above
and Fig. 2).

As an example, buried archaeological material within an A horizon
(e.g., up to ~30- to 40-cm deep) was probably deposited on a surface
and reached its current position by trampling and/or biomechanical
action. As the grass cover (the top of a soil) is time-transgressive and
contributes to geomorphological stability, the archaeological material
contained in A-AC horizons is likely a palimpsest. Moreover, due to the
fact that in hillslopes the particle kinetic energy is higher, palimpsests
found in upper soil horizons are probably not only “cumulative,” but
also “spatial” (sensu Bailey, 2007). Taphonomy at different scales of
resolution and “taxon-dates” are the best way to confirm the degree
of chronological and “behavioral” mixture (Binford, 1981; Grayson,
1987).
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FIGURE 5

(a) Microphotographs show two bone fragments probably deposited at different times as shown by their different weathering stages

(Cerro Sin Nombre Site, plane polarized light, S4 18-30 cm). (b) Calcitic ash embedded in the groundmass and interpreted as a nonreworked deposit
(Marazzi 2 Site: cross-polarized light; P1 63-75 cm). (c, d) Arrows point a “ring” (coating) of highly humified organic matter around minerals, rocks,
and bone fragments interpreted as a consequence of particle rolling promoted by gravity (Cueva de la Vieja Site, plane polarized light, 32-44 cm)

[Color figure can be viewed at wileyonlinelibrary.com]

On the other hand, archaeological material contained within a C
horizon could have been deposited (1) before pedogenesis (as C hori-
zons are the parent material of soils), or be a consequence of (2) vertical
migration due to burrowing, cryo/argilloturbation, rooting, etc. Other
scenarios should be evaluated by soil micromorphology in order to bet-
ter understand soil processes and macro- and microtaphonomy (see
above). Finally, the archaeological record found in B horizons was likely
deposited during the soil-forming processes of “aggradational soils”
(Birkeland, 1999) or reached that depth by vertical migration, such
as with C horizons. Thus, taking these mechanisms into consideration
and if the dates of pedogenetic processes are known, one can estab-
lish a relative temporal framework for the archaeological record con-
tained within a soil profile (Holliday et al., 1993; Ozan & Tchilinguirian,
2015).

Analysis of magnetic properties within soils and parent material
can also contribute to discussions concerning postdepositional slope
effects (Dalan & Banerjee, 1998). For instance, at the Marazzi 2 Site
(Tierra del Fuego, Argentina), a buried archaeological record near a
moraine slope was thought to be reworked by gravity-driven pro-
cesses. However, a detailed stratigraphic study of magnetic properties
at the foot of the moraine showed an increase in soil magnetic suscep-
tibility caused by combustion (Ozan & Orgeira, 2015). In areas with a
lack of natural fires, if sediments were thermally modified by human
populations (therefore showing a high magnetic susceptibility signal),
then the archaeological material within the matrix under investigation

must be a primary deposit.

4 | CONCLUSION

Although gravity-driven processes occur on all slopes, other processes
that are not gravity-dependent must also be taken into account to
arrive at an accurate and holistic interpretation of the archaeological
record in these sedimentary contexts. A complex interaction between
climatic, geologic, and biological processes takes place along hillslopes
making the establishment of sharp slope classification criteria diffi-
cult. A priori, the archaeological record must be considered as modi-
fied by environmental factors and research designs built toward under-
standing those modifications. Each process affects the archaeological
record in a singular way, though the existence of palimpsests seems
to be a common postdepositional result of all the processes that take
place on slopes. Surveying should extend beyond the apparent lim-
its of the archaeological site. A detailed geomorphological descrip-
tion together with sedimentological studies, macro/microscopic soil
evaluations, and a taphonomic treatment of the archaeological
record are definitely the appropriate complementary approaches
for a more nuanced archaeological interpretation at any spatial
scale.
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