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A Characterization of Integral ISS
for Switched and Time-varying Systems

H. Haimovich and J.L. Mancilla-Aguilar

Abstract—Most of the existing characterizations of the integral input-
to-state stability (iISS) property are not valid for time-varying or switched
systems in cases where converse Lyapunov theorems for stability are not
available. This note provides a characterization that is valid for switched
and time-varying systems, and shows that natural extensions of some of
the existing characterizations result in only sufficient but not necessary
conditions. The results provided also pinpoint suitable iISS gains and
relate these to supply functions and bounds on the function defining the
system dynamics.

Index Terms—Switched systems, time-varying systems, nonlinear sys-
tems, input-to-state stability, converse theorems, dissipativity, persistence
of excitation.

I. INTRODUCTION

Input-to-state stability (ISS) [1] and integral-ISS (iISS) [2] are
arguably the most important and useful state-space based nonlinear
notions of stability for systems with inputs. The ISS property gives
a state bound that is the sum of a decaying-to-zero term whose
amplitude depends only on the initial state, and a term depending
(nonlinearly) only on the input bound. The difference in the iISS
property lies on the input-dependent term, which is a (nonlinear)
function of an input energy bound, instead of an input bound.

For time-invariant systems, several characterizations of both the
ISS and iISS properties exist (see [3], [4], [5] for ISS and [2], [6], [7]
for iISS). Among the different characterizations of these properties,
perhaps the most practical ones are those based on ISS- [3] or iISS-
[6] Lyapunov functions. Indeed, since each of these properties is
known to be equivalent to the existence of the respective type of
Lyapunov function, there is no loss of generality in focusing on the
obtention of such functions. Results that ensure that an ISS or iISS
system admits the corresponding type of Lyapunov function heavily
rely on converse Lyapunov theorems for stability [8], since both ISS
and iISS imply global asymptotic stability.

As for time-varying systems, some Lyapunov characterizations of
ISS exist in both uniform [9] and non-uniform flavors [10], [11].
All of these works assume that the function f defining the system
dynamics, ẋ = f(t, x, u), is (at least) continuous. To the best of
our knowledge, no useful characterizations of the iISS property nor
iISS-Lyapunov converse theorems exist in this case.

This paper deals with time-varying systems, especially with
switched systems [12], and focuses on iISS that is uniform over
some given set of switching signals —the set of admissible switching
signals— (see Section II for the precise definition). In this setting, the
situation can be fairly different depending on the properties of this set.
For example, when the set of admissible switching signals coincides
with the set of all switching signals, i.e. under arbitrary switching, and
the subsystems are time-invariant then the Lyapunov characterizations
available for ISS and iISS carry over to the switched system with little
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change [13], [14]. However, to the best of the authors’ knowledge,
all of the existing converse theorems employed to derive Lyapunov
characterizations of the ISS or iISS properties break down if the set
of admissible switching signals is not closed under concatenations
(i.e. when piecing together two admissible switching signals does
not necessarily result in another admissible switching signal). As a
consequence, when the set of admissible switching signals is not
closed under concatenations, such Lyapunov characterizations cannot
be derived by following known techniques and, as we will illustrate
along this paper, it is likely that no such Lyapunov characterization
is possible. Sets of switching signals not closed under concatenations
have not only theoretical but also practical interest (e.g. in the analysis
of stability of switching converters [15] and supervisory control [12]).

In this context, the main contribution of the current paper is to
provide a characterization of iISS for switched systems with any
set of admissible switching signals. More specifically, we will show
that a switched system is iISS uniformly with respect to a given set
of switching signals if and only if the system satisfies a uniformly
bounded energy bounded state [7] property and a 0-input global
asymptotic stability property, both uniformly with respect to the given
set of switching signals. This characterization of iISS was originally
developed in [7] for time-invariant systems. The corresponding proof
in [7] is based on a converse Lyapunov argument which is not valid in
the setting considered here. Hence, the proof in the current paper is,
to the best of our knowledge, completely novel, even for the case of
non-switched time-varying systems. A second contribution is to show
that characterizations of iISS based on dissipation inequalities and
appropriate detectability conditions [6] (see also [16], [17]) become
only sufficient but not necessary in the setting considered. In the
case of time-varying and switched systems, a natural extension of
the weak zero-detectability property in [6] is given by the output-
persistent excitation property [18], [19] (see Section IV). A third
contribution is that our results also pinpoint iISS gains, and relate
these to supply functions and bounds on the function defining the
system dynamics, thus extending also some results of [17] regarding
the bounded-energy-input/convergent-state property.

The results in the current paper are novel even for time-varying
non-switched systems, and apply to switched systems of most general
forms, having time-varying (not necessarily continuous with respect
to time) and nonlinear subsystems, and imposing mild conditions on
the function defining the system dynamics. In addition, our results
can be interpreted as conditions for iISS of a given arbitrary family
of time-varying systems, where the iISS estimate is uniform over all
the systems in the family. In this regard, our results are not limited
to the case where the family of time-varying systems arises from the
consideration of a switched system (see Remark 2 in Section II-B).
However, we chose to keep the formulation in terms of switched
systems due to its natural application to the latter type of systems.

The remainder of this note proceeds as follows. This section
ends with a brief description of the notation employed. Section II
describes the system considered, states the standing assumptions, and
precisely defines the properties employed. Our main results are given
in Sections III and IV. Section III provides a characterization of iISS
and Section IV proves that conditions based on dissipativity are only
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sufficient but not necessary. Examples are provided in Section V and
conclusions drawn in Section VI.

Notation. N, R, R>0 and R≥0 denote the natural numbers, reals,
positive reals and nonnegative reals, respectively. |x| denotes the
Euclidean norm of x ∈ Rp. Vector or matrix transposition is denoted
by ′. For any m ∈ N, Um denotes the set of all the Lebesgue mea-
surable and locally essentially bounded functions u : R≥0 → Rm.
We write α ∈ K if α : R≥0 → R≥0 is continuous, strictly increasing
and α(0) = 0, and α ∈ K∞ if, in addition, α is unbounded. We
write β ∈ KL if β : R≥0 × R≥0 → R≥0, β(·, t) ∈ K∞ for any
t ≥ 0 and, for any fixed r ≥ 0, β(r, t) monotonically decreases to
zero as t→∞. By ‘index set’, we mean an arbitrary nonempty set,
not necessarily finite nor countable.

II. PRELIMINARIES

A. Time-varying and switched systems with inputs

Consider a time-varying switched system with inputs u, of the
form

ẋ = f(t, x, u, σ) (1)

where t ∈ R≥0, x(t) ∈ Rn, u ∈ Um and σ : R≥0 → Γ, with Γ an
index set, is a switching signal, i.e. it is piecewise constant (having a
finite number of discontinuities in every bounded interval) and right
continuous. We assume that f : R≥0×Rn×Rm×Γ→ Rn satisfies
f(t, 0, 0, i) = 0 for all t ≥ 0 and all i ∈ Γ, and that f(t, ξ, µ, i) is
Lebesgue measurable in t for fixed (ξ, µ, i) and continuous in (ξ, µ)
for fixed t and i. The following is our main technical assumption.

Assumption 1: f in (1) satisfies

C1) There exist γ ∈ K and a nondecreasing function N : R≥0 →
R>0 such that |f(t, ξ, µ, i)| ≤ N(|ξ|)(1 +γ(|µ|)) for all t ≥ 0,
all ξ ∈ Rn, all µ ∈ Rm and all i ∈ Γ.

C2) For every r > 0 and ε > 0 there exists δ > 0 such that for all
t ≥ 0 and i ∈ Γ, |f(t, ξ, µ, i)− f(t, ξ, 0, i)| < ε if |ξ| ≤ r and
|µ| ≤ δ.

C3) f(t, ξ, 0, i) is locally Lipschitz in ξ, uniformly in t and i. ◦
Remark 1: Existing characterizations of the integral ISS property

for systems of the form ẋ = f(x, u) (cf. [2], [6], [7]) usually assume
that f(x, u) is locally Lipschitz. We emphasize that we do not require
that f in (1) satisfy any additional Lipschitzity requirement other than
that in C3) of Assumption 1. As a consequence, solutions to (1) are
not necessarily unique. Also, since we focus on iISS that is uniform
with respect to initial time, it is reasonable that the conditions on f
in Assumption 1 should be uniform with respect to time. ◦
Assumption 1 is indeed guaranteed to hold, for example, when f
in (1) satisfies a local uniform Lipschitz condition (see Lemma 1
below), and also for control-affine systems where f(t, ξ, µ, i) =
f0(t, ξ, i) + g(t, ξ, i)µ with f0(t, ξ, i) Lebesgue measurable in t,
locally Lipschitz in ξ uniformly in t and i, and f0(t, 0, i) ≡ 0, and
g(t, ξ, i) is Lebesgue measurable in t, continuous in ξ, and for every
r > 0 there exists N ≥ 0 such that for all t ≥ 0 and i ∈ Γ,
|g(t, ξ, i)| ≤ N if |ξ| ≤ r. The proof of the following result is given
in the Appendix.

Lemma 1: If f(t, ξ, µ, i) is locally Lipschitz in (ξ, µ) uniformly
in t and i, and f(t, 0, 0, i) = 0 for all t ≥ 0 and all i ∈ Γ, then
Assumption 1 holds.

We will employ S to denote a set of (admissible) switching signals.
Given t0 ≥ 0, u ∈ Um and σ ∈ S, we denote by T (t0, u, σ) the set
of maximally defined solutions x of (1) corresponding to u and σ such
that t0 ∈ domx, where domx denotes the interval of definition of x.
We say that (1) is forward complete with respect to (w.r.t.) S if for
all t0 ≥ 0, u ∈ Um, σ ∈ S and x ∈ T (t0, u, σ), [t0,∞) ⊂ dom x.

B. Uniform integral ISS

For the switched system (1) and the set S of switching signals,
we will consider an integral input-to-state stability property that
is uniform over switching signals in S. This property is thus an
extension of the one introduced in [2].

Definition 1: System (1) is said to be iISS w.r.t. S if it is forward
complete w.r.t. S and there exist β ∈ KL, and ρ and χ ∈ K (the latter
will be referred to as an iISS gain) such that the estimate (2) holds
for all t ≥ t0 ≥ 0, all u ∈ Um, all σ ∈ S and all x ∈ T (t0, u, σ).

|x(t)| ≤ β(|x(t0)|, t− t0) + ρ

(∫ t

t0

χ(|u(τ)|)dτ
)
. (2)

The problem considered along this manuscript is to provide a
characterization of the iISS w.r.t. S property for the switched system
(1) and a given set of admissible switching signals S.

Remark 2: We may equivalently formulate the problem considered
as follows. For each σ ∈ S define fσ : R≥0 × Rn × Rm → Rn via
fσ(t, ξ, µ) := f(t, ξ, µ, σ(t)), with f in (1). Consider the family
F of time-varying systems given by F := {fσ : σ ∈ S}. Then, we
aim at characterizing iISS so that the estimate (2) holds uniformly for
every system in the family F . Since we do not impose any additional
restrictions on the set S, we may also consider arbitrary families
F of time-varying systems, not only those arising from a switched
system, i.e. we may consider S to be an arbitrary index set and
rewrite the above assumptions in terms of fσ instead of f , so that
the assumptions on fσ hold uniformly over every possible σ ∈ S.
For example, instead of assuming C1) we would require C1’) there
exist γ ∈ K and N nondecreasing so that |fσ(t, ξ, µ)| ≤ N(|ξ|)(1+
γ(|µ|)) for all t ≥ 0, ξ ∈ Rn, µ ∈ Rm and σ ∈ S. We emphasize
that C1’) is even weaker than C1) in the case of switched systems,
but keep our assumptions as above for the sake of simplicity. ◦
Besides the usefulness of the iISS property for describing the qual-
itative behaviour of the solutions of (1), the computation of an iISS
gain is pertinent to the stability analysis of interconnected systems
which contain iISS subsystems, and to the robustness analysis of
closed-loop systems (see [20], [21]). Given χ ∈ K and u ∈ Um, let
‖u‖χ :=

∫∞
0
χ(|u(τ)|)dτ and Uχm := {u ∈ Um : ‖u‖χ < ∞}.

However, note that ‖ · ‖χ is not necessarily a norm in Uχm.
Remark 3: Due to causality and the Markov property, an equiva-

lent definition of iISS w.r.t. S is obtained if
∫ t
t0
χ(|u(τ)|)dτ in (2)

is replaced by ‖u‖χ. ◦
An equivalent definition of iISS is provided by Lemma 2 below.

This lemma can be proved by techniques analogous to those in the
proof of Lemma 2.7 of [3], and considering Remark 3.

Lemma 2: System (1) is iISS w.r.t. S with iISS gain χ if and only
if it is forward complete w.r.t. S and the following conditions hold
with ‖u‖ = ‖u‖χ:

i) For every T > 0, r > 0 and s > 0 there exists C > 0 such
that every x ∈ T (t0, u, σ), with t0 ≥ 0, u ∈ Um and σ ∈ S
such that ‖u‖ ≤ s and |x(t0)| ≤ r, satisfies |x(t)| ≤ C for all
t ∈ [t0, t0 + T ].

ii) For each ε > 0 there exists δ > 0 such that every x ∈
T (t0, u, σ), with t0 ≥ 0, u ∈ Um and σ ∈ S such that ‖u‖ ≤ δ
and |x(t0)| ≤ δ, satisfies |x(t)| ≤ ε for all t ≥ t0.

iii) There exists ν ∈ K such that, for any r ≥ ε > 0, there is a
T > 0 so that for every x ∈ T (t0, u, σ), with t0 ≥ 0, u ∈ Um
and σ ∈ S such that |x(t0)| ≤ r, then

|x(t)| ≤ ε+ ν(‖u‖) ∀t ≥ t0 + T.

C. Bounded-energy-input/convergent-state property

We will also consider the following convergence property, provid-
ing a natural extension of the one considered in [17] for time-invariant
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systems.
Definition 2: We say that (1) has the bounded-energy-input

convergent-state property (BEICS) w.r.t. ‖·‖χ and S (χ-BEICS w.r.t.
S, for short) if for every x ∈ T (t0, u, σ) with t0 ≥ 0, u ∈ Uχm and
σ ∈ S, x(t)→ 0 as t→∞.
The BEICS property is useful for establishing asymptotic stability of
cascade systems [20]. The following fact can be proved in the same
way as Proposition 6 in [2].

Proposition 1: Suppose that (1) is iISS w.r.t. S with iISS gain χ.
Then (1) is χ-BEICS w.r.t. S.

D. The zero-input system

In the sequel, we will refer to the 0-input system corresponding to
(1). We will employ 0 to denote the input u ∈ Um such that u(t) = 0
for all t ≥ 0. The 0-input system is thus the system defined by
ẋ = f(t, x, 0, σ), and according to the definitions above, T (t0,0, σ)
is the set of its maximally defined solutions corresponding to the
switching signal σ such that t0 ∈ dom x. The following stability
property of the 0-input system will be required in the sequel.

Definition 3: System (1) is said to be zero-input globally uni-
formly asymptotically stable (0-GUAS) w.r.t. S if there exists β ∈
KL such that every x ∈ T (t0,0, σ), with t0 ≥ 0 and σ ∈ S, verifies

|x(t)| ≤ β(|x(t0)|, t− t0) ∀t ≥ t0 ≥ 0. (3)

From Definitions 1 and 3, it is clear that iISS w.r.t. S implies 0-GUAS
w.r.t. S.

III. CHARACTERIZATION OF IISS

In this section we provide a characterization of the iISS w.r.t.
S property. This characterization essentially is an extension of
the equivalence 1 ⇐⇒ 2 in Theorem 1 of [7]. Our approach is
substantially different, however, because existing converse Lyapunov
theorems cannot be successfully applied in the setting considered. Our
results also have the advantage of pinpointing suitable iISS gains. We
thus introduce the following definition, which is a natural extension
of the corresponding one in [7].

Definition 4: System (1) is uniformly bounded energy bounded
state (UBEBS) w.r.t S, if for some functions α1, α2, α ∈ K (the
latter will be referred to as an UBEBS gain), and some c ≥ 0, the
estimate (4) holds for every x ∈ T (t0, u, σ) with t0 ≥ 0, u ∈ Um
and σ ∈ S.

|x(t)| ≤ α1(|x(t0)|) + α2

(∫ t

t0

α(|u(s)|) ds
)

+ c, ∀t ≥ t0. (4)

The following is the main result of this section.
Theorem 1: Let Assumption 1 hold and let γ be as in C1) of that

assumption. Then,
a) If system (1) is iISS w.r.t. S with iISS gain χ, then (1) is 0-GUAS

and UBEBS, both w.r.t. S, with UBEBS gain χ.
b) If system (1) is 0-GUAS and UBEBS, both w.r.t. S, with UBEBS

gain α then (1) is iISS w.r.t. S with iISS gain χ = max{α, γ}
and has the χ-BEICS w.r.t. S property.

Theorem 1 contains a characterization of the iISS w.r.t. S property,
namely that 0-GUAS + UBEBS⇐⇒ iISS (all w.r.t. S). The statement
of Theorem 1 is split into parts a) and b) in order to keep track
of the iISS gain. The proof of a) follows straightforwardly from
Definitions 1, 3 and 4. For establishing b) we require Lemmas 3
and 4 below, whose proofs are given in the Appendix.

Lemma 3: Let Assumption 1 hold. Suppose that (1) is 0-GUAS
w.r.t. S and let β ∈ KL characterize the 0-GUAS property, so that
(3) is satisfied for the 0-input system. Let χ ∈ K∞ be such that
χ(r) ≥ γ(r) for all r ≥ 0, with γ as in C1) in Assumption 1. Then,

for every r > 0 and every η > 0 there exist L = L(r) > 0 and
κ = κ(r, η) such that the following holds: if x ∈ T (t0, u, σ), with
t0 ≥ 0, u ∈ Um and σ ∈ S, and |x(t)| ≤ r for all t ≥ t0, then

|x(t)| ≤ β(|x(t0)|, t− t0)+[
η(t− t0) + κ

∫ t

t0

χ(|u(τ)|) dτ
]
eL(t−t0) ∀t ≥ t0. (5)

Loosely speaking, Lemma 3 gives an estimate of how big the
magnitude of the state can result depending on time and input energy,
the latter in relation to the gain χ ∈ K∞, where the relative weights of
the time- and energy-dependent terms can be modified. The estimate
(5) is useful only for small values of t− t0, because |x(t)| ≤ r for
all t ≥ t0 is already assumed.

Lemma 4 below shows that for a 0-GUAS system, UBEBS in
Definition 4 could be equivalently defined setting c = 0 in (4). The
proof of this fact differs from the corresponding proof in Lemma 2.1
of [7] because no existing converse Lyapunov theorem may be
invoked in the current setting.

Lemma 4: Consider system (1) and a set S of switching signals.
Let Assumption 1 hold, and let γ be as in C1) of that assumption.
If (1) is 0-GUAS and UBEBS, both w.r.t. S, with UBEBS gain α,
then there exist α̃1, α̃2 ∈ K for which the estimate (6) holds with
χ = max{α, γ} for every x ∈ T (t0, u, σ) with t0 ≥ 0, u ∈ Um and
σ ∈ S.

|x(t)| ≤ α̃1(|x(t0)|) + α̃2

(∫ t

t0

χ(|u(s)|) ds
)
∀t ≥ t0. (6)

Proof Theorem 1b): Let χ = max{α, γ} and let ‖u‖ = ‖u‖χ.
Let α̃1, α̃2 be as in Lemma 4. We will establish iISS with iISS gain
χ w.r.t. S by following the items of Lemma 2.

i) Let T > 0, r > 0 and s > 0. Let x ∈ T (t0, u, σ) with t0 ≥ 0,
u ∈ Um with ‖u‖ ≤ s and σ ∈ S, be such that |x(t0)| ≤ r. From
(6), it follows that |x(t)| ≤ α̃1(r) + α̃2(s) =: C for all t ≥ t0
because being bounded, x cannot cease to exist. This establishes the
forward completeness of (1) w.r.t. S and item i) of Lemma 2.

ii) Let ε > 0. Let δ > 0 be such that α̃1(δ) + α̃2(δ) < ε. Then, if
x ∈ T (t0, u, σ) with t0 ≥ 0, u ∈ Um with ‖u‖ ≤ δ and σ ∈ S, and
|x(t0)| ≤ δ, it follows, by using (6), that |x(t)| ≤ α̃1(δ)+α̃2(δ) < ε
for all t ≥ t0. This establishes item ii) of Lemma 2.

iii) Let ν ∈ K∞ be defined via ν(t) = 2α̃2(t). Let r ≥ ε > 0.
Let x ∈ T (t0, u, σ) with t0 ≥ 0, u ∈ Um and σ ∈ S, be such that
|x(t0)| ≤ r. Let φ ∈ K∞ be defined by φ(·) = α̃−1

2 ◦ α̃1(·). We
distinguish two cases:
(a) ‖u‖ ≥ φ(r),
(b) ‖u‖ < φ(r).
In case (a), from (6) we have |x(t)| ≤ α̃1(r) + α̃2(‖u‖) ≤
α̃1 ◦φ

−1(‖u‖) + α̃2(‖u‖) ≤ 2α̃2(‖u‖) = ν(‖u‖) for all t ≥ t0.
Hence |x(t)| ≤ ε+ ν(‖u‖) for all t ≥ t0.

Next, consider case (b). From (6), we have |x(t)| ≤ α̃1(r) +
α̃2(φ(r)) := r̃ for all t ≥ t0. Let β ∈ KL characterize the 0-GUAS
w.r.t. S property and let L = L(r̃) > 0 be given by Lemma 3.
Let ε̃ = α̃−1

1 (ε) and pick T̃ > 0 such that β(r̃, T̃ ) < ε̃/2. Define
η = ε̃

4T̃ eLT̃
. Let κ = κ(r̃, η) > 0 be given by Lemma 3. Pick δ > 0

such that κδeLT̃ < ε̃/4. Define N :=
⌈
φ(r)
δ

⌉
and T := NT̃ , where

dse denotes the least integer not less than s ∈ R.
For i = 0 to N , let ti = t0 + iT̃ . Consider the intervals

Ii = [ti−1, ti], with i = 1, . . . , N . From the definition of N and
the fact that ‖u‖ < φ(r), there exists j ≤ N − 1 for which∫ tj+1

tj
χ(|u(s)|) ds < δ. Since x ∈ T (tj , u, σ) and |x(t)| ≤ r̃

for all t ≥ tj , and by using (5),

|x(tj + T̃ )| ≤ β(|x(tj)|, T̃ ) +

(
ηT̃ + κ

∫ tj+T̃

tj

χ(|u(s)|) ds

)
eLT̃
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≤ β(r̃, T̃ ) + (ηT̃ + κδ)eLT̃ < ε̃/2 + ε̃/4 + ε̃/4 = ε̃.

Therefore, using (6) with t0 replaced by tj + T̃ ,

|x(t)| ≤ α̃1(ε̃) + α̃2(‖u‖) ≤ ε+ ν(‖u‖) ∀t ≥ t0 + T

because t0 + T ≥ tj + T̃ , which shows that item iii) of Lemma 2
also is satisfied.

Finally, that (1) has the χ-BEICS property w.r.t. S follows from
Proposition 1.

IV. DISSIPATIVITY AND IISS

In this section, we show that other characterizations of iISS valid
for time-invariant and non-switched systems, e.g. those based on
dissipativity and weak detectability (see [6], [17]), only give sufficient
conditions in the current setting. We next consider system (1) with
an output of the form

y = h(t, x, u, σ), (7)

where h : R≥0 × Rn × Rm × Γ → Rp is continuous in the second
and third variables and Lebesgue measurable in the first one. We
also assume that h0(t, ξ, i) ≡ h(t, ξ, 0, i) is essentially bounded on
R≥0 ×K × Γ, for every compact subset K ⊂ Rn such that 0 /∈ K.

Definition 5 below extends the dissipativity notion to our setting.
Definition 6 replaces the notion of weak detectability by a suitable
extension in terms of persistence of excitation (see the subsequent
Remark 5).

Definition 5: Let S be a set of switching signals. System (1) with
output (7) is called h-output dissipative (h-OD) w.r.t. S if there exist a
function V : R≥0×Rn → R≥0 (the storage function) and a function
α ∈ K (the supply function) such that a) and b) below hold:
a) There exist φ1 and φ2 ∈ K∞ so that

φ1(|ξ|) ≤ V (t, ξ) ≤ φ2(|ξ|) ∀t ≥ 0,∀ξ ∈ Rn. (8)

b) There exists a continuous and positive definite function α3 such
that for every x ∈ T (t0, u, σ) with t0 ≥ 0, u ∈ Um and σ ∈ S,

V (t, x(t)) ≤ V (t0, x(t0))−
∫ t

t0

α3(|y(τ)|) dτ

+

∫ t

t0

α(|u(τ)|)dτ, ∀t ≥ t0. (9)

System (1) is called zero-output dissipative (0-OD) w.r.t. S if it is
h-output dissipative w.r.t. S for the output y = 0, i.e. the output map
h is h = 0. Note that h-OD w.r.t. S implies 0-OD w.r.t. S.

Remark 4: We highlight the fact that the storage function V need
not even be continuous. However, continuity at (t, 0) ∈ R≥0 × Rn
for every t ≥ 0 follows from item a) of Definition 5. ◦

Definition 6: We say that the pair (h, f) is zero-input output-
persistently exciting (output-PE) w.r.t. S if for every 0 < ε ≤ 1
there exist T = T (ε) > 0 and r = r(ε) > 0 such that for every
x ∈ T (t0,0, σ) with t0 ≥ 0 and σ ∈ S and every t ≥ t0 the
following implication holds

ε ≤ |x(τ)| ≤ 1

ε
, ∀τ ∈ [t, t+ T ] =⇒∫ t+T

t

|h0(τ, x(τ), σ(τ))|2 dτ ≥ r. (10)

Remark 5: It can be easily proved that in the case of a non-
switched time-invariant system ẋ = f(x, u) with outputs y =
h(x, u), weak zero-detectability as defined in [6] implies that the
pair (h, f) is zero-input output-PE. ◦
The following lemma will be used in the proof of Theorem 2. It can
be proved using Corollary 1 in [19]. For the reader’s convenience,
we provide a proof in the Appendix.

Lemma 5: Suppose that (h, f) is zero-input output-PE w.r.t. S.
Then, for any continuous positive definite function α, the pair (ĥ, f),
with ĥ = α(|h|), is zero-input output-PE w.r.t. S.

Theorem 2 below provides sufficient conditions for iISS. The fact
that these conditions are only sufficient and not necessary will be
established later in this section.

Theorem 2: Let Assumption 1 hold and let γ satisfy C1) in
Assumption 1. Then, (1) is iISS with iISS gain χ = max{α, γ} and
has the χ-BEICS property, both w.r.t. S, if either of the following
conditions holds:

a) System (1) is 0-GUAS and 0-OD with supply function α ∈ K,
both w.r.t. S.

b) There exists an output (7) for which (1) is h-OD w.r.t. S with
supply function α and (h, f) is zero-input output-PE w.r.t. S.

Proof: a). From the definitions of UBEBS and 0-OD (Defini-
tions 4 and 5), it straightforwardly follows that if system (1) is 0-OD
w.r.t. S with supply function α ∈ K then it is UBEBS w.r.t. S
with UBEBS gain α. The proof of a) then follows by application of
Theorem 1.

b) We first prove that (1) is 0-GUAS w.r.t. S. Let Φ be the set of
all the pairs (x, σ) with x ∈ T (t0,0, σ) with t0 ≥ 0 and σ ∈ S. We
will show that Φ satisfies the hypotheses of Theorem 1 in [18], and
that in consequence Φ is uniformly globally asymptotically stable (in
the sense of [18]), which, in turn, implies that (1) is 0-GUAS w.r.t. S.
In fact, from the h-OD condition and by using standard techniques
of stability theory it follows that Φ is uniformly globally stable (in
the sense of [18]). Let α3 be the continuous and positive definite
function appearing in (9), and let ĥ =

√
α3(|h|). Since (h, f) is

zero-input output-PE w.r.t. S, by Lemma 5 it follows that (ĥ, f) also
is zero-input output-PE w.r.t. S. Then (ĥ0, f0), with f0(t, ξ, i) ≡
f(t, ξ, 0, i), is output-PE w.r.t. Φ (in the sense of [18]). Finally, from
the h-OD condition it also follows that condition (H1) in [18] is
satisfied by ĥ0 and Φ (see Remark 8 in that paper). Since (1) is 0-
GUAS and also 0-OD (because h-OD implies 0-OD), both w.r.t. S,
then application of part a), establishes that (1) is iISS with iISS gain
χ and has the χ-BEICS property, both w.r.t. S.

Remark 6: Theorem 2a) contains the main result of [17] (Theorem
3.1) as a particular case, since our assumptions are weaker than
those in [17]. Again, we remark that the corresponding proof in [17]
does not apply in the current setting since that proof is based on
the existence of a continuously differentiable Lyapunov function for
the 0-input system. Such a Lyapunov function need not exist in the
current setting, even for a time-varying system without switching. ◦

Theorem 2a) and 2b) are extensions of, respectively, the implica-
tions 4 ⇒ 1 and 3 ⇒ 1 in Theorem 1 in [6] to time-varying both
switched and non-switched systems. We note that the corresponding
proofs in [6] cannot be directly adapted since they heavily rely on
converse Lyapunov theorems which do not exist in the current setting.
In Theorem 1 in [6] it is shown that the converse of those implications
also holds. Unfortunately, the converse of Theorem 2a) or b) does not
hold in our case. To prove the latter assertion, it suffices to show that
there exists a system which is iISS w.r.t. some family of switching
signals S and which is not 0-OD w.r.t. S.

Proposition 2: There exist a system (1) and a set of switching
signals S such that the system is iISS w.r.t. S but not 0-OD w.r.t. S.

To prove this proposition, we require some additional definitions and
results. Given switching signals σ1, . . . , σk and a sequence of times
0 < t1 < . . . < tk−1, the concatenation of them at times t1, . . . , tk−1
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is the switching signal

σ1]t1σ2]t2 · · · ]tk−1σk(s) =


σ1(s) if s < t1
σ2(s) if t1 ≤ s < t2

...
...

...
σk(s) if tk−1 ≤ s

Let S]k denote the set of all the switching signals obtained by
concatenating k switching signals in S and let S] = ∪k≥2S]k. Note
that S ⊂ S]k ⊂ S

] for any k ≥ 2, since σ = σ]tσ for every σ ∈ S
and every t > 0.

Lemma 6: If (1) is 0-OD w.r.t. S then (1) is 0-OD w.r.t. S].
Proof: Let V be a storage function as per Definition 5, corre-

sponding to the 0-OD w.r.t. S property. In order to show that (1) is
0-OD w.r.t. S] it suffices to show that the estimate (9), with y = 0,
holds for every x ∈ T (t0, u, σ) with t0 ≥ 0, u ∈ Um and σ ∈ S].
By induction in k, we will prove for all k ≥ 2 that the estimate (9),
with y = 0, holds for every x ∈ T (t0, u, σ) with t0 ≥ 0, u ∈ Um
and σ ∈ S]k.

Case k = 2. Let σ = σ1]t1σ2 with σi ∈ S for i = 1, 2 and
t1 > 0. Let x ∈ T (t0, u, σ) with t0 ≥ 0 and u ∈ Um. If t1 ≤ t0 then
by well-known results on differential equations and causality there
exists x∗ ∈ T (t0, u, σ2) such that x(t) = x∗(t) for all t ≥ t0. Since
(9) with y = 0 holds for x∗, it also holds for x. If t0 < t1, then by
causality and well-known results on differential equations there exists
x1 ∈ T (t0, u, σ1) and x2 ∈ T (t1, u, σ2) such that x(t) = x1(t)
for all t ∈ [t0, t1] and x(t) = x2(t) for all t ∈ [t1,∞), whence
x1(t1) = x2(t1). Then, for all t ∈ [t0, t1] we have

V (t, x(t)) = V (t, x1(t)) ≤ V (t0, x1(t0)) +

∫ t

t0

χ(|u(s)|) ds

= V (t0, x(t0)) +

∫ t

t0

χ(|u(s)|) ds

and for all t ≥ t1,

V (t, x(t)) ≤ V (t1, x2(t1)) +

∫ t

t1

χ(|u(s)|) ds

≤ V (t0, x(t0)) +

∫ t1

t0

χ(|u(s)|) ds+

∫ t

t1

χ(|u(s)|) ds

= V (t0, x(t0)) +

∫ t

t0

χ(|u(s)|) ds.

Recursive step. Suppose that (9) with y = 0 holds for every
x ∈ T (t0, u, σ) with σ ∈ S]k. Let σ ∈ S]k+1. Then, there exist
σ1, . . . , σk+1 in S and a sequence of times 0 < t1 < . . . < tk such
that σ = σ1]t1σ2]t2 · · · ]tkσk+1. Let σ̃ = σ1]t1σ2]t2 · · · ]tk−1σk ∈
S]k. Then σ = σ̃]tkσk+1. Taking into account that (9) with y = 0
holds for all the solutions x of (1) corresponding to switching signals
in S]k ⊃ S, and by using the same arguments as in the case k = 2,
we can conclude that (9) with y = 0 holds for all solutions x of (1)
corresponding to switching signals in S]k+1.

Proof of Proposition 2: Consider (1) with f(t, ξ, µ, i) = Aiξ+
biµ, i = 1, 2, where

A1 =

[
−1 −100
10 −1

]
, A2 = A′1, b1 = b2 =

[
1
0

]
.

Let S = {σ1, σ2}, where σi(t) = i for all t ≥ 0. We note that
both A1 and A2 are Hurwitz, and in consequence each subsystem,
i.e. each of the two systems ẋ = f(t, x, u, i), with i = 1, 2, is iISS.
Then, (1) is iISS w.r.t. S. We claim that (1) is not 0-OD w.r.t. S.

For a contradiction, suppose that (1) is 0-OD w.r.t. S. By Lemma 6,
then (1) is 0-OD w.r.t. S]. Therefore, there exists a storage function
V verifying (8), with φ1, φ2 ∈ K∞, and such that for some χ ∈ K∞,

(9) holds with y = 0 for every x ∈ T (t0, u, σ), with t0 ≥ 0, u ∈ U1
and σ ∈ S]. It then follows that every solution x of ẋ = Aσx with
σ ∈ S] must verify

V (t, x(t)) ≤ V (t0, x(t0)) ∀t ≥ t0.

In particular, for every r > 0 there exists c(r) ≥ 0 such that for
each switching signal σ ∈ S] and each ξ0 ∈ R2 with |ξ0| ≤ r,
the unique solution x(t, ξ0, σ) of ẋ = Aσx, x(0) = ξ0 satisfies
|x(t, ξ0, σ)| ≤ c(r) for all t ≥ 0.

Also, for each initial condition ξ0 6= 0, there is a switching signal
σξ0 : R≥0 → {1, 2} (σξ0 does not necessarily satisfy σξ0 ∈ S])
such that the unique solution x(t, ξ0, σξ0) of ẋ = Aσ0x, x(0) = ξ0
satisfies |x(t, ξ0, σξ0)| → ∞ (see Example 2 in [22]).

Pick any ξ0 6= 0 and let r = |ξ0|. Then there exists T > 0 such that
|x(T, ξ0, σξ0)| > c(r). From the definition of S] and the fact that
any switching signal has a finite number of discontinuities in every
bounded interval, it can be easily seen that the switching signal σ̃ =
σξ0]Tσ1 belongs to S]. By causality, we have that |x(T, ξ0, σξ0)| =
|x(T, ξ0, σ̃)| ≤ c(r). Since we have arrived to a contradiction, it
follows that system (1) is not 0-OD w.r.t. S.

V. EXAMPLE

We provide an example to illustrate the application of Theorem 2.
Consider the ideal switched model of the semi-quasi-Z-source in-
verter [23], [24], connected to a nonlinear time-varying resistive load
and where u represents the input voltage:

ẋ = f(t, x, u, σ) = Ãσx− e4g̃σ(t, e′4x) + bσu, (11)

e4 = [0 0 0 1]′, P = diag(L1, L2, C1, C2)

Ã1 = P−1

[
0 0 0 0
0 0 1 1
0 −1 0 0
0 −1 0 0

]
, Ã2 = P−1

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
,

b1 = P−1[1 0 0 0]′, b2 = P−1[0 1 0 0]′,

g̃i(t, v) = ai(t)sat(v/ri(t)), (12)

where sat is the unitary saturation function (sat(v) = v if |v| ≤ 1
and sat(v) = sign(v) otherwise), and ai(t) ∈ [amin, amax],
amax ≥ amin > 0, and ri(t) ∈ [rmin, rmax], rmax ≥ rmin > 0,
for all t ≥ 0 and for i = 1, 2. The positive constants L1, L2, C1, C2

represent the inverter inductance and capacitance values. It is clear
that this system verifies Assumption 1 and, in particular, C1) is
satisfied, e.g., with γ(s) = s and N(|ξ|) = max{‖A1‖, ‖A2‖}|ξ|+
amax + max{1, ‖b1‖, ‖b2‖}, with ‖Ai‖ the matrix norm induced by
the Euclidean vector norm.

Irrespective of the load function g̃i, stability of this inverter model
can only be ensured by constantly switching between σ(t) = 1 (mode
1) and σ(t) = 2 (mode 2), and imposing additional restrictions on
the time spent in mode 2 [15]. Let S denote the set of switching
signals σ : R≥0 → {1, 2} where each mode has minimum (dmin)
and maximum (dmax) dwell times satisfying 0 < dmin < dmax <
π
√
L1C1.

In order to show that the system is 0-GUAS and 0-OD w.r.t. S,
we consider the time-invariant positive definite quadratic function
V (t, x) = V̄ (x) = 1

2
x′Px. Such a function satisfies (8), with

φ1(s) = λmins
2 and φ2(s) = λmaxs

2 with λmin, λmax the minimum
and maximum eigenvalues of P/2, and V̇i, its derivative along the
trajectories of the ith-subsystem, is

V̇i(t, ξ) = ξ′PÃiξ − ξ′C2e4g̃i(t, e
′
4ξ) + ξ′Pbiµ

= −C2(e′4ξ)ai(t)sat(e′4ξ/ri(t))︸ ︷︷ ︸
ηi(t,ξ)

+ξ′Pbiµ.

Note that for i = 1, 2, PÃi is skew-symmetric and hence ξ′PÃiξ =
0 for all ξ ∈ R4 and that ηi is a nonnegative function because C2 > 0,
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ai(t) > 0, ri(t) > 0, and v sat(v/ri(t)) ≥ 0 for all v ∈ R. To show
that this system is 0-GUAS w.r.t. S, we employ Theorem 3.1 of [25].
This requires decomposing the zero-input system equations into a
“nominal” 0-GUAS part f̂ and a “perturbation” part g, as follows:

ẋ = f(t, x, 0, σ) = (Ãσ −Ke4e′4)x︸ ︷︷ ︸
f̂(t,x,σ)

−e4(g̃σ(t, e′4x)−Ke′4x)︸ ︷︷ ︸
g(t,x,σ)

,

where K > 0 is an arbitrary constant. Under this decomposition,
Assumption 1 of Theorem 3.1 of [25] is satisfied because the switched
linear system ẋ = f̂(t, x, σ) is 0-GUAS w.r.t. S, as established in
[24]. The function V and ηi as above satisfy Assumption 2, and the
functions f̂ and g satisfy the boundedness condition of Assumption 3
of Theorem 3.1 of [25]. Finally, the functions η(t, ξ, i) = ηi(t, ξ) and
g satisfy condition (C) of the latter theorem, and hence the zero-input
system is 0-GUAS w.r.t. S. Next, since ηi ≥ 0, then

V̇i(t, ξ) ≤ ξ′Pbiu ≤ κ
√
V |u|,

with κ = 1/
√
λmin. Then, using a comparison lemma for differential

equations we have that for every solution x of (11) corresponding to
an input u and a switching signal σ ∈ S, the following holds√

V (t, x(t)) ≤
√
V (t0, x(t0)) +

κ

2

∫ t

t0

|u(s)| ds.

In consequence, system (11) is 0-OD w.r.t. S if we consider
√
V as

the storage function. By Theorem 2a), system (11) is iISS w.r.t. S
with iISS gain χ(s) = s. It also has the χ-BEICS property. Thus,
for x ∈ T (t0, u, σ) with u ∈ L1(R≥0) and σ ∈ S it follows that
x(t)→ 0 as t→∞.

We remark that system (11) is not ISS w.r.t. S. Indeed, the
second simulation example in Section 2.5 of [15] corresponds to
the considered system with a load of the form (12) for constant and
positive ai and ri, for i = 1, 2, and a switching signal contained
in the considered set S. This simulation shows that the state is
divergent for a bounded input u, and hence the system cannot be ISS
w.r.t. S. Another interesting fact about this example is that no iISS
common Lyapunov function exists, because none of the subsystems
is 0-GUAS.

VI. CONCLUSIONS

We have provided a characterization of integral input-to-state
stability that is valid for switched and time-varying systems uniformly
over arbitrary sets of switching signals. We have also shown that
some natural extensions of the characterizations available for non-
switched time-invariant systems become only sufficient conditions in
the setting considered. Our proofs are novel in the sense that no
converse Lyapunov theorems are required.

APPENDIX

A. Proof of Lemma 1

Conditions C2) and C3) in Assumption 1 are obviously satisfied.
We proceed to prove C1). The function

γ̃(r) := sup{|f(t, ξ, µ, i)| : t ≥ 0, i ∈ Γ, |ξ| ≤ r, |µ| ≤ r}

is clearly nondecreasing, and finite for all r ≥ 0 because of the
assumptions of Lemma 1. In addition, if L̃ > 0 is a Lipschitz constant
for f(t, ·, ·, i) on the compact set {(ξ, µ) ∈ Rn × Rm : |ξ| ≤
1, |µ| ≤ 1}, then γ̃(r) ≤ 2L̃r for all 0 ≤ r ≤ 1. In consequence,
there exists γ ∈ K∞ such that γ(r) ≥ γ̃(r) for all r ≥ 0 and such
that γ(r) = 2L̃r for all 0 ≤ r ≤ 1/2. We note that |f(t, ξ, µ, i)| ≤
γ(|ξ|) + γ(|µ|) ≤ N(|ξ|)[1 + γ(|µ|)], with N(r) = max{1, γ(r)}.

B. Proof of Lemma 3

For any p ∈ N and s > 0, we define B̄ps := {ξ ∈ Rp : |ξ| ≤ s}.
Claim: For every r∗ > 0 and η > 0 there exists κ = κ(r∗, η) > 0
such that for all t ≥ 0, ξ ∈ B̄nr∗ , µ ∈ Rm and i ∈ Γ,

|f(t, ξ, µ, i)− f(t, ξ, 0, i)| ≤ η + κγ(|µ|). (13)

From C2) in Asumption 1 there exists 0 < δ < 1 such that
for all t ≥ 0, i ∈ Γ, and (ξ, µ) ∈ B̄nr∗ × B̄mδ , |f(t, ξ, µ, i) −
f(t, ξ, 0, i)| < η. If ξ ∈ B̄nr∗ and |µ| ≥ δ, using C1) it follows
that |f(t, ξ, µ, i) − f(t, ξ, 0, i)| ≤ |f(t, ξ, µ, i)| + |f(t, ξ, 0, i)| ≤
2N(|ξ|) + N(|ξ|)γ(|µ|) ≤ 2N(r∗) + N(r∗)γ(|µ|) and hence
|f(t, ξ, µ, i) − f(t, ξ, 0, i)|/γ(|µ|) ≤ N(r∗)[2/γ(δ) + 1] =: κ. In
consequence

|f(t, ξ, µ, i)− f(t, ξ, 0, i)| ≤ κγ(|µ|) ∀ξ ∈ B̄nr∗ , |µ| ≥ δ.

Combining the inequalities obtained, the claim is established.
Next, let r > 0 and r∗ = β(r, 0) ≥ r. Let L = L(r) > 0 be

any Lipschitz constant for f(t, ·, 0, i) on the compact set B̄nr∗ valid
for every t ≥ 0 and every i ∈ Γ. Let x ∈ T (t0, u, σ) with t0 ≥ 0,
u ∈ Um and σ ∈ S be such that |x(t)| ≤ r for all t ≥ t0. Let
x0 ∈ T (t0,0, σ) be such that x0(t0) = x(t0). Then, both x and x0
evolve in B̄nr∗ for all t ≥ t0. Let t ≥ t0. For all t0 ≤ τ ≤ t, we have

|x(τ)− x0(τ)|

≤
∫ τ

t0

|f(s, x(s), u(s), σ(s))− f(s, x0(s), 0, σ(s))|ds

≤
∫ τ

t0

|f(s, x(s), u(s), σ(s))− f(s, x(s), 0, σ(s))|ds

+

∫ τ

t0

|f(s, x(s), 0, σ(s))− f(s, x0(s), 0, σ(s))|ds

≤
∫ τ

t0

[η + κγ(|u(s)|)]ds+

∫ τ

t0

L|x(s)− x0(s)|ds

≤ η(t− t0) + κ

∫ t

t0

χ(|u(s)|)ds+

∫ τ

t0

L|x(s)− x0(s)|ds.

Using Gronwall’s inequality, it follows that

|x(t)− x0(t)| ≤
[
η(t− t0) + κ

∫ t

t0

χ(|u(s)|)ds
]
eL(t−t0) ∀t ≥ t0.

The lemma is then established from |x(t)| ≤ |x0(t)|+ |x(t)−x0(t)|
and recalling the estimate (3) for x0(t).

C. Proof of Lemma 4

Let α1, α2, α and c be as in the estimate (4) and let χ =
max{α, γ}. For r ≥ 0 define

α̃(r) := sup
x∈T (t0,u,σ), t≥t0≥0, ‖u‖≤r, σ∈S, |x(t0)|≤r

|x(t)|

where ‖u‖ := ‖u‖χ. From this definition, it follows that α̃ is
nondecreasing and from (4) that it is finite for all r ≥ 0. Next,
we show that limr→0+ α̃(r) = 0. Let r∗ = α1(1) + α2(1) + c,
β ∈ KL be the function which characterizes the 0-GUAS w.r.t. S
property and L = L(r∗) > 0 be given by Lemma 3. Let ε > 0
be arbitrary. Pick 0 < δ1 < 1 such that δ1 ≤ β(δ1, 0) < ε/2,
and T > 0 such that β(δ1, T ) < δ1/2. Define η = δ1

4TeLT and let
κ = κ(r∗, η) > 0 be given by Lemma 3. Last, pick 0 < δ2 < 1
such that κδ2eLT < δ1/4. Then, for every x ∈ T (t0, u, σ), with
t0 ≥ 0, u ∈ Um with ‖u‖ ≤ δ2, σ ∈ S and |x(t0)| ≤ δ1 we
claim that |x(t)| < ε for all t ≥ t0. In fact, for all t ∈ [t0, t0 + T ],
we have from Lemma 3 that |x(t)| ≤ β(|x(t0)|, t − t0) + (η(t −
t0) + κ‖u‖)eL(t−t0) ≤ β(δ1, 0) + (ηT + κδ2)eLT < ε and
that |x(t0 + T )| ≤ β(δ1, T ) + (ηT + κδ2)eLT < δ1. Since
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x ∈ T (t1, u, σ), with t1 = t0 +T , and |x(t1)| < δ1, then |x(t)| < ε
for all t ∈ [t1, t1 + T ] and |x(t1 + T )| < δ1. Therefore, by
using an inductive argument we can prove that |x(t)| < ε for all
t ∈ [tn, tn + T ], where tn = t0 + nT , and that |x(tn + T )| < δ1.
In consequence, |x(t)| < ε for all t ≥ t0 as we claim. Thus, if
δ = min{δ1, δ2}, for all x ∈ T (t0, u, σ), with t0 ≥ 0, u ∈ Um
with ‖u‖ ≤ δ, σ ∈ S and |x(t0)| ≤ δ, we have |x(t)| ≤ ε for
all t ≥ t0. Therefore, α̃(r) ≤ α̃(δ) < ε for all 0 < r < δ and
limr→0+ α̃(r) = 0.

Since α̃ is nondecreasing and limr→0+ α̃(r) = 0 there exists α̂ ∈
K∞ such that α̂(r) ≥ α̃(r) for all r ≥ 0. Let x ∈ T (t0, u, σ) with
t0 ≥ 0, u ∈ Um and σ ∈ S. Let t ≥ t0, and let ut be the input
ut(τ) = u(τ) for all τ ∈ [t0, t] and ut(τ) = 0 otherwise. From well-
known results on differential equations, there exists x∗ ∈ T (t0, ut, σ)
such that x∗(τ) = x(τ) for all τ ∈ [t0, t]. By using the definition of
α̃ and the facts that ‖ut‖ =

∫ t
t0
χ(|u(s)|) ds and α̂(r) ≥ α̃(r), we

then have

|x(t)| = |x∗(t)| ≤ α̂(|x(t0)|) + α̂ (‖ut‖)

= α̂(|x(t0)|) + α̂

(∫ t

t0

χ(|u(s)|) ds
)
.

In consequence, the lemma follows by taking α̃1 = α̃2 = α̂.

D. Proof of Lemma 5

Let α be continuous and positive definite. We will prove that
(ĥ, f), with ĥ = α(|h|), is zero-input output-PE w.r.t. S by
contradiction. Suppose that (ĥ, f) is not zero-input output-PE w.r.t.
S. Let ĥ0(t, ξ, i) ≡ ĥ(t, ξ, 0, i). Then there exist ε0 > 0 and a
sequence {(tk, xk, σk)} such that tk ↗ ∞ and, for all k, σk ∈ S
and xk ∈ T (tk,0, σk), ε0 ≤ |xk(t)| ≤ 1/ε0 for all t ∈ [tk, tk + k],
and ∫ tk+k

tk

|ĥ0(τ, xk(τ), σk(τ))|2 dτ < 1/k.

Let ỹk(s) = |ĥ0(tk + s, xk(tk + s), σk(tk + s))|2 for s ∈ [0, k] and
ỹk(s) = 0 if s > k. Since {ỹk} converges to 0 in L1(R≥0), then
there exists a subsequence {ỹkl} such that liml→∞ ỹkl(s) = 0 for
almost all s ∈ R≥0. The fact that h0 is essentially bounded on R≥0×
K×Γ, with K = {ξ ∈ Rn : ε0 ≤ |ξ| ≤ 1/ε0}, implies the existence
of a constant M ≥ 0 so that |h0(tkl +s, xkl(tkl +s), σkl(tkl +s))| ≤
M for almost all s ∈ [0, kl]. From the latter, the continuity and
positive definiteness of α and the fact that ỹkl → 0 a.e., we have that
for every T > 0, liml→∞ h0(tkl + s, xkl(tkl + s), σkl(tkl + s)) =
0 for almost all s ∈ [0, T ]. By applying Lebesgue’s Convergence
Theorem it follows that for all T > 0,

lim
l→∞

∫ T

0

|h0(tkl + s, xkl(tkl + s), σkl(tkl + s))|2 ds = 0,

or, equivalently, that

lim
l→∞

∫ tkl
+T

tkl

|h0(τ, xkl(τ), σkl(τ))|2 dτ = 0.

We have arrived to a contradiction because from the zero-input
output-PE w.r.t. S of the pair (h, f) there exist T (ε0) > 0 and
r(ε0) > 0 such that for all l∫ tkl

+T (ε0)

tkl

|h0(τ, xkl(τ), σkl(τ))|2 ds ≥ r(ε0).
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conditions for semi-quasi-Z-source inverters: switched and averaged
models,” in Proc. 52nd IEEE Conf. on Decision and Control, Florence,
Italy, 2013, pp. 5999–6004.

[25] J. L. Mancilla-Aguilar, H. Haimovich, and R. A. Garcı́a, “Global stability
results for switched systems based on weak Lyapunov functions,” IEEE
Trans. on Automatic Control, vol. 62, no. 6, pp. 2764–2777, 2017,
doi:10.1109/TAC.2016.2627622.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAC.2017.2729284

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


