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a b s t r a c t

A comparison between the classic Plackett–Burman design (PB) ANOVA analysis and a genetic algorithm
(GA) approach to identify significant factors have been carried out. This comparison was made by apply-
ing both analyses to data obtained from the experimental results when optimizing both chemical and
enzymatic hydrolysis of three lignocellulosic feedstocks (corn and wheat bran, and pine sawdust) by a
PB experimental design.

Depending on the kind of biomass and the hydrolysis being considered, different results were obtained.
Interestingly, some interactions were found to be significant by the GA approach and allowed to identify
significant factors, that otherwise, based only in the classic PB analysis, would have not been taken into
account in a further optimization step. Improvements in the fitting of c.a. 80% were obtained when com-
paring the coefficient of determination (R2) computed for both methods.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

To verify or reject an investigation hypothesis, the researcher
has to outline and implement an investigation design, i.e.: a plan
or strategy conceived to answer the investigation questionings
(Miller and Miller, 1993).

There are specific methods for the application of an investiga-
tion design. These methods are applied to systems where one or
more factors (independent variables) are varied, and one or more
responses (dependent variables) are determined, which also, may
be influenced by other variables that cannot be controlled. One
of these methods is the so-called traditional method of experimen-
tation, but since one factor is varied at a time, it is not known if the
change in the response is due to changes in this factor or changes
in other factors (Box et al., 1989).

Alternatively to the traditional method, the experimental de-
sign emerges, which is a methodology that allows to obtain a series
of experiments in which the simultaneous changes complement
each other, thus obtaining, with statistical confidence and at a

low cost, the information being sought by combining the results
of all experiments (Massart et al., 1997).

Once all factors that may have influence in the response of
interest have been identified, it may occur that a large number of
them should be considered in further experiments, becoming nec-
essary a refinement to reduce the number of experiments to be
developed, according to their influence on the response. By run-
ning a screening experimental design, it can be determined which
factors have more influence on the response and which do not. A 2-
level factorial design serves this purpose and requires 2k runs to
build a model, where k is the number of factors. Unfortunately,
when more than three factors have to be considered, the number
of runs increases rapidly (Olivieri and Magallanes, 2010). That is
the reason why, as an alternative, fractional factorial designs
emerge, which allow to evaluate factors efficiently using a small
fraction of the experiments of the full factorial design, since it con-
siders that interactions of order three and higher are negligible.
However, the possibility of independently estimating each model
term is lost, and only estimations of confounded effects can be ob-
tained (Wu and Hamada, 2000).

Another altenative to the 2-level full factorial design is the Plack-
ett–Burman design (PB), which is a 2-level fractional factorial
design, used to study K = N � 1 factors in N experiments, where N
is a multiple of 4 (Plackett and Burman, 1946). As an example, a
12-experiment PB allows to study up to 11 factors, while a two-level
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full factorial design requires 2048 runs. The model used for PB is first
order in each factor as follows:

y ¼ b0 þ
Xk

i¼1

bixi þ e ð1Þ

where y stands for the response, b0 is the independent coefficient, bi

is the coefficient associated to each factor xi, and e collects the mod-
el error. As can be seen, the classic PB analysis can only estimate the
main factors with a reduced number of experiments, but each of
them has as partial alias, all 2-factors interactions where that main
factor in question is not involved. The validity of a PB lies in the
assumption that all the interaction terms are negligible. This valid-
ity is questionable since it is present the risk of misevaluating some
factors (e.g.: missing an important effect, incorrectly considering an
irrelevant effect) when the real effect lies on the interaction terms,
which have been considered negligible (Montgomery, 1991).

As an alternative to the classic PB analysis, very recently Olivieri
and Magallanes (2010) developed an approach to identify signifi-
cant main factors and interactions, based on a genetic algorithm
(GA) approach. This algorithm is capable to evaluate interactions
according to Eq. (2):

y ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

Xk

j¼1

bijxixj þ e ð2Þ

where bijði – jÞ are two-factor interaction terms and xi, xj are the
model factors.

A GA makes a population of individuals to evolve by submitting
it to random actions, which are those acting in biological evolution
(e.g.: mutations, genetic recombinations) as well as to a selection
process according to some criteria, according to which it is decided
which are the better adapted individuals, thus surviving, and
which are the worse ones so as to be discarded.

In the present case, an initial random population is generated,
arranged in a group of chromosomes, which represents the possi-
ble solutions to the problem. Then, each chromosome is ranked
according to a given objective function to be minimized, and only
half of them having the best figures of merit is allowed to survive,
mutate and recombine to generate offspring. The other half is dis-
carded. After a number of generations in which the above steps are
repeated, the final best chromosome, i.e.: the one leading to the
minimum value for the objective function, is employed for model
building (Olivieri and Magallanes, 2010).

Since many factors are involved in the hydrolysis of lignocellu-
losic materials, it becomes necessary to perform a screening in
order to select only the significant ones. These lignocellulosic
materials stand for the 82% of the worldwide biomass produced
in a year (Almeida e Silva et al., 2003), and its industrialization gen-
erates large quantities of residues. Therefore, legislations and envi-
ronmental issues are forcing industries to reduce these residuals by
recovery and recycling strategies (Spigno et al., 2008). Owing to the
fact of being constituted by polysaccharides (hemicelluloses and
cellulose), these materials stand for a renewable source of many
sugars, e.g.: glucose, xylose, arabinose (Bower et al., 2008), which
can be obtained by hydrolysis processes.

There are two ways to hydrolyze polysaccharides: chemically
(by the action of acids or bases) and biochemically (by the action
of enzymes). Although chemical hydrolysis processes save time,
the enzymatic ones require less energy and milder conditions.
Thus, the overall cost of the enzymatic process is lower when com-
pared to alkaline or acid hydrolysis (Sun and Cheng, 2002). In addi-
tion, the enzymatic hydrolysis is substrate-specific without
byproduct formation, contrary to the chemical hydrolysis, which
generates byproducts, such as furfural and 5-hydroxymethylfurf-
ural, as a consequence of the degradation of pentoses and hexoses,

respectively, which may be inhibitory for microorganisms and en-
zymes (Bower et al., 2008; Sun and Cheng, 2002).

The sugars obtained through hydrolysis, may be used for vari-
ous purposes. Glucose and xylose can be converted into ethanol
by microbial fermentation to produce bioenergy (Iranmahboob
et al., 2002). Xylose, for example, can be used as a carbon and
energy source in fermentation processes, or bioconverted to xylitol,
which is a polyol with important applications as a sweetener (Agu-
ilar et al., 2002). Moreover, glucose can be included in culture med-
ia formulations for microorganisms capable of producing the
so-called Single Cell Oil (Ratledge, 2004). This oil, through a subse-
quent monoalcohol esterification process can be transformed into
biodiesel, the main liquid biofuel (Ma and Hanna, 1999). Such
alternative is very promising to reduce the use of fossil fuels and
also to avoid the distraction of oleaginous plant food in fuels pro-
duction (Duffield, 2007).

In the present report, we describe and compare the results
obtained when applying classic PB analysis and a GA based strat-
egy in order to identify the factors that are truly significant in
the chemical and enzymatic hydrolysis of three lignocellulosic
feedstocks: corn and wheat bran, and pine sawdust. The results
to be described below show the importance of considering interac-
tions when estimating factors in a screening experimental design,
and can be very useful in future research works on recycling
strategies.

2. Methods

2.1. Raw materials

Corn and wheat bran, and pine sawdust were gently provided
by Marchisio-Fernandez S.R.L., Santa Fe, Argentina. Each feedstock
was air-dried, milled, homogenized in a single lot and stored under
dry conditions before use. The feedstocks were milled in a Wiley
knife mill (Standard Model No. 3, Arthur H. Thomas, Philadelphia,
USA) to pass through a 1.0 mm screen. In a further step, the milled
feedstocks were passed through a 0.5 mm screen, thus obtaining 2
batches for each feedstock (one containing particles between
0.5 mm and 1.0 mm and the other one, particles with a size less
than 0.5 mm).

2.2. Pretreatments

2.2.1. Pretreatment of feedstocks prior to chemical hydrolysis
Five grams of feedstock were mixed with 100 mL of ammonium

hydroxide 2.9 mol L�1 in a 250 mL Erlenmeyer flask and incubated
in an orbital shaker at 200 rpm for 24 h at 30 �C. After this process,
each residue was washed with distilled water to achieve the com-
plete removal of the ammonium hydroxide. Then, the solid fraction
was separated from the liquid by centrifugation at 5000 rpm for
10 min (Spigno et al., 2008). After, the solid was dried at 100 �C
to constant weight. The dried solid obtained was used for chemical
hydrolysis.

2.2.2. Pretreatment of feedstocks prior to enzymatic hydrolysis
One grame of feedstock was mixed with 20 g of 70:30 glyc-

erol:water mixture (%m/m) and 120 lL of sulfuric acid 1% m/V in
a 250 mL Erlenmeyer flask. Each mixture was heated at 220 �C with
an electric heater for three hours (Sun and Chen, 2008). After this
process, each residue was washed with 300 mL of boiling water
and filtered using a Buchner funnel (Demirbas�, 1998). Samples
were not dried prior to enzyme digestibility to avoid pore collapse
that can occur in the micro-structure of the biomass leading to
decreased enzymatic release of glucose from the cellulose (Brown
and Torget, 1996).
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2.3. Hydrolysis processes

2.3.1. Chemical hydrolysis
The residues of pre-treated feedstocks were chemically hydro-

lyzed using solutions of sulfuric acid. In each experiment, the mass
of feedstock was mixed with the acid solution in 15 mL closed
polypropylene tubes. Each mixture was incubated for 30 or
60 min at 60 �C or 100 �C by dipping the tubes in a water bath.
After the time of hydrolysis was complete, the liquid fraction
was recovered by centrifugation at 5000 rpm for 10 min plus fur-
ther filtration with filter paper. All liquid fractions recovered were
stored at �18 �C until sugars quantitation. A control assay was
made using filter paper to take into account any contribution of
this material to the sugars concentration that could occur in the
filtration step.

2.3.2. Enzymatic hydrolysis
The residues of pre-treated feedstocks were enzymatically

hydrolyzed by a cellulase complex from Trichoderma longibrachia-
tum purchased from Sigma (C9748), with an activity of 74.57
FPU/mg of powder, determined according to Ghose (1987). One
international filter paper unit (FPU) was defined as the amount
of enzyme that releases 1 lmol of reducing sugar per minute dur-
ing hydrolysis reaction (Ferreira et al., 2009). The quantities of
enzyme, substrate and polyethyleneglycol (PEG) according to PB
were mixed with 10 mL of buffer (acetate or citrate, 0.05 or
0.20 mol L�1) in a 50 mL closed polypropylene tube. Each mixture
was incubated for 24 or 72 h at 50 �C by dipping the tubes in a
water bath. Stirring was performed on a rotary shaker equipped
with a thermostatic chamber. After the time of hydrolysis was
complete, the liquid fraction was recovered by centrifugation at
5000 rpm for 10 min plus further filtration with filter paper. All
liquid fractions recovered were stored at �18 �C until sugars quan-
titation. A control assay was made using filter paper to take into
account any contribution of this material to the sugars concentra-
tion that could occur in the filtration step.

2.4. Plackett–Burman design and genetic algorithm approach

PB were introduced in this study to identify which factors have
a significant effect on chemical and enzymatic hydrolysis. Accord-
ing to these designs, each variable was examined at two levels: �1
(low level) and +1 (high level) (Plackett and Burman, 1946).

Since the PB does not consider the interaction effects among
variables, a GA approach developed by Olivieri and Magallanes
(2010) was used to identify those interactions in order to perform
a further comparison of both analyses. In the present work, the
population size and the number of generations were estimated
by trial and error, thus they were set as 20 chromosomes (initial-
ized with random binary digits with 20% probability for 1 and
80% for 0 values) and 100 generations, respectively. For recombina-
tion, a 50% probability was employed and a probability of 0.05 was
applied to mutations after offspring were produced. The ratio of
the root mean square error corresponding to the fit of the experi-
mental responses to the current model (RMSE) and the one corre-
sponding to the classic PB analysis (RMSE0), was the objective
function to be optimized.

Before starting the GA, several data handling were made (see
Olivieri and Magallanes (2010)). All GA calculations were repeated
ten times for each of the analyzed cases and a histogram was built
registering the average value of coefficient terms over the ten GA
cycles, and finally the terms having average coefficients larger than
a certain tolerance (usually 0.05) were selected and included in a
final model.

In the present work, 6 and 10 factors were screened for chem-
ical and enzymatic hydrolysis, respectively. When one factor has

a positive effect on the response, it means that when the level of
that factor increases from �1 to +1, the value of the response
increases, while a negative effect stands for the opposite case.

2.5. Analytical

The glucose concentration was enzimatically measured by
using a commercial kit (Wiener Lab., Argentina). This quantitation
method consists of two steps: first, according to Eq. (3), the glucose
oxidase catalyzes the oxidation reaction of glucose to gluconic acid,
with the consequent consumption of oxygen and water, and the
generation of hydrogen peroxide

C6H12O6 þ O2 þH2O! C6H12O7 þH2O2 ð3Þ

In the second step, according to Eq. (4), a peroxidase catalyzes
the reaction between two molecules of hydrogen peroxide with
phenol and 4-aminophenazone to generate four molecules of
water and a colored compound known as 4-(p-benzoquinone
monoimine)-phenazone, which has an absorption maximum at
505 nm.

C6H6Oþ 2H2O2 þ C11H13N3O! C17H15N3O2 þ 4H2O ð4Þ

The concentration of reducing sugars was measured by using a
chemical quantitation technique (Miller, 1959).

All the collected data were transferred to a PC Intel Celeron D
for their further interpretation. Design Expert™ version 8.05.0
(Stat-Ease, Inc., Minneapolis, USA, 2010) was used to perform
experimental design and Matlab R2008a (The MathWorks, Inc.)
to perform data analysis by the GA approach. The Matlab routine
was kindly provided by Prof. Olivieri.

3. Results and discussion

In order to select significant factors in both chemical and enzy-
matic hydrolysis of wheat and corn bran, and pine sawdust, three
PB were built (one for each feedstock), each one consisting in 12
experiments, for each hydrolysis treatment. Both the classic PB
and the GA analyses were applied to achieve significant factors
selection.

In the case of chemical hydrolysis, the 6 factors evaluated were:
time of hydrolysis (Ti), temperature of hydrolysis (Te), pretreat-
ment (P), feedstock particle size (FS), sulfuric acid concentration
(A), and acid solution/feedstock ratio (AF). On the other hand, the
10 factors evaluated for enzymatic hydrolysis were: pH, formal
buffer concentration (FBC), buffer type (BT), stirring (S), time of
hydrolysis (Ti), feedstock concentration (F), enzyme loading (E),
pretreatment (P), feedstock particle size (FS), and PEG loading
(PC). In both cases, two responses were measured: concentrations
(in gL�1) of glucose (G) and reducing sugars (RS). Tables 1 and 2
summarize the 12 experiments and the concentrations of G and
RS obtained for each of the three lignocellulosic residues, for chem-
ical and enzymatic hydrolysis, respectively.

Since the number of PB runs is not enough to work out the com-
plete system of equations for more than four factors, the classic
analysis can only estimate the parameters corresponding to the
main factors, which are confused with the interacting terms thus
leading to incorrect results in reference to the significance of coef-
ficients. Once the terms were obtained through the application of
the least squares method (Montgomery, 1991), a root mean square
error (RMSE0) was calculated for each response, by considering
actual and predicted responses values. This RMSE0 corresponded
to the fit of the experimental responses to the current model.

In contrast to the classic analysis, GA analysis includes not only
the main factors but also their two-factor interactions, and therefore
leads to more reliable results. An initial population was produced in
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the form of an (X � Y) random binary matrix, where X is the total
number of terms in Eq. (2) (main and two-factor associations), and
Y is a predetermined number of chromosomes (binary strings con-
taining genes which encode the experimental variables) (Olivieri
and Magallanes, 2010). Then, for each response and for each one of
the different Y initial models, a RMSE was calculated, which corre-
sponded to the fit of the experimental responses to the current mod-
el. Afterward, each model was ranked according to the RMSE/RMSE0
ratio, which was the objective function to be minimized. The final
best chromosome was the one leading to the minimum value for
the objective function, in other words, the model that better fitted
the responses in comparison to the classic analysis.

Finally, the comparison of the R2 values corresponding to both
models was done in order to verify that the model obtained by
GA was better than that yielded by the application of the classic
PB analysis.

3.1. Chemical hydrolysis

3.1.1. Pine sawdust
The classic PB analysis gave Te (positive effect) and A (negative

effect) as significant factors for G response, with an associated
probability value (p) of 0.027 and 0.021, respectively. The value
of R2 = 0.623 indicated that the model explained 62% of the

variability in the responses, the remaining 38% being explained
by the residue.

In the case of RS response, significant factors were Te (p = 0.004)
(positive effect), A (p = 0.008) (positive effect) and AF (p = 0.022)
(negative effect). This result gave a model that had a R2 = 0.818.

On the other hand, applying the GA method, Te (p = 2 � 10�4)
(positive effect) and A (p = 1 � 10�4) (negative effect) were found
as significant factors for G response, with the addition of a signifi-
cant interaction between them (Te/A) (p = 4 � 10�4) (negative
effect), yielding a R2 = 0.946. On the other hand, for RS response,
Te (p = 2 � 10�4) (positive effect), A (p = 1 � 10�4) (positive effect)
and AF (p = 0.037) (negative effect) resulted to be the significant
factors, plus the interaction Te/A (p = 0.004) (negative effect), with
a determination coefficient of R2 = 0.966. Fig. 1A and B shows the
histograms built registering the average value of the coefficient
terms over the 10 GA cycles, for G and RS responses, respectively.

Consequently, the R2 values for both G and RS responses were
improved in a 51.8% and 18.1%, respectively, applying the GA
approach. This considerable enhancing of the modeling can be
attributed to the fact that Te/A interaction has been taken into
account, for being significant its effect, by the GA approach.

3.1.2. Corn Bran
The application of the classic PB analysis to the data correspond-

ing to corn bran in Table 1 showed that Te (p = 0.024) (positive

Table 1
Plackett–Burman design built to find the significant factors in the chemical hydrolysis of corn and wheat bran, and pine sawdust.

Experiment Factorsa Responsesb

Ti (min) Te (�C) P FS (mm) A (% m/m) AF (g acid/g residue) G (g L�1) RS (g L�1)

CB WB PS CB WB PS

1 30 60 No <0.5 10 5 0.69 1.89 0.36 24.66 24.09 2.34
2 30 60 Yes <0.5 30 11 0.46 0.43 0.24 37.57 60.35 16.14
3 60 100 No <0.5 10 11 27.56 33.19 3.12 52.71 53.33 18.59
4 60 60 Yes 0.5–1 30 5 0.35 0.37 0.25 111.36 96.63 28.37
5 30 100 No 0.5–1 30 5 0.35 0.30 0.16 85.48 55.95 28.86
6 60 60 No <0.5 30 5 0.28 1.12 0.20 55.29 111.74 20.93
7 30 100 Yes <0.5 30 11 0.28 0.29 0.18 40.59 94.67 21.02
8 60 100 Yes <0.5 10 5 47.67 60.86 3.79 86.16 122.23 26.93
9 60 100 No 0.5–1 30 11 0.07 0.32 0.25 43.16 34.51 21.67

10 30 100 Yes 0.5–1 10 5 46.69 47.99 2.19 116.09 98.51 23.45
11 60 60 Yes 0.5–1 10 11 0.56 0.34 0.17 17.27 17.09 1.55
12 30 60 No 0.5–1 10 11 0.46 1.12 0.30 10.91 14.19 1.04

a Ti: time of hydrolysis, Te: temperature of hydrolysis, P: pretreatment, FS: feedstock particle size, A: sulfuric acid concentration, AF: acid solution/feedstock ratio.
b G: concentration of glucose, RS: concentration of reducing sugars, CB: corn bran, WB: wheat bran, PS: pine sawdust.

Table 2
Plackett–Burman design built to find the significant factors in the enzymatic hydrolysis of corn and wheat bran, and pine sawdust.

Experiment Factorsa Responsesb

pH FBC
(mol L�1)

BTc S Ti
(h)

F (% m/
V)

E (FPU/g
feedstock)

P FS
(mm)

PC (mg PEG/g
feedstock)

G (gL�1) RS (gL�1)

CB WB PS CB WB PS

1 6.0 0.20 Cit No 24 10.0 5.0 Yes 0.5–1 300.0 2.64 5.20 1.38 6.81 24.74 7.26
2 6.0 0.20 Cit Yes 72 10.0 5.0 No <0.5 0.0 3.57 2.48 1.62 20.50 17.57 11.31
3 4.0 0.20 Ace No 72 10.0 40.0 No 0.5–1 0.0 25.36 11.87 16.16 44.41 41.06 34.59
4 4.0 0.05 Ace No 72 10.0 5.0 Yes <0.5 300.0 1.67 1.38 1.29 7.31 6.47 5.00
5 4.0 0.05 Cit Yes 24 10.0 40.0 No <0.5 300.0 14.68 12.13 15.08 40.44 35.06 34.63
6 6.0 0.20 Ace No 24 2.0 40.0 No <0.5 300.0 0.75 2.76 2.39 9.39 15.03 7.48
7 4.0 0.20 Cit Yes 72 2.0 40.0 Yes 0.5–1 300.0 4.11 2.57 1.87 10.35 10.40 7.04
8 6.0 0.05 Ace Yes 72 2.0 5.0 No 0.5–1 300.0 0.59 N/D 0.19 4.49 0.83 2.14
9 4.0 0.05 Cit No 24 2.0 5.0 No 0.5–1 0.0 0.24 0.63 0.36 2.04 3.48 1.61

10 6.0 0.05 Ace Yes 24 10.0 40.0 Yes 0.5–1 0.0 10.19 10.76 9.39 39.47 42.54 33.85
11 4.0 0.20 Ace Yes 24 2.0 5.0 Yes <0.5 0.0 0.17 0.24 0.24 1.21 0.97 0.86
12 6.0 0.05 Cit No 72 2.0 40.0 Yes <0.5 0.0 0.50 0.75 1.48 6.50 5.96 6.22

a FBC: formal buffer concentration, BT: buffer type, S: stirring, Ti: time of hydrolysis, F: concentration of feedstock, E: enzyme loading, P: pretreatment, FS: feedstock
particle size, PC: polyethyleneglycol loading.

b G: concentration of glucose, RS: concentration of reducing sugars, CB: corn bran, WB: wheat bran, PS: pine sawdust.
c Cit: citrate buffer, Ace: acetate buffer.
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effect) and A (p = 0.022) (negative effect) were the significant fac-
tors for G response, leading to a R2 = 0.624. As can be seen, like in
the previous analysis, the explained variance by the model was
indicative of a rather poor fit.

For RS response, when applying the classic PB analysis, Te
(p = 0.049) (positive effect) and AF (p = 0.005) (negative effect)
were the significant factors with a R2 = 0.749.

When the GA approach was applied to this experimental sys-
tem, for G response, it was found that Te (p = 4 � 10�4) (positive
effect) and A (p = 2 � 10�4) (negative effect) were the significant
factors, but also the interaction between them (Te/A) (negative
effect) with a p = 4 � 10�4. This led to a R2 = 0.958, showing an
improvement of 53.5% on the fitting of the model, in comparison
to the classic PB analysis.

When the GA approach was used to analyze RS response, inter-
esting results were obtained concerning main factors and their

associations. Similarly to the classic PB analysis, Te (p = 0.020)
(positive effect) and AF (p = 8 � 10�4) (negative effect) were found
as significant factors, but also FS (p = 0.019) (positive effect)
resulted to be another significant factor. In addition, the interac-
tions Te/A (p = 0.018) (negative effect) and FS/AF (p = 0.038) (neg-
ative effect) were also significant, yielding a model R2 = 0.966,
which implied an improvement of 28.9% in the fitting, compared
to the classic PB analysis. Fig. 2A and B shows the histograms built
registering the average value of the coefficient terms over the ten
GA cycles, for G and RS responses, respectively.

3.1.3. Wheat bran
Considering G response, the classic PB analysis yielded Te

(p = 0.041) (positive effect) and A (p = 0.036) (negative effect) as
the significant factors implying a R2 = 0.584, indicating that this
was a poor fit. While, for RS response, the only factor that seemed

Fig. 1. Histograms built registering the average value of the coefficient terms over
the 10 GA cycles performed, for (A) G response, and (B) RS response, for the
chemical hydrolysis of pine sawdust. Ti: time of hydrolysis, Te: temperature of
hydrolysis, P: pretreatment, FS: feedstock particle size, A: sulfuric acid concentra-
tion, AF: acid solution/feedstock ratio. Combinations factor/factor stand for the
interaction between 2 main factors.

Fig. 2. Histograms built registering the average value of the coefficient terms over
the ten GA cycles performed, for (A) G response, and (B) RS response, for the
chemical hydrolysis of corn bran. Ti: time of hydrolysis, Te: temperature of
hydrolysis, P: pretreatment, FS: feedstock particle size, A: sulfuric acid concentra-
tion, AF: acid solution/feedstock ratio. Combinations factor/factor stand for the
interaction between 2 main factors.

10606 P.C. Giordano et al. / Bioresource Technology 102 (2011) 10602–10610
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to be significant was AF (p = 0.036) (negative effect), which gave a
R2 = 0.509, representing the worst fit among all the cases analyzed.

The analysis by GA showed that Te (p = 2 � 10�4) (positive
effect) and A (p = 2 � 10�4) (negative effect) were the only two sig-
nificant factors in the case of G response, confirming the outcome
of the classic PB analysis, though the interaction between them
(Te/A) (negative effect) was also significant (p = 5 � 10�4), giving
a R2 = 0.939, implying a 60.8% improvement in comparison to the
classic PB analysis.

For RS response, once again remarkable results were obtained:
apart from AF (p = 0.018) (negative effect), also Te (p = 0.001) (posi-
tive effect) was found as a significant factor. Moreover, three inter-
actions were also significant: Ti/Te (p = 0.021) (negative effect), Ti/
AF (p = 0.001) (negative effect) and Te/A (p = 0.004) (negative effect).
Then, the R2 for this particular model was 0.947, which represents an
86.1% increase in the fit. Fig. 3A and B shows the histograms built

registering the average value of the coefficient terms over the ten
GA cycles, for G and RS responses, respectively. It should be noted
the fact that, as in the previous case, new factors should be consid-
ered after the GA analysis. This indicated the robustness of this
approach, which was able to detect factors which had not been taken
into account by the classic PB analysis.

3.1.4. Further analysis
In the pine sawdust case, both PB and GA methods led to the

same conclusions due to the fact that the interactions found to
be significant by GA occured between significant factors, which
also were found by applying the classic PB analysis.

Interesting results were obtained in the corn bran case. The
classic PB analysis would have led to a wrong factors selection,
which should be taken into account in a further optimization step.
This was because GA analysis clearly showed that FS (found as not
significant in classic PB analysis for RS response) was a significant
factor, not only its linear contribution but also its interaction with
AF, thus it must be considered when optimizing the chemical
hydrolysis of corn bran.

The case of wheat bran was similar to that of corn bran. Again,
the classic PB analysis led to the loss of one significant factor: Ti,
which would not be considered in a subsequent optimization
phase. The GA analysis demonstrated that, even if Ti was not signif-
icant as a main factor, it was involved in two interactions, with Te
and AF, respectively.

Moreover, in all the three analyzed cases, the GA approach
allowed to obtain important improvements in both responses, in
regards to the fit, reflected by the R2 values.

Now, taking into account the significance of factors, pretreat-
ment resulted to be non-significant for glucose concentration nor
for reducing sugars concentration, for the three feedstocks. This
might be explained by the fact that the substrate was previously
subjected to another previous pretreatment: milling. Then, for
these substrates and hydrolysis conditions, this physical pretreat-
ment was enough to break the physical barrier that lignin stands
for, in order to obtain acceptable sugar yields, with no need of putt-
ing the milled substrates through a subsequent chemical pretreat-
ment, contrary to what was obtained by Spigno et al. (2008),
working on grape stalks.

Ti was non-significant in almost all cases, except for wheat bran
in RS response. In this case, two interactions envolving Ti (with Te
and AF) were significant carrying negative effects. Iranmahboob
et al. (2002), working with a mixture of hardwood and softwood
in similar conditions to this study, found that the time of hydroly-
sis was non-significant on sugar yields, if it was varied between 0.5
and 1.0 h. Vieira Canettieri et al. (2007), working on Eucalyptus
grandis wood, found that the interaction between time of hydroly-
sis and temperature has a negative effect on sugar yields, due to its
chemical degradation. However, contrary to what was found in this
study, no effect was found for acid solution/feedstock ratio.

With regard to Te, this factor and its interaction with A resulted
to be significant in all the analyzed cases. Temperature is expected
to have a positive effect since it favors the rupture of heterocyclic
ether bonds in the polysaccharides caused by protons (Aguilar
et al., 2002). Bower et al. (2008) also found that an interaction
between temperature and acid concentration exerted a negative
effect on sugar yields, what could be explained, again, by sugars
degradation to furfural and 5-hydroxymethylfurfural, mainly
(Chotěborská et al., 2004).

FS was only significant for RS response only in corn bran case,
being non-significant in all other cases. Generally, reducing the
feedstock particle size ought to improve mass transfer and increase
the available area to the acid reagent (Guo et al., 2008). However,
this effect was not obvious, and in corn bran case, the opposite
effect was observed: reducing the feedstock particle size decreased

Fig. 3. Histograms built registering the average value of the coefficient terms over
the ten GA cycles performed, for (A) G response, and (B) RS response, for the
chemical hydrolysis of wheat bran. Ti: time of hydrolysis, Te: temperature of
hydrolysis, P: pretreatment, FS: feedstock particle size, A: sulfuric acid concentra-
tion, AF: acid solution/feedstock ratio. Combinations factor/factor stand for the
interaction between 2 main factors.
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sugar yields. Moreover, an interaction between FS and AF was evi-
denced with a negative effect on sugar yield. It could be possible
that, for the particular case of corn bran, a larger feedstock particle
size favors a faster liberation of sugars, but the degradation is also
faster when the AF factor increases.

Since a higher AF value implies a higher acid concentration, A
and AF significances will be analyzed together. The sulfuric acid
concentration was found significant in all the cases for G response
with a negative effect; while AF was found significant only for RS
responses, but in all cases, it has a negative effect. This behavior
can be explained taking into account the following: at high acid
concentrations, the speed at which sugars degrade to furanes
increases to the extent that it can be 10-times the speed at which
polysaccharides depolymerize, especially for hemicelluloses, pro-
ducing the depletion of sugars yield (Sanchez et al., 2004). For RS
response, only in the pine sawdust case, contrarily, A exhibited a
positive effect, but Rahman et al. (2007) found the same effect on
oil palm empty fruit bunch acid hydrolysis. Thus, the results may
vary depending on the characteristics of the biomass being studied.

Finally, differences in effects on the responses G and RS were
observed when factors A and AF were analyzed for responses corn
bran and pine sawdust. This behavior can be attributed to that both
responses were measured using analytical methods which present
differences in their specificity.

3.2. Enzimatic hydrolysis

3.2.1. Pine sawdust
According to the classic PB analysis, only 2 factors among the 10

evaluated were significant for both responses: F (positive effect)
and E (positive effect). The corresponding p values, in the case of
G response, were 0.011 and 0.008 for F and E, respectively; while
for the case of RS response, the p value for F (positive effect) was
0.001, and 0.002 for E (positive effect). The value of the determina-
tion coefficients for both responses were R2 = 0.708 and R2 = 0.819
for G and RS responses, respectively.

When data were analyzed applying the GA approach, no differ-
ences were found to the previous analysis. Again, E and F resulted
to be the significant factors for both G and RS responses. In the case
of G response, the p values obtained were 3 � 10�4 and 8 � 10�5

for F (positive effect) and E (positive effect), respectively; while,
for RS response, they were 2 � 10�5 both for F (positive effect)
and E (positive effect). The main difference to classic PB analysis
was that, for both responses, the interaction between E and F, E/F
(positive effect), resulted to be significant (p = 5 � 10�4 and
p = 2 � 10�5 for G and RS, respectively). Thus, both fits were
improved: 33.5% in the case of G response (R2 = 0.945) and 20.8%
in RS response case (R2 = 0.989).

3.2.2. Corn bran
In analogy to the case of pine sawdust, only 2 factors resulted to

be significant for both responses, according to the classic PB anal-
ysis: F (p = 0.020 and p = 0.001 for G and RS responses, respec-
tively) (positive effect) and E (p = 0.031 for G, and p = 0.004 for
RS) (positive effect). Thus leading to determination values of
R2 = 0.617 and R2 = 0.799 for G and RS responses, respectively.

When applying the GA analysis, again a similar result was
obtained. For G response, F (p = 0.003) (positive effect), E
(p = 0.006) (positive effect) and their interaction E/F (p = 0.020)
(positive effect) were the significant factors affecting the response,
and the corresponding R2 = 0.800 implied an improvement of 29.7%
with respect to the classic PB analysis. In the case of RS response,
the analysis was quite similar due to the fact that again F
(p = 2 � 10�5) (positive effect), E (p = 4 � 10�5) (positive effect)
and E/F (p = 7 � 10�4) (positive effect) resulted to be the significant

factors implying a R2 = 0.948 which corresponds to an 18.6% in fit
improvement.

As in the pine sawdust case, both classic PB and GA analysis
identified the same significant factors for both responses.

3.2.3. Wheat bran
In reference to G response, the classic PB analysis outcome was

that F (p = 0.001) and E (p = 0.004) were the only two significant
factors giving a R2 = 0.806. In the case of RS response, again the
two significant factors were F (p = 3 � 10�4) (positive effect) and
E (p = 0.003) (positive effect) yielding a R2 = 0.844.

Analyzing the data with the GA approach, not much different
results were obtained: F (p = 2 � 10�5) (positive effect) and E
(p = 4 � 10�5) (positive effect) plus the interaction between them,
E/F (p = 5 � 10�4) (positive effect) resulted to be the significant fac-
tors in the case of G response. The resulting R2 = 0.952 showed an
18.1% of fit improvement with respect to the classic PB analysis.

If we now turn the attention to RS response, it has to be said
that something particular occurred: the GA approach obtained
the same conclusions of the classic PB analysis, i.e.: only F
(p = 2 � 10�4) (positive effect) and E (p = 0.001) (positive effect)
were the significant factors, with no interactions involved among
factors. Thus, obviously, GA yielded the same value for the deter-
mination coefficient, i.e.: R2 = 0.844.

3.2.4. Further analysis
Both classic PB and GA analyses identified the same significant

factors for both responses in the three cases being evaluated. Then,
if only the classic PB analysis would be applied, it would have led
to a right selection of the factors to be taken into account in a fur-
ther optimization step. This is because the interactions found to be
significant by GA analysis, did not occur between factors whose
linear contribution was not significant. Nevertheless, in all cases,
except for RS in wheat bran, all the determination coefficients
(R2) were improved, between 18% and 33%, by the application of
the GA approach, in comparison to the classic PB analysis. This
could be attributed to the fact that in all of these cases, an interac-
tion was missed by the classic PB analysis.

Only two factors were found as significants: feedstock concen-
tration and enzyme loading, plus their interaction (except in one
case). The concentrations of saccharides were increased as the
feedstock concentration was augmented, and no reversal on this
trend was evidenced, contrary to what was found by Jeya et al.
(2009), who tested feedstock (rice straw) concentrations between
0.75% and 3.75% and encountered that the saccharification ratio
was enhanced until a certain point beyond which the trend was
reversed, and Ferreira et al. (2009) who also found a similar behav-
ior working on rock-rose. Contrary to the study of Ferreira et al.
(2009), who took as response the ratio of glucose mass released
to dry biomass, in this study the responses were defined as concen-
trations. The reason for this is that there is a risk of underestimate
that ratio since the feedstock may contain moisture, perhaps in a
low proportion, but it would be introducing an error in the calcu-
lations. Furthermore, the greater the mass of feedstock, the greater
the amount of water present. Then, from our point of view, concen-
trations would be more reliable and representative responses for
the evaluation of the process.

The same behavior for feedstock concentration was found for
the enzyme loading. Many studies have evaluated the influence
of the cellulase loading in enzymatic hydrolysis. On the one hand,
Chen et al. (2007) demonstrated that in order to obtain high sac-
charides yields from corncob, cellulase loadings up to 150 FPU/g
feedstock were necessary. On the other hand, Lu et al. (2007)
reached the optimum at a cellulase dosage of 22 FPU/g feedstock.
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These studies demonstrate that different biomass subjected to
different pretreatment and enzymatic hydrolysis reaction condi-
tions, may lead to very different results.

The interaction between enzyme loading and feedstock concen-
tration also has a positive effect on the responses, as might be
expected since the enzyme adsorption on the substrate is the first
step of the cellulose hydrolysis process (Bansal et al., 2009).

The buffer type, pH, formal buffer concentration, stirring, time
of hydrolysis, pretreatment, feedstock particle size and PEG loading
were non-significant factors for neither the glucose concentration
nor the reducing sugars concentration.

Buffer type and buffer concentration resulted non-significant
variables, which can be related with an optimum environment
for enzyme activity since many possible combinations of this two
factors (in the evaluated ranges) are described extensively in
the bibliography for a large series of substrates. An exception is
the study performed by Ferreira et al. (2009), who reported a
negative effect on saccharides yield from broom hydrolysis when
increasing the buffer concentration from 0.01 mol L�1 to
0.25 mol L�1.

Time of hydrolysis and stirring being non-significant may
be attributed to the enzyme inactivation or lack of stability after
some time (Ferreira et al., 2009; Yang et al., 2009), or to the fact
that the saccharides are completely released when 24 h of hydroly-
sis are reached.

In respect of PEG loading, its significance may depend on sub-
strate lignin content: when the lignin content is high, the PEG load-
ing may be more significant than in the opposite case (Ferreira
et al., 2009). Lignin had been described to cause, by hydrophobic
interactions, unspecific and non-productive binding with cellu-
lases. Several studies reported improvements in the enzymatic
hydrolysis of lignocellulosic biomass with the supplementation
with surfactants (Kaar and Holtzapple, 1998) and polymers (Bor-
jesson et al., 2007), which were described to fill hydrophobic
regions in the lignin surface, preventing the adsorption of cellu-
lases, thus producing a higher availability of enzymes for cellulose
degradation (Borjesson et al., 2007). In this study, it can be said
that this effect was not obvious since PEG loading resulted to be
non-significant.

The non-significance of pH was an expected result since many
studies have demonstrated that sugar yields are very similar when
performing the enzymatic hydrolysis at pH 4 or pH 6, and that the
maximum value can be reached at pH between 4.6 and 5.3. Jeya
et al. (2009) applied response surface methodology in order to opti-
mize the hydrolysis conditions of rice straw and found that the sugar
yield has a parabolic dependence on pH, at least between 4 and 6,
with the optimum ca. 5.3. Ferreira et al. (2009) obtained similar
results working on rock-rose and broom, for which the optimum
pH resulted to be 4.8 and 4.5, respectively. Tangarone et al. (1989)
developed stability and activity studies on a cellulase isolated from
Trichoderma longibrachiatum. They showed that the optimum pH for
the enzyme activity was 4.8 and that beyond 4 and 6 decreases rap-
idly, while it was stable at pH between 4.5 and 9.3.

In reference to pretreatment, it has to be taken into account that
the substrate was previously subjected to another previous
pretreatment: milling. Thus, in this particular case, a physical pre-
treatment is enough to break the cellulose cristallinity in order to
obtain acceptable sugar yields (Sun and Cheng, 2002), with no need
of putting the milled substrates through a subsequent chemical
pretreatment.

Generally, reducing the feedstock particle size should improve
mass transfer and increase the accessible area available to the
enzyme (Guo et al., 2008). Nevertheless, the effect of feedstock par-
ticle size on the yield of glucose and reducing sugars was not
significant in this study and the results were similar with corn
and wheat bran, and pine sawdust. These results suggested that

feedstock particle size does not affect the performance of the enzy-
matic hydrolysis at an input size below 1 mm.

4. Conclusion

It can be concluded that the classic PB analysis, in some cases,
leads to wrong significant factors identification, since through
the application of a GA approach, it was demonstrated that even
if a factor results to be non-significant, it may be involved in a sig-
nificant interaction. Consequently, this factor should be included in
a further optimization step.

Moreover, the GA approach, by identifying significant interac-
tions between factors, generally improves the determination coef-
ficients, i.e.: the experimental data could be better fitted, in
comparison to the classic PB analysis.
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