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Abstract
Sesamoids are elements that originate as intratendinous structures due to genetic and epigenetic

factors. These elements have been reported frequently in vertebrates, although cranial sesamoids

have been recorded almost exclusively in non-tetrapod Osteichthyes. The only tetrapod cranial ses-

amoids reported until now have been the transiliens cartilage (of crocodiles and turtles), and another

one located in the quadrate-mandibular joint of birds. Here, we examined seven squamate species

using histological sections, dissections of preserved specimens, dry skeletons, cleared and stained

specimens, computed tomographies (CT), and report the presence of other cranial sesamoids. One is

attached to the cephalic condyle of the quadrate, embedded in the bodenaponeurosis and jaw

adductor muscles of Ophiodes intermedius (Anguidae). The other sesamoid is found at the base of

the basicranium of several squamates, capping the sphenoccipital tubercle, on the lateral side of the

basioccipital–basisphenoid suture. This bone has previously been reported as “element X.” We rein-

terpret it as a basicranial sesamoid, as it is associated with tendons of the cranio-cervical muscles.

This bone seems to have the function of resisting tension-compression forces generated by the

muscle during flexion the head. This element was previously known in several squamates, and we

confirmed its presence in three additional squamate families: Gymnophthalmidae, Gekkonidae, and

Pygopodidae. The evidence suggests that cranial sesamoids are a widespread character in squa-

mates, and it is possible that this feature has been present since the origin of the group.

K E YWORD S

basicranial sesamoid, element X, joints, quadrate sesamoid

1 | INTRODUCTION

Sesamoids are organized, intratendinous, or intraligamentous structures,

ranging histologically from unmineralized fibrocartilage to bone. They

are variable structures and the definition of the term is matter of discus-

sion (Haines, 1969; Jerez, Mangione, & Abdala, 2010; Le Minor, 1987;

Maisano, 2002; Pearson & Davin, 1921a, 1921b; Regnault, Hutchinson,

& Jones, 2016; Regnault, Jones, Pitsillides, & Hutchinson, 2016; Ret-

terer & Lelièvre, 1911; Romer, 1956; Samuels, Regnault, & Hutchinson,

2017; Sarin, Erickson, Giori, Bergman, & Carter, 1999; Vickaryous &

Olson, 2007). Achieving a consensus about a definition of the term ses-

amoid is beyond the scope of this work. We, therefore, refer to the def-

inition of Vickaryous and Olson (2007): “skeletal elements that develop

within a continuous band of regular dense connective tissue adjacent to

an articulation or joint.” Some sesamoids seem to form as a conse-

quence of mechanical stresses or forces (demonstrated by their absence

in paralyzed embryos) (Drachman & Sokoloff, 1966; Hosseini & Hogg,

1991; Kim, Olson, & Hall, 2009), whereas others appear genetically

determined (e.g., the patella or the palmar sesamoid) (Eyal et al., 2015;

Niven, 1933; Ponssa, Goldberg, & Abdala, 2010; Regnault, Hutchinson,

et al., 2016; Regnault, Jones, et al., 2016; Regnault, Pitsillides, & Hutch-

inson, 2014). Sesamoids are usually subject to compressive and tensile

forces associated with tendons. They can work as a pulley (e.g., the

patella in the knee joint), lever, or as a shock absorber (the patella in the

knee joint functions as a pulley and seems to protect the tendon from

the friction of the distal end of the femur) (Benjamin & Ralphs, 1998).
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Biomechanical advantages have been attributed to sesamoids,

such as increasing the moment arm of a muscle, protecting tendons as

they wrap around joints or bone edges, or improving the ability of ten-

dons to respond to compressive load, among many others (Jerez et al.,

2010; Nussbaum, 1982; Otero & Hoyos, 2013; Pearson & Davin,

1921a, 1921b; Ponssa et al., 2010; Regnault, Hutchinson, et al., 2016;

Regnault, Jones, et al., 2016; Samuels et al., 2017; Sarin et al., 1999;

Summers, Koob-Emunds, Kajiura, & Koob, 2003; Tsai & Holliday,

2011).

There has recently been a growing interest in sesamoids, and mod-

ern techniques have changed the classical view of sesamoids (Haines,

1969; Jerez et al., 2010; Le Minor, 1987; Maisano, 2002; Pearson &

Davin, 1921a; Romer, 1956; Sarin et al., 1999), facilitating the detec-

tion of these structures, and resulting in new discoveries that challenge

previous interpretations (Doherty, 2007; Eyal et al., 2015; Gauthier,

Kearney, Maisano, Rieppel, & Behlke, 2012; Ponssa et al., 2010;

Regnault, Hutchinson, et al., 2016; Regnault, Jones, et al., 2016; Tsai &

Holliday, 2011). For example, recent papers have presented data on

the development of sesamoids, showing that the formation of the

patella or the graciella occurs before the formation of the tendon, sug-

gesting possible genetic determination of the formation of these struc-

tures (Doherty, 2007; Eyal et al., 2015; Ponssa et al., 2010). Eyal et al.

(2015), using an innovative experimental design, showed that the

patella is already well developed when the quadriceps tendon is still

immature. It is also noteworthy that the near universal presence of

some sesamoids such as the palmar sesamoid in tetrapods (Abdala,

Manzano, Tulli, & Herrel, 2009; Jerez et al., 2010; Ponssa et al., 2010)

or the pisiform in Amniota (Fabrezi, Abdala, & Oliver, 2007; Jerez et al.,

2010), challenges the notion of sesamoids being highly variable struc-

tures. Previous studies have classified sesamoids according to their

relationship with their associated tendons (embedded, glide, etc.) (Jerez

et al., 2010; Vickaryous & Olson, 2007) and it cannot be excluded that

these functional differences may be correlated with their ontogenetic

trajectories.

Sesamoids have been described in several vertebrate groups,

including non-tetrapod Osteichthyes (Datovo & Bockmann, 2010;

Diogo, Oliveira, & Chardon, 2001; Summers et al., 2003), Anura

(Hoyos, 2003; Olson, 2000; Ponssa et al., 2010), Squamata (Haines,

1969; Jerez et al., 2010; Maisano, 2002; Otero & Hoyos, 2013;

Regnault, Hutchinson, et al., 2016; Regnault, Jones, et al., 2016), Aves

(Chadwick, Regnault, Allen, & Hutchinson, 2014; Hutchinson, 2002;

Regnault et al., 2014; Vanden Berge & Storer, 1995), and Mammalia

(Camasta, 1996; Davis, 1964; Doherty, 2007; Flower, 1885; Parsons,

1904; Pearson & Davin, 1921a, 1921b; Samuels et al., 2017; Scott &

Springer, 2016; Vickaryous & Olson, 2007). These elements, when

compared among different groups, exhibit remarkable differences in

their positions. The number of sesamoids is high in non-tetrapod

Osteichthyes, where these elements are found mainly in the skull

(Datovo & Bockmann, 2010; Diogo et al., 2001; Summers et al., 2003);

whereas in tetrapods, sesamoids are primarily known from the appendic-

ular skeleton (Chadwick et al., 2014; Doherty, 2007; Duncan & Dahm,

2003; Hoyos, 2003; Jerez et al., 2010; Joseph, 1951; Mohammed, 1988;

Otero & Hoyos, 2013; Parsons, 1904; Ponssa et al., 2010; Regnault,

Hutchinson, et al., 2016; Regnault, Jones, et al., 2016; Regnault et al.,

2014; Samuels et al., 2017; Vera, Ponssa, & Abdala, 2015), or in the pel-

vic girdle (e.g., frogs) (Emerson, 1982; Manzano & Barg, 2005; Ponssa

et al., 2010). Among tetrapods there are few reports of putative sesa-

moids in the skull: in the quadrate-mandible joint in the K�okako bird Call-

aeas cinerea (Burton, 1973; Stonor, 1942); the transiliens cartilage of

crocodiles and turtles (Holliday & Witmer, 2007; Iordansky, 1964; Schu-

macher, 1973; Tsai & Holliday, 2011); a cartilaginous sesamoid located

in the bodenaponeurosis of the adductor muscles of the jaw (Tsai & Hol-

liday, 2011); and between the basipterygoid and pterygoid bones of

some squamates (Gauthier et al., 2012).

The marked difference of skull sesamoids of non-tetrapod Osteich-

thyes compared to Tetrapoda may be due to the number of movable

joints (Iordansky, 1989), which require ligamentous and tendinous syn-

desmoses or sometimes synovial joints. These loose attachments of

the cranial bones in Teleostei produce a highly kinetic skull, allowing

for the specialized protractile feeding apparatus (Osse, 1985). The skull

of tetrapods has a generally reduced number of bones, connected

mainly by sutures, with the main movable units being the jaw, tongue,

and the head as a whole. Among diapsid reptiles, squamates have

developed movable amphikinetic skulls (Frazzetta, 1962, 1983, 1986;

Iordansky, 1966, 1990, 1996; Metzger, 2002).

Compared to other tetrapods, squamates possess a highly kinetic

skull (Frazzetta, 1962; Metzger, 2002); cranial mobility in squamates

may influence the occurrence of sesamoids associated with their differ-

ent mobile joints. In this article, we present new data of some cranial

elements that are widespread in several lizard taxa.

2 | MATERIALS AND METHODS

We examined and dissected adult members of seven squamate species

using a diversity of anatomical preparations (Appendix): histological

sections; dissections of ethanol preserved specimens; dry skeletons;

cleared, and stained specimens; high-resolution computed tomography

(HRCT); and optimized protocols for diffusible iodine-based contrast-

enhanced computed tomography (diceCT) (Gignac et al., 2016). The

main goal of this article is to demonstrate the presence of cranial sesa-

moids in squamate reptiles, and to show that these elements are devel-

oped in several higher-level groups. Our sample size for some of the

species is minimal; therefore, we do not intend to evaluate interspecific

variation, or to use these elements as traits that can serve to diagnose

species or clades.

For histological preparations, one formalin-fixed specimen of Ophi-

odes intermedius (FML 26455) was decalcified with formic acid, fol-

lowed by tissue dehydration using ascending solutions of ethyl alcohol

(75% to absolute). Tissue was cleared in xylene and embedded in paraf-

fin wax. Sagittal serial sections (6 lm thick) were stained using hema-

toxylin and eosin and Mallory’s trichrome (modified from Totty, 2002).

We also examined stained histological sections of the head of two

specimens of Diplometopon zarudnyi from the histological collection of
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Angus d’A. Bellairs (currently housed at Museum of Comparative Zool-

ogy at Harvard University).

Clearing and staining was conducted following the protocol of

Bauer (1986), and we examined multiple specimens prepared with this

technique (Appendix).

High-resolution computed tomographies (HRCT) of specimens

were obtained at the University of Texas High-Resolution X-ray CT-

Facility (Xradia MicroCT-scanner, Pleasanton, CA) and at the American

Museum of Natural History in New York City (GE phoenix v|tome|x

s240 system, Conroe, TX). All 3D-model rendering was performed

using Avizo Lite 9.0.0 (Visualization Sciences Group). DiceCT-

techniques were applied to render digital models of soft tissue associ-

ated with sesamoids in one Zygaspis. CT and diceCT-data sets and the

scanning settings are freely available on the online repository Morpho-

Source (http://morphosource.org/Project “Squamate cranial sesa-

moids” P338).

Dissections and skeletons of Amphisbaena bolivica were examined.

Two ethanol preserved specimens of Amphisbaena bolivica (FML

29585; 29586) were used to determine the location of element X and

its relationship to the connective tissue and muscles of the neck. Four

specimens of different sizes were examined to observe changes in ele-

ment X through ontogeny.

The presence of element X was mapped using parsimony using a

pruned metatree based on a recent molecular topology that includes

only living taxa (Gamble, Greenbaum, Russell, Jackman, & Bauer, 2012;

Gauthier et al., 2012; Martill, Tischlinger, & Longrich, 2015). The tree

was assembled in Mesquite Version 3.2 and characters were mapped

using pasimony (Maddison & Maddison, 2017).

3 | RESULTS

3.1 | The quadrate element of Ophiodes intermedius

(putative quadrate transiliens cartilage)

We consistently found an ovoid quadrate element in all examined

specimens of Ophiodes intermedius, located on the dorsal border of the

quadrate (Figure 1). The quadrate of Ophiodes is a large bone, with its

cephalic condyle capped by hyaline cartilage, and surrounded by a peri-

chondrium formed by fibrous connective tissue (Figure 2a); this peri-

chondrium is covered by the bodenaponeurosis of the jaw muscles and

contacts the quadrate sesamoid. The fibers of the bodenaponeurosis

originate on the paroccipital process, and extend anteriorly, wrapping

around the quadrate border, to end within the fibers of the adductor

musculature; they enclose an elongated mineralized fibrous element

(Figure 1a) that is loosely attached to the anterior part of the cephalic

border of the quadrate, just anterior to the articulation with the paroc-

cipital process. In a disarticulated skull it can be seen to be separate

from the bone (Figures 1b,c and 2b). The element consists of fibrocarti-

lage (Figure 2a,b), the collagen fibers of which have been mineralized

(Figure 2a); it is stained red by alizarin (in cleared and stained prepara-

tions; Figure 1) and by acid fuchsin (in histological sections with Mal-

lory’s trichrome stain; Figure 2). In transverse section the quadrate

element is lenticular, having a thickened central region and becoming

thinner at the anterior and posterior ends where it is continuous with

the fibers of the bodenaponeurosis with which it is associated. Ven-

trally, its smooth articular facet meets the chondral head of the quad-

rate within a synovial bursa (Figure 2b).

3.2 | Element X of amphisbaenians

The element X is wedged at the lateral margins of the basioccipital-

basisphenoid suture. Element X changes ontogenetically, beginning as

a cartilaginous structure in embryos, then becoming ossified in adults,

or in some cases, it fuses to the surrounding bones. The fusion seems

to be related to age (size); in Amphisbaena bolivica they are unfused in

the young (smaller) specimens, but are fused in the old (larger) speci-

mens (Figure 3).

Element X is the insertion point of the longus colli muscles that

originate on the cervical vertebrae (Figure 4a). These muscles have a

tendinous attachment (Figures 4 and 5) that fixes the muscular com-

plex to element X. This connection is a fibrocartilaginous enthesis

(Apostolakos et al., 2014) (Figure 6). The ventral surface of element X

FIGURE 1 Ophiodes intermedius, lateral views of cleared and stained disarticulated left quadrates showing the quadrate sesamoids.

Cartilages are stained in blue, calcified elements are stained in red. (a) FML 26303. (b) FML 26368. (c) No number, Teaching collection of
the C�atedra de Vertebrados of the Universidad Nacional de Salta. Anterior to the left
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faces slightly posteriorly, providing an almost perpendicular attachment

to the muscle fiber direction. This surface of element X is rugose, and

remains so even in specimens that undergo fusion to the basicranium.

When this element is discrete its osseous core is surrounded by carti-

lage bands, as seen in Amphisbaena alba (Montero & Gans, 1999) and

Diplometopon zarudnyi (Figure 6). The perimysium surrounding the mus-

cle attaches to element X in a circular way (Figure 4b), whereas on the

lateral exposure of the muscle it thickens into a distinct lateral tendon

(Figure 4c).

3.3 | Element X of other squamatans

We found evidence of the presence of unfused element X adjacent to

the basioccipital (Figure 7) in specimens of Gekkonidae (Chondrodacty-

lus bibronii and Chondrodactylus angulifer), Pygopodidae (Paradelma

orientalis), and Gymnophthalmidae (Calyptommatus leiolepis). In these

additional taxa these ossifications are topologically and functionally

equivalent to the amphisbaenian element X.

4 | DISCUSSION

The structures described herein have been recognized as present by

earlier authors, but their nature as sesamoids has not been commented

on. Both, the quadrate element of Ophiodes and element X in a diver-

sity of squamates meet the criteria normally indicative of sesamoids:

1. Sesamoids are embedded within tendons (i.e., Pearson & Davin,

1921a, 1921b; Ponssa et al., 2010; Regnault, Hutchinson, et al.,

2016; Regnault, Jones, et al., 2016; Regnault et al., 2014; Retterer

& Lelièvre, 1911; Vickaryous & Olson, 2007), excluding the sup-

port sesamoids, which serve as attachment of tendons (Jerez

et al., 2010). The quadrate element described in Ophiodes interme-

dius is embedded in the bodenaponeurosis, the main tendon of

the adductor muscles of the mandible, and element X serves as

attachment of the tendons and fibers of the longus colli muscle.

2. Several sesamoids are located in places where tendons bend or

wrap around a bony projection (usually, but not limited to, an

articulation), acting as a protection or an aide for the gliding of the

tendon when it moves (Sarin & Carter, 2000; Sarin et al., 1999).

The quadrate element is located where the bodenaponeurosis

wraps around the anterodoral corner of the quadrate, possibly act-

ing in a similar way.

3. Sesamoids are related to force-bearing regions, usually near joints

(Olson, 2000). The quadrate sesamoid is located where the pres-

sure of muscle contraction is high due to the bending of the ten-

don; element X is located in the place where the muscles of the

neck (longus colli) attach to pull down the head. These muscles are

particularly powerful in fossorial organisms such as amphisbae-

nians (Gans, 1980), in which element X is proportionally large

compared to other lizards (Gauthier et al., 2012).

4. Sesamoids are typically related to joints. The quadrate element is

related to the quadrate-otooccipital joint (directly affecting the

mandibular joint), and element X is related to the cranio-cervical

joints.

5. Sesamoids ossify, if at all, late in development (Chapman, 1972;

Prokopec, Pfeiferova, & Josifko, 1997). The quadrate element

does not ossify, remaining fibrocartilagous and only slightly miner-

alized in adult specimens and element X remains cartilaginous in

late embryos of Amphisbaena heterozonata (Montero, Gans, &

Lions, 1999), and ossifies only in adults (Gans & Montero, 2008).

Considering the above listed reasons, we infer that both structures, the

quadrate element and element X, are in fact sesamoids.

The skeletal element of Ophiodes intermedius provides a smooth

articular sliding surface for the bodenaponeurosis and is surrounded by

this aponeurosis, which is in fact a tendon (as its fibers are parallel and

closely packaged). From this reasoning, we describe this sesamoid as

FIGURE 2 Ophiodes intermedius (FML 26455), histological section
of the left quadrate region showing the quadrate sesamoid.
Anterior to the left. (a) General view of the quadrate region;
Mallory’s trichrome staining. (b) Histological section of the
quadrate region showing the quadrate sesamoid and its bursa;
hematoxilin and eosin staining
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FIGURE 3 Amphisbaena bolivica, specimens of different size (age). On the right side of each specimen, independent elements were
outlined with solid lines and the presumptive areas of fused element were outlined with dashed lines

FIGURE 4 Amphisbaena bolivica (FML 29586), muscles attached to element X. (a) The tongue and the associated superficial muscles were
cut out. (b) The muscle fibers were extracted, leaving the attachment of the perimysium to element X. (c) Most of the perimysium was
extracted, exposing the lateral tendon

MONTERO ET AL. | 5



an embedded sesamoid (Jerez et al., 2010; Vickaryous & Olson, 2007)

and we propose to name it the quadrate sesamoid.

The dorsal articulation of the quadrate involves several skeletal

elements in squamates: the proximal head of the quadrate itself; the

paroccipital process of the exoccipital; the squamosal when present;

the supratemporal when present; and the cartilage or intercalary ele-

ment (Evans, 2008; Jollie, 1960; Oelrich, 1956; Versluys, 1912). The

intercalary element is positionally similar enough to the quadrate

FIGURE 5 Zygaspis quadrifrons (FMNH 17751), the muscle longus colli (red colored) attaches, by means of a strong tendon (white), to the
area of the sphenoccipital tubercle. In this specimen, the sesamoid (element X) is fused to the basioccipital plate and to the
parabasisphenoid. DiceCT preparation, specimen courtesy of Dr. Patrick Lewis and Monte Thies

FIGURE 6 Diplometopon zarudnyi. (a) General view of a trasverse section of the skull at level of element X. (b) Detail of element X. Note
the chondral bands between the element and the surrounding bones. Element X is capped by ligaments. (A. Bellairs histological section;
Mallory trichrome; specimen Diplo III, slide 15)
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sesamoid to raise the question if they are the same structure. In the lit-

erature several structures related to the paroccipital process-quadrate

articulation have been called intercalary elements (or intercalare sensu

Jollie, 1960); but this does not mean they are necessarily homologous.

The intercalary element, or processus paroticus, is a derivate of the

dorsal process of the extracolumella (Bellairs & Kamal, 1981; Versluys,

1912). It usually lies over the posterior surface of the quadrate, close

to (or covering) the tip of the paroccipital process (Evans, 2008). The

intercalary element’s posterior position relative to the paroccipital pro-

cess makes this structure topologically non-homologous to the quad-

rate sesamoid. Other authors describe an intercalary as an osseus

structure located on the dorsal surface of the quadrate, anterior to the

paroccipital process (Broom, 1925, in Tiliqua scinoides; Brock, 1932, p.

523, in Lygodactylus; Kingman, 1932, in Eumeces schneiderii; Figure 8).

Topologically, this last element agrees with the quadrate sesamoid and,

therefore, its identity, homology, and characterization as a sesamoid

should be further investigated.

The quadrate sesamoid is in the same position as the cartilage

transiliens of chelonians, which is located over the trochlear process

(5 processus trochlearis oticum of Gaffney, 1972), and may sometimes

be ossified (the os transiliens of gopher tortoises) (Bramble, 1974; Ray,

1959). The functional mechanics of the os transiliens of turtles were

addressed by Bramble (1974) (Figure 9), and also may apply to the

quadrate sesamoid. The anterodorsal corner of the quadrate of Ophio-

des serves as a supporting point for the bending of the bodenaponeu-

rosis, similar to the turtle trochlear process. The synovial bursa of the

quadrate sesamoid would allow the element to slide anteriorly during

FIGURE 7 HRCT of three squamates showing different developments of Element X (Red). (a) Chondrodactylus angulifer (CAS 126466); (b)
Paradelma orientalis (CAS 77652); (c) Calyptommatus leiolepis (MZUSP 71156)

FIGURE 8 Eumeces schneiderii (AMNH R-57864), intercalary
element. Photo by William Gelnaw

FIGURE 9 Movements of the transiliens cartilage (in red) in
turtles with the mandible abducted and closed (Modified from
Bramble, 1974). The arrow indicates the resulting force applied by
the cartilage on the quadrate, when the mandible is closed
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abduction and posteriorly during adduction. These movements may

provide a lever system analogous to the patella in the knee. Therefore,

we conclude that the quadrate sesamoid is at least an analogue, and

potentially a homologue, of the transiliens cartilage of turtles. Crocody-

lians also have a transiliens cartilage that serves as a junction of the

tendon system of the musculature of the mandible but is related to the

surangular bone (Schumacher, 1973; Tsai & Holliday, 2011); therefore,

the homology of crocodile cartilage with that of turtles and of Ophiodes

is at least doubtful.

Element X in the basicranium of amphisbaenians and other squa-

mates are related to the ligaments of the neck muscles, because of

which we here refer to them as basicranial sesamoids. In amphisbae-

nians, the identity of these osseous elements in the base of the skull

(Figure 6) has been controversial (Gans, 1960, 1978; Jollie, 1960; Kest-

even, 1957; Lakjer, 1927; Montero & Gans, 1999; Vanzolini, 1951; Zan-

gerl, 1944). Because the homology of these elements with other bones

long remained unresolved, despite being discussed extensively, they

were given the name element X (Gans & Montero, 2008; Jollie, 1960;

Kesteven, 1957; Montero & Gans, 1999). Element X has been described

as a separate element in several species of amphisbaenians (Gans &

Montero, 2008; Gauthier et al., 2012), and for other amphisbaenians, in

TABLE 1 List of species with basicanial sesamoids (scored as ele-
ment X by Gauthier et al., 2012)

Iguania Anguidae

Uromastyx aegyptius Pseudopus (Ophisaurus) apodus

Physignathus cocincinus Celestus enneagrammus

Calotes emma Elgaria multicarinata

Leiosaurus catamarcensis Helodermatidae

Urostrophus vautieri Heloderma horridum

Gambelia wislizenii Heloderma suspectum

Dipsosaurus dorsalis Lanthanotidae

Chalarodon madagascariensis Lanthanotus borneensis

Oplurus cyclurus Varanidae

Phrynosoma platyrhinos Varanus salvator

Uranoscodon superciliosus Varanus acanthurus

Insertae sedis Varanus exanthematicus

Sineoamphisbaena hexatabularis Dibamidae

Mosasaurs Anelytropsis papillosus

Platecarpus sp. Dibamus novaeguineae

Teiidae Rhineuridae

Callopistes maculatus Spathorhynchus fossorium

Gerrhosauridae Dyticonastis rensbergeri

Cordylosaurus subtesselatus Rhineura floridana

Scincidae Bipedidae

Plestiodon (Eumeces) fasciatus Bipes biporus

Scincus scincus Bipes canaliculatus

Amphiglossus splendidus Trogonophidae

Shinisauridae Trogonophis wiegmanni

Shinisaurus crocodilurus Diplometopon zarudnyi

Xenosauridae Amphisbaenidae

Xenosaurus grandis Geocalamus acutus

Amphisbaena fuliginosa

FIGURE 10 Optimization of the presence of basicranial sesamoids
(Element X) in a squamate metatree (see methods for details).
Orange color indicates the presence of Element X, regardless of
size (which is enlarged in Amphisbaenia, Gauthier et al, 2012). Two
colored nodes indicate ambiguity for the presence of this element
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which they are fused to the occipital complex, their presumptive areas

are morphologically distinctive. In the embryology of Amphisbaena het-

erozonata, these elements remain cartilaginous and separated from the

nearby ossifications, even in advanced embryos; whereas, in grown

adults they appear not only osseous but fused to the basioccipital

(Montero et al., 1999). Therefore, fusion seems to be age dependent.

Element X seems to be relatively common in squamates. Gauthier

et al. (2012) considered element X as homologous to the bones capping

the basal tubera and treated this as an ordered character with different

degrees of development, defined as “Apophyseal ossification (Element

X) caps basal tubera” (Character 340). Element X was scored as being

present in 40 of their 192 species (Table 1); the optimization of the

character in their tree shows that element X appears repeatedly and

independently in several lineages. To add to these observations, here

we report them as being present in some other taxa, including Gym-

nophthalmidae and, for the first time, in Gekkota (Figure 10). Although

these additional observations are scattered, they increase the known

scope of the distribution of this character among squamates. However,

the restricted number of taxa for which element X has been reported

limits our ability to infer the character’s presence at some of the squa-

mate nodes. Considering the species listed in Figure 10, it appears that

several nodes are ambiguous, including the nodes of Squamata, Lacerti-

baenia, Anguimorpha, and Pleurodonta. The ambiguity of the squamate

node is determined by the presence of this structure in the Dibamidae;

however, because this element is also present in some more hierarchi-

cally inclusive groups within Squamata, we propose that its origin may

be traced to the base of the Squamata clade, and that it has potentially

been regained in several clades (e.g., Amphisbaenia, Scincidae, Angui-

morpha, among many others; Figure 10). In amphisbaenians it has been

postulated that the fusion of element X to the surrounding cranial

bones may be age-dependant (Gans & Montero, 2008; Montero et al.,

1999). This age-dependent fusion maybe widespread among squa-

mates, therefore, the recorded absence of this element may be biased.

More embryological data are needed to test this proposal.

In addition to the apophyseal interpetation of element X of Gauth-

ier et al. (2012), other authors (Gans, 1960, 1978; Montero & Gans,

1999) interpreted it as an epiphysis suitable for muscular attachment, a

perspective supported by histological and myological evidence (Al-Has-

sawi, 2007). Here, we interpret the element X as being a sesamoid.

These interpretations are not mutually exclusive and all may be correct.

There are many data that indicate that sesamoids are structures that

could be fused (Vaughan & France, 1986) or separated from other

bones, especially the epiphyses of long bones during ontogeny (Barnett

& Lewis, 1958; Broome & Houghton, 1989; Eyal et al., 2015; Hutchin-

son, 2002; Lewis, 1958; Parsons, 1904, 1908; Pearson & Davin, 1921a,

1921b). There is even a report of sesamoids being fused to each other

(Le Minor, 1988). Probably one of the most compelling work support-

ing the relationships between sesamoids, long bone epiphyses, and

apophyses is that of Eyal et al. (2015) which reports that in mouse

embryos the sesamoid patella initially develops as a process at the sur-

face of the femoral epiphysis. Later in the ontogeny the patella is sepa-

rated from the femur by a joint formation process guided by

mechanical load. Finally, the patella becomes embedded within the

quadriceps tendon. The same process but in the opposite direction has

been shown in many avian species (Barnett & Lewis, 1958; Hogg,

1980; Hutchinson, 2002). In these species the tibial tuberosity comes

from a separate ossification that fuses with the tibial proximal end

(Vickaryous & Olson, 2007). A similar process, finishing with the fusion

of the sesamoid and cranial bones, could also explain our observations

in amphisbaenians. We, thus, postulate that element X of amphisbae-

nians begins as a sesamoid at the onset of the ontogeny and, in some

species, it becomes fused to the occipital complex. This is congruent

with the old hypothesis associating sesamoids with traction epiphyses

(Parsons, 1908). Therefore, although our data do not allow us to rule

out the possibility that both the quadrate and basicranial sesamoids

may be interpreted as apophyseal ossifications or bony prominences,

to which tendons attach, the concepts are not mutually exclusive, and

it may be possible that element X and the quadrate sesamoid can be

both apophyseal ossifications and sesamoids.

The interpretations presented here suggest that cranial sesamoids in

squamates are more common than previously thought, and they have

remained unrecognized for years. Although these elements are not as

numerous as in fishes (Datovo & Bockmann, 2010), the possibility exists

that these observations might extend to more groups among tetrapods.
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APPENDIX: EXAMINED MATERIAL

The acronyms used are: AMNH: American Museum of Natural History;

CAS: California Academy of Science; FML: Herpetological collection of

the Fundaci�on Miguel Lillo; FMNH: Field Museum of Natural History;

MZUSP: Museu du Zoologia, Universidade de Sao Paulo.

1. Ophiodes intermedius (Anguidae), FML 26303: cleared and stained

specimen.

2. Ophiodes intermedius (Anguidae), FML no number, Capital-

Tucum�an-Argentina: cleared and stained specimen.

3. Ophiodes intermedius (Anguidae), FML 26368: cleared and stained

specimen

4. Ophiodes intermedius (Anguidae), Teaching collection of the

C�atedra de Vertebrados of the Universidad Nacional de Salta, no

number, no data: cleared and stained specimen.

5. Ophiodes intermedius (Anguidae), FML 26455: histological sec-

tions of the head.

6. Calyptommatus leiolepis (Gymnophthalmidae), MZUSP 71156:

HRCT-Scanned.

7. Amphisbaena bolivica (Amphisbaenidae), FML 29585 and

29586.

8. Amphisbaena bolivica (Amphisbaenidae), FML 3727; 2759; 3707;

0813: dry skulls.

9. Diplometopon zarudnyi. Two specimens (A. Bellairs histo-

logical sections; Mallory trichrome; specimen I, slide 15),

held at Museum of Comparative Zoology at Harvard

University.

10. Zygaspis quadrifrons (Amphisbaenidae), FMNH 17751: DiceCT-

Scanned.

11. Chondrodactylus bibronii, (Gekkonidae), CAS 173299: HRCT-

Scanned.

12. Chondrodactylus angulifer (Gekkonidae), CAS 126466: HRCT-

Scanned.

13. Paradelma orientalis (Pygopodidae), CAS 77652: HRCT-Scanned.

14. Eumeces schneiderii (Scincidae), AMNH R-57864: dry skeleton.
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