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EcoGenetics: R package for landscape genetics 

 

Abstract 

The integration of ecology and genetics has become established in recent decades, in hand with the 

development of new technologies, whose implementation is allowing an improvement of the tools 

used for data analysis. In a landscape genetics context, integrative management of population 

information from different sources can make spatial studies involving phenotypic, genotypic and 

environmental data simpler, more accessible and faster. Tools for exploratory analysis of 

autocorrelation can help to uncover the spatial genetic structure of populations and generate 

appropriate hypotheses in searching for possible causes and consequences of their spatial processes. 

This paper presents EcoGenetics, an R package with tools for multi-source management and 

exploratory analysis in landscape genetics. 
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Introduction 

From the second half of the 20th century, knowledge about populations has been growing due to 

important technological and theoretical advances. The information age, associated with the massive 

use of computers, has brought significant changes in science, with generation of large amounts of 

data, an increased capability for data visualization, exploration and processing, and the development 

of computational statistics, which have a direct impact on research activities. These changes have 

resulted in the emergence of landscape genetics (Manel et al. 2003), a discipline that amalgamates 

population genetics, landscape ecology and geostatistics (Storfer et al. 2007). 

 

A typical workflow in landscape genetics (Fig. 1) utilizes a series of steps where data are 1) 

imported into a suitable software, 2) stored, organized and formatted, 3) explored, transformed and 

visualized, 4) modeled, and finally 5) communicated. The organization of the data is an activity that 

demands an important portion of the researcher’s time as often 80% of data analysis is spent on the 

process of cleaning and preparing the information (Dasu & Johnson 2003; Wickham 2014). The 

generation of clean and organized datasets is a fundamentally important task during the analysis 

process. The R Project for Statistical Computing (R Core Team 2016) provides a powerful 

environment to accomplish this purpose. 

 

Exploration of spatial information of populations often relies on assumptions that do not fit the 

raw data well. Spatial and temporal structuring, two fundamental components in the functioning of 

ecosystems (Levin 2000), are quantitatively manifested in correlations between observations of a 

variable, violating the independence required by standard statistical tests. This phenomenon of spatial 

dependence is caused by a combination of endogenous and exogenous population processes. Spatial 

patterns in observations generated by endogenous processes, such as ecological drift and random 

dispersal (Legendre & Legendre 2012), appear as “Spatial Autocorrelation” (SA) in the data. 

“Autocorrelation” refers to the fact that a variable is correlated with itself (auto), while “spatial” 

indicates that this correlation depends on the location of observations. Spatially autocorrelated 

observations are characterized by being more or less similar (SA positive and negative, respectively) 

than would expected by chance (Fortin & Dale 2005; Legendre 1993). Spatial dependence promoted 

by exogenous processes occurs when a particular variable reflects the structure of one or more 

variables that are themselves autocorrelated. For example a spatial pattern in plants might be related 

to a moisture gradient (Fortin & Dale 2005; Legendre & Legendre 2012). Population geneticists work 

on the basis that spatial distribution of genetic variation often differ strongly from randomness or 

uniformity (Epperson 1993). This condition is captured by the term “Spatial Genetic Structure” 
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(SGS), defined as the non-random distribution of genetic variability in space. SA is an underlying 

foundation in population ecology and genetics, therefore, development of theory, methods and tools 

for assessing SA is a common objective to both disciplines. 

 

Global SA statistics and correlograms have become popular tools among population geneticists 

and ecologists after the publications of Sokal & Oden (1978a, b). Many research used correlograms to 

evaluate the relation between genetic similarity and geographical distance (Arnaud 2003; Loiselle 

1995; Smouse & Peakall 1999). SA methods were particularly applied to the analysis of fine-scale 

SGS (Hardy & Vekemans 1999; Vekemans & Hardy 2004). Local SA statistics as the LISA (Anselin 

1995) and Getis-Ord’s Gi and Gi* (Getis and Ord 1992; Ord and Getis 1998) are relatively recent 

tools that allow to discover local clusters of autocorrelated observations (Anselin 1995) using alleles 

or other variables. 

 

The need of integrating geographic, ecological and genetic data requires a platform for the joint 

management of information from different sources. This paper presents a package for landscape 

genetics called EcoGenetics, designed under the R language and statistical environment. The aim of 

the package is to provide flexible tools using a SA analytic framework to integrate, manage and 

explore spatially explicit population data, tailored to ecological and genetics research. With the 

definition of a new class of object for multi-source data storage and manipulation (ecogen), and a 

set of exploratory functions, the package facilitates the analysis of single and multiple variables from 

a broad range of data sources, in an attractive data visualization environment. 

 

Storing and organizing multi-source population data: ecogen objects 

EcoGenetics was constructed under the object-oriented S4 system of R. The “ecogen” class, a central 

element of the package, was designed for efficient and straightforward handling of multi-source 

information in the different stages of analysis. An object of this class is a data structure that behaves 

like an ordered “stack” of information. Each layer of the stack represents data from a different source 

stored in a slot, as described in Fig. 2A. Table 1 summarizes the main functions available for ecogen 

objects, which are overviewed in the following sections. A tutorial based on examples is available 

online in GitHub at https://leandroroser.github.io/EcoGenetics-Tutorial. 

Construction of ecogen objects  

First, with the command data(eco.test), five data frames and one ecogen object (eco) are 

added into the workspace: 

> library("EcoGenetics") 

> data(eco.test) 

> ls() 

[1] "coordinates" "eco" "environment" "genotype" "phenotype" "structure" 
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Each data frame in the workspace represents information from a different source for 

225 individuals: geographic coordinates (coordinates), codominant genetic markers 

(genotype), phenotypic variables (phenotype), environmental variables 

(environment), and population structure information (structure). The object eco was 

constructed with this set of data frames, using the ecogen constructor as follows: 

> eco <- ecogen(XY = coordinates, P = phenotype, G = genotype, E = 

environment, S = structure, type = "codominant", order.G = TRUE) 

> eco # The object is shown as a panel in the console (Fig. 2B) 

 

The construction of a valid ecogen object requires that all data frames with 

information from different sources have the same structure: columns represent different 

variables (according to data source), rows represent individuals, which must be in the same 

order, and row names identify the corresponding individuals. The constructor is flexible and 

offer options for data ordering and row names assignment, which are described in the online 

tutorial. Both codominant/dominant markers are accepted as genetic data. The package uses 

an internal genind object (Jombart, 2008), modified to work as a transitional data structure 

between data frames and the content of the G (genotypes) and A (alleles) data slots. 

Arguments available for the importation of genetic data are detailed in the EcoGenetics 

documentation. Specifically a description of the structure of an ecogen object can be 

obtained with the help("ecogen") command. 

 

Use of accessor functions with ecogen objects 

All the S4 objects of EcoGenetics have a set of accessor functions assigned, whose role is to get and 

set the content of the slots. Accessors have the following notation: a prefix (ecoslot.) followed by 

the name of the corresponding slot plus the name of the ecogen object in parentheses. For the object 

eco of the example, the corresponding accessors are: ecoslot.XY(eco), ecoslot.P(eco), 

and so on (Table 1). The correct assignment of content to the slot of an existent object is made with 

accessors; these special functions ensure a basic pre-processing and checking of the data when used in 

assignment operations. The object of the previous section can also be obtained with an approach 

based in accessors: 

> eco.temp <- ecogen() 

> ecoslot.XY(eco.temp) <- coordinates; ecoslot.P(eco.temp) <- phenotype 

> ecoslot.E(eco.temp) <- environment; ecoslot.S(eco.temp) <- structure  

> ecoslot.G(eco.temp, order.G = TRUE) <- genotype # ecoslot.G "set" mode 
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Note: ordered genotypes in slot G 

Accessors use is detailed in the online tutorial. 

 

Algebra of ecogen objects 

A set of operations are defined for the class “ecogen” with the purpose of multi-source data 

manipulation. These operations can be classified into “subset”, “split” and “combine” methods (Fig. 3 

and Table 1, Manipulation functions). Other useful standard functions are defined in Table 1. 

 

Conversion of ecogen objects from/to other formats 

EcoGenetics is able to import and export ecogen objects from/to other data formats, as listed in 

Table 1. The functions eco.convert and eco.format help to perform several operations with 

genetic data for easy conversion into other formats. Conversion operations are detailed in the online 

tutorial. 

 

Interactive data exploration 

EcoGenetics has main and auxiliary functions for data exploration. The core for exploratory analysis 

consists of a family of six main functions, as described in Table 2. Some functions compute several 

related statistics of the listed analyses for multiple variables. The set of characteristics provided by the 

package avoids the need to use different programs and loops for a different statistic or with multiple 

variables, thus reducing the number of programs required for a similar task. The several functions of 

the package have original methods for the presentation and extraction of the results. Plot methods 

make extensive use of the ggplot2 package (Wickham 2009) and JavaScript-based packages for 

interactive data visualization, as plotly (Sievert et al. 2016) for an interactive extension of ggplot2 

graphs. The following sections describe the different tools of the package. 

 

Spatial weights 

Spatial weights matrices are central elements in SA analysis. A spatial weights matrix W is a square 

positive matrix that defines the strength of the spatial relations between observations, assigning the 

value wij to the connection between individuals (i, j). In a binary weighting scheme, W corresponds to 

an adjacency matrix (“connection network”) indicating if the individual pairs (i, j) are connected (wij = 

1) or not (wij = 0). In other situations, W is a matrix assigning a value to the connection (i, j) using a 

model for the spatial relations (e.g., following an exponential decay with distance, up to a threshold 

distance d, where the weights are set to 0). Spatial weights matrices are obtained in EcoGenetics using 

the function eco.weight. Several weights construction methods are available in the function. 

Different plotting methods, interactive and non-interactive, are also available for weight objects. 

These aspects are detailed in the online tutorial. 
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Correlogram analysis 

A correlogram is a plot for a correlation coefficient as a function of the inter-individual distance. The 

definition of SA implies that “nearby observations are more or less similar than expectations by 

chance”. In a situation where a spatial pattern shows positive SA (as happens with many biological 

processes) the values of autocorrelation will tend to decrease with distance. The correlogram can then 

be used to characterize the spatial pattern. A trend from positive to negative values indicates a 

gradient in the data; fluctuation around the expected value of the statistic indicates patchiness. A 

description of other patterns can be found in Fortin & Dale (2005). Omnidirectional correlograms are 

constructed without taking into account a particular spatial direction. This standard method assumes 

that the autocorrelation patterns vary similarly with distance in all directions (isotropy). EcoGenetics 

also includes an approach to explore patterns that vary with direction (anisotropy) by the “bearing 

correlogram” method (Rosenberg 2000). The method can be used to construct directional 

correlograms and explore whether the data is likely to hold the isotropic assumption or not. For the 

creation of bearing correlograms, the weights matrices used in the analysis are rescaled by a factor 

that varies between 0 and 1, related with the direction pointed by the vector v connecting each pair of 

individuals (i, j). Each wij of the weights matrix W is recomputed as w’ij = wij cos 2 (ij - ), where ij 

is the angle that v forms with the positive x axis (due East) in counterclockwise direction, and the 

angle of the reference vector pointing in the direction of analysis, also with respect to due East. When 

ij = wij is weighted by 1 and w’ij = wij , On the contrary, when ij = ± /2, wij is weighted by 0 

and w’ij = 0. 

 

 

For single variables, the package supports the construction of correlograms based in Moran’s I 

(Moran 1950), Geary’s C (Geary 1954) and Bivariate Moran’s Ixy (Reich et al. 1994) statistics (Table 

2) by means of the function eco.correlog. Multivariate approaches for phenotypic traits can be 

obtained with Mantel and partial Mantel correlograms (Oden & Sokal 1986; Sokal 1986) using the 

function eco.cormantel. A multivariate method for genetic data is available with the function 

eco.malecot. Default options are set for codominant markers, using a kinship matrix based on 

Nason's Fij (Loiselle et al. 1995). A custom kinship matrix for codominant/dominant markers can also 

be imported. A plot can be obtained for all the standard correlograms with the function 

eco.plotCorrelog (Fig. 4A). Two types of output format can be selected for eco.correlog 

and eco.cormantel, when used to construct bearing correlograms for several successive angles. 

Angles can be fixed, and for each one a table is constructed containing distances and values of the 

statistic in columns (the independent and dependent variables of standard correlograms, respectively). 

In the second format, distance classes are fixed and for each one a table is constructed with angles and 

values of the statistic in columns. In this latter case, an angular correlogram or Bearing Plot (Falsetti 
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& Sokal, 1993; Rosenberg 2000) of the statistic in function of the successive angles can be 

constructed for each distance class with the function eco.plotCorrelogB (Fig. 4B).  

 

Global SA analysis 

Global statistics allow a global survey of the presence of SA in a data set. For uni- and bivariate 

approaches, EcoGenetics is able to compute and test the Moran’s I, Geary’s C, Join-Count and 

Bivariate Moran’s Ixy statistics with the function  eco.gsa (Table 2 and Fig. 4C). Multivariate 

methods are based on Mantel (Mantel 1967) and partial Mantel (Smouse et al. 1986) statistics 

(function eco.mantel). The use of Mantel test, widely adopted among population geneticists, is 

currently under active debate (Legendre & Fortin 2010; Guillot & Rousset 2013; Legendre et al. 

2015). Mantel test assess the hypothesis of absence of relationship between values in two dissimilarity 

matrices. Alternatives to this method are discussed in Legendre et al. (2015), who showed with 

simulated data that the power of Mantel test for detecting SA is low. This paper also indicated that 

regression using dbMEM (distance based Moran Eigenvectors Maps) should be more powerful than a 

Mantel test conducted with dissimilarity matrices for modeling the relationship between a response 

dataset (as a genetic matrix) and the geographical distance. EcoGenetics provides the possibility of 

performing a Mantel test with truncated distance matrices, an alternative with higher power than the 

classical Mantel test when there is a specific ecological or genetic dispersal model in mind (Legendre 

et al. 2015). A model can be proposed for example in a situation where the effect of distance among 

sites can only be perceived up to a certain distance where contagion, dispersal of propagules in plants, 

or migration in animals, no longer creates spatial correlation (Legendre et al. 2015). The function 

eco.mantel also accepts a weights object obtained with the function eco.bearing, which 

generates a directional weights object to compute a bearing Mantel test as performed by Falsetti & 

Sokal (1993). See the online tutorial for examples. 

 

Local SA analysis 

Local SA analysis is based on the computation of local SA statistics to study the similarity of each 

individual with its neighbors. This methodology allows to discover local clusters of autocorrelated 

observations (“hot” and “cold” spots, Anselin 1995) and can provide maps showing how SA varies 

geographically (Sokal & Thomson 2006). In addition, for Moran’s I and Geary’s C the local values 

represent a decomposition of the corresponding global statistic (Anselin 1995). This decomposition 

enables the identification of those groups of individuals that contribute most to the global analysis 

(Sokal & Thomson 2006). For each individual, a SA statistic is obtained using a weights object 

specifying its spatial relationship with others. Local SA statistics (Table 2) are computed and tested 

with the function eco.lsa. Plots for single or multiple variables can be obtained with the function 

eco.plotLocal (Figs 4D,E). 
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Integration of EcoGenetics in the R ecosystem 

Using ecogen objects to analyze the relations among data from different sources 

Different methods have been developed in several R packages for modeling multivariate multi-source 

data, including trend-surface analysis (Legendre 1990), distance-based Moran’s eigenvector maps 

(dbMEM, Borcard & Legendre 2002; Borcard et al. 2004; Dray et al. 2006) or asymmetric 

eigenvector maps (AEM, Blanchet et al. 2008). The analyses are carried out by using geographic 

functions derived from points coordinates as explanatory variables in multiple regression, multi-scale 

ordination, canonical analysis or variation partitioning among environmental and spatial components 

(Borcard et al. 1992; Borcard & Legendre 1994; Wagner 2004). The packages adespatial (Dray et al. 

2016) and vegan (Oksanen et al. 2016) offer a set of tools in R to work around these tasks. The use of 

ecogen objects combined with the function eco.formula, included in the package, can ease 

significantly the work with these tools. This function can create complex expressions with ecogen 

objects, acting as a proxy between the variables stored in ecogen objects and any other function able 

to use a formula as argument. The next examples illustrate the use of eco.formula with the 

function rda of the package vegan. The arguments that rda can take are X (a matrix of response 

variables, e.g., phenotypic traits), Y (predictor variables, e.g., environmental variables or alleles), and 

Z (conditioning variables, e.g., geographic coordinates or dbMEM’s). In its simplest version, when Y 

and Z are missing, the function performs a principal components analysis. If Y and Z are provided, the 

function performs a redundancy analysis.  

 

> require(adespatial); require(vegan) 

> # PCA analysis 

> pc <-rda(ecoslot.P(eco), scale=TRUE) 

> # RDA analysis, using dbMEMs as conditioning variables. First compute  

> # dbMEMs for eco in adespatial and store the result in slot C 

> eco_distance <- dist(ecoslot.XY(eco)) # create distance matrix 

> ecoslot.C(eco, use.object.names = TRUE) <- dbmem(eco_distance, thresh 

= 1, MEM.autocor = "positive") # compute dbMEMs and store in slot C 

> # Perform a RDA with vegan, using the first 20 dbMEMs, and the function 

eco.formula. U() is an auxiliary function interpreted by eco.formula; it 

includes in the formula all the variables of the slot within parentheses 

(see the help file of eco.formula for details). The function "Condition" is 

not interpreted by eco.formula: it is used to pass as conditional variables 

the dbMEMs between parentheses to "rda" 

> my_formula <- eco.formula(eco, P1 + P2 + P3 ~ E1 + E2 + U(A) + 

Condition(U(C[, 1:20]))) 

> my_formula # watch formula content 

> rda(my_formula) 
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Using ecogen objects and EcoGenetics methods in interaction with population genetics packages 

Genetic population analyses can be performed by several R packages. The package adegenet (Jombart 

2008) defines the “genind” class to manipulate genetic data and includes methods  for population 

genetics and multivariate analysis. From a genind object, adegenet can construct connection 

networks (e.g. Delaunay triangulation) that can be imported into EcoGenetics as eco.weight 

objects. The packages gstudio and popgraph (Dyer 2014) offer tools to work around exploratory 

analysis of population genetic data, with a generalized ggplot2 environment. The package hierfstat 

(Goudet & Jombart 2015) allows estimating hierarchical F-statistics and basic stats. The package 

poppr (Kamvar et al. 2014) has an interface to the amova functions of ade4 (Dray & Dufour 2007) 

and pegas (Paradis 2010), and provides methods to obtain genetic distances between individuals and 

the construction of minimum spanning networks. Examples of combined operations using 

EcoGenetics and functions of these packages are described in the online tutorial. 

Testing 

In addition to testing throughout development, EcoGenetics exploratory functions were cross-

compared with other available programs to ensure a correct performance, including the R packages 

spdep (Bivand & Piras 2015), vegan (Oksanen et al. 2016), ecodist (Goslee & Urban 2007), ncf 

(Bjornstad et al. 2016) and the Python spatial library PySAL (Rey & Anselin 2010). A series of 

benchmark tests (Supplemental Materials) were conducted in R using a laptop with Linux, a 2.20GHz 

Intel Core i7 CPU and 16GB of 1600MHz RAM. The tests of core functions of the package showed a 

performance comparable to other R programs (Supplemental Materials). For most population datasets, 

processing should be fast on a PC or laptop. 

Conclusion 

EcoGenetics contains tools for the integration of multi-source data and a generalized framework for 

exploratory SA analysis, with a cutting-edge data visualization environment. The package provides 

capabilities for analysis of several variables in many of its routines and a high flexibility during the 

analysis to support different configurations. Given the need of data integration, fast and easy 

manipulation of multi-source datasets, and adequate exploratory methods with the increasing rate in 

information volume, we expect our package to be widely useful in population genetics and ecology 

research. 

Data accessibility 

The stable version of the package and the reference manual are available in the CRAN repository 

(https://cran.r-project.org/web/packages/EcoGenetics). The sample datasets used in this work are 

included in the package. An introductory tutorial is available in GitHub at 

https://leandroroser.github.io/EcoGenetics-Tutorial/. 
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Supporting Information 

File S1 R script to run the benchmark tests performed in this paper. The program generates an HTML 

report with the running time of the tested functions. 

File S2 Non-parallel version of the vegan function “mantel_correlog”. 

File S3 Elapsed time (seconds) for the benchmark tests. 

File S4 PDF version of the online tutorial. 

 

Table 1 A summary of the functions available for ecogen objects. The first column (“Global 

objective”) indicates the main purpose of the group of corresponding functions, with the specific 

objectives in the second column. 

Global objective Specific objective Function name 

Configuration 

Constructor ecogen 

Set ecogen slots  
Data store: ecoslot.P<-, ecoslot.G<-, 

ecoslot.E<-, ecoslot.S<- 
Results store: ecoslot.OUT<-  

Set ecogen names names<-  

Access 

Data slots: using accessors 
Data store: ecoslot.P, ecoslot.G, 

ecoslot.A, ecoslot.E, ecoslot.S, 

ecoslot.C 
Data slots: using brackets “[[“, using “P”, “G”, “E”, “A”, “S” (e.g., eco[[“P”]]) 

Result slot: using accessors Results store: ecoslot.OUT 

Result slot: using brackets “[[“, using “OUT” 

Creation of formula with elements in object eco.formula 

Manipulation 

Subset 

Integer subset 

Logical subset 
“[“ 

Subset by group eco.subset 

Split 
Split into list of ecogen objects eco.split 

Split into ecogen objects in workspace eco.split 

Combine 

Bind by row eco.rbind 

Bind by column eco.cbind 

Merge objects eco.merge 

Visualization Show object show 

Description 

Object names names  

Number of rows in slots nrow 

Number of columns in slots ncol 

Dimension of object dim 

Check if object is of class “ecogen” is.ecogen 

Coercion to list as.list 

Conversion 

Import Export  

genind genind (Jombart 2008) ecogen2genind / genind2ecogen 

gstudio Gstudio (Dyer 2016) gstudio2ecogen / ecogen2gstudio 

Genepop Genepop (Rousset 2008) genepop2ecogen / ecogen2genepop 
SPAGeDi SPAGeDi (Hardy & Vekemans 2002) spagedi2ecogen / ecogen2spagedi 

--- Hierfstat (Goudet & Jombart 2015) ecogen2hierfstat 

--- Geneland (Guillot et al. 2005) ecogen2geneland 
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Table 2 Family of SA analysis functions included in EcoGenetics. The functions are based in one of 

two approaches: (1) a single statistic or (2) a correlogram. In the first case, the statistic can be 

computed globally across all samples, or locally for each sample and a set of relations with others, as 

determined by a connection network. In the second case, a statistic is recursively computed over a set 

of intervals. Supported data for each analysis are indicated in reference to the slots of ecogen objects: 

P (phenotypic variables), G (genotypes, binary data frame for dominant data, complete genotypes for 

codominant markers), A (counts per allele for codominant markers [0, 1, 2]), and E (environmental 

variables). Join-count analysis supports categorical data. 

 

Function Statistic name Reference # Var
1 Sup. data

2 Approach
3 Method Plot function 

eco.gsa 

Join-count 
Moran 1948;  

Cliff & Ord 1981 
U 

G(dom/codom), 

A (codom),  

categorical data 

SS Global 

Incorporated (univariate) / 

eco.plotGlobal 

(multivariate) 
Moran’s I Moran 1950 P, G (dom), 

A (codom), E 

 

Geary’s C Geary 1954 

Bivariate Moran’s Ixy Reich et al. 1994 B 

eco.lsa  

local Moran’s I Anselin 1995 

U 

P, G (dom), 

A (codom), E 

 

SS Local  eco.plotLocal 
local Geary's C Anselin 1995 

local Getis-Ord's 

Gi and Gi* 

Getis & Ord 1992; 

Ord & Getis 1995 

eco.mantel 
ordinary Mantel test Mantel 1967 

M 
P, G (dom), 

A (codom), E 
SS Global Incorporated 

partial Mantel test Smouse et al. 1986 

eco.correlog 

Moran’s I 
Moran 1950; 

Sokal & Oden 1978 
U 

P, G (dom), 

A (codom), E 

 

ODC / DC Global 
eco.plotCorrelog / 

eco.plotCorrelogB Geary’s C 
Geary 1954; 

Sokal & Oden 1978 

Bivariate Moran’s Ixy Reich et al. 1994 B 

eco.cormantel 
ordinary Mantel test Oden & Sokal 1986 

M 
P, G (dom), 

A (codom), E 
ODC / DC Global 

eco.plotCorrelog / 

eco.plotCorrelogB partial Mantel test Oden & Sokal 1986 

eco.malecot 

Loiselle’s kinship 

coefficent (Fij) – 

custom statistic 

Loiselle et al. 1995; 

Kalisz et al. 2001; 

Born et al. 2012 

M 
G (dom),  

A (codom) 
ODC / DC Global eco.plotCorrelog 

 

1. Number of variables. U univariate, B bivariate, M multivariate 
2. Supported data. codom codominant markers, dom dominant markers 
3. SS single statistic, ODC omnidirectional correlogram, DC directional correlogram (Rosenberg 2000) 
 
 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Fig. 1 A typical population data analysis routine. The representation is inspired in the Chapter 1.2 of 

Wickham and Grolemund (2016). Solid lines indicate the main direction of the pipeline, and striped 

lines other usual directions (as exportation and reorganization of the data after exploration). The 

routine usually requires several cycles of data exploration and modeling (gray box) before the 

communication of results.  

 

Fig. 2 Structure of an ecogen object. (A) ecogen data panel, as displayed in the R console. The 

sample data shown (“eco”, included in the package), is composed of a set of 255 individuals. The 

panel indicates the dimensions of each slot and additional data. The data frames constituting the 

content of data slots can be extracted with an accessor function, as indicated in the first lines of the 

panel. The following slots conform the object: slot XY, storing a data frame with geographic 

coordinates; slot P, storing a phenotypic data frame; slot G, storing a genotypic data frame; slot A, 

containing as matrix of counts per allele the information of G (only available for codominant 

markers); slot E, storing an environmental data frame; slot S, storing a data frame with structure 

information (hierarchies) assigned to the individuals; slot C, for a custom data frame; and slot OUT, 

containing a list for storage of results; (B) Abstract representation of an ecogen object with the four 

basic data frames (XY, P, G, E and S), where the complete set of layers behave as a “stack”. A point 

with (x, y) coordinates crossing the stack is indicated with an arrow. 

 

Fig. 3 Operations available for ecogen objects. (A) Object subsetting using single brackets; (B) 

Object subsetting by group (eco.subset); (C) Object splitting into groups (eco.split); (D) 

Union of objects by rows (eco.rbind); (E) Union of objects by columns (eco.cbind); (F) 

Intersection of two objects (eco.merge). 

 

Fig. 4 Examples of graphical outputs for different functions of the package. (A) Correlogram for 

multiple variables using the Moran’s I statistic, with confidence intervals obtained by jackknife; (B) 

Bearing Plot for Moran’s I. Periodic function of the Moran’s I and the distance classes against 

compass direction; (C) Plot for multiples variables with the global Moran’s I; (D) Plot for a univariate 

local analysis with the Gi* statistic in a simulated grid. The X and Y coordinates of the points were 

ranked, using the ranks as the new X and Y axes. This normalization step allows to plot the points in a 

scale-independent fashion to show all of them in a single image without overlapping. Red and blue 

filled circles indicate significant positive and negative values of autocorrelation, respectively. The 

significance was estimated by a permutation test with correction for multiple comparisons; (E) Plot 

for a multiple-variable extension of the analysis in image C. A matrix of individuals (horizontal axis) 

x variables (vertical axis) x Gi* values is represented as a heatmap. Positive and negative values with 

significant autocorrelation are indicated with red and blue colors. 
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