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Egg inundation often results in poor hatching success in crocodylians. How-
ever, how tolerant eggs are to submergence, and/or how eggshell
ultrastructure may affect embryo survival when inundated, are not well
understood. In this study, our objective was to determine if embryo survival
in Caiman latirostris is affected by eggshell surface roughness, when eggs are
submerged under water. Tolerance to inundation was tested early (day 30)
versus late (day 60) in development, using eight clutches (four per time
treatments), subdivided into four groups: (N =9 per clutch per treatment;
9 x 4 = 36 eggs per group). ‘Rough” eggshell represented the natural, unmo-
dified eggshell surface structure. ‘Smooth” eggshell surface structure was
created by mechanically sanding the natural rough surface to remove surface
columnar elements and secondary layer features, e.g. irregularities that
result in ‘roughness’. When inundated by submerging eggs under water
for 10 h at day 30, ‘smooth” eggshell structure resulted in more than twice
as many dead embryos (16 versus 6, smooth versus rough; N = 36), and
fewer than half as many healthy embryos (6 versus 13, smooth versus
rough, respectively; N = 36). By contrast, at day 60, inundation resulted in
very low hatching success, regardless of eggshell surface structure. Only
two hatchlings survived the inundation, notably in the untreated group
with intact, rough eggshells. Inundation produced a high rate of malfor-
mations (58% at day 30), but did not affect hatchling size. Our results
indicate that eggshell roughness enhances embryo survival when eggs are
inundated early in development, but not late in development. Apparently,
the natural surface ‘roughness’ entraps air bubbles at the eggshell surface
during inundation, thereby facilitating gas exchange through the eggshell
even when the egg is submerged under water.

1. Introduction

Embryonic mortality is high in different species of crocodylians, such as Alliga-
tor mississippiensis [1-3], Crocodylus porosus [4-6], C. niloticus [7], Caiman
crocodilus [8], Ca. yacare [9], C. johnstoni [10] and C. acutus [11]. Nest depredation
is a major cause of egg loss [12—15], but other factors such as weather, i.e. flood-
ing and/or drought, are also important sources of egg mortality. Nest
inundation is particularly significant in rainy years [3,12,16]. However, little
is known about the tolerance of the embryos to flooding [6,17], or if this toler-
ance could be altered by eggshell structure. As development occurs, the
eggshell gets thinner [18] and the number and size of pores increases [19,20].
These changes could be adaptations to avoid hypoxia, as hypoxia reduces
hatching success [21] and/or has subsequent adverse effects on hatchlings
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[22]. Furthermore, embryo tolerance to hypoxia changes
during development [21].

Female broad-snouted caiman (Ca. latirostris) lay eggs
from mid-December through January. After 70 days of incu-
bation (depending on temperature [23]), hatching occurs from
the end of February into mid-April [24]. Egg incubation
occurs during the warm and rainy months [25,26], increasing
the probabilities of embryonic death due to inundation.
Female broad-snouted caiman use floating vegetation for
nesting when available (they utilize the vegetation available
to make the mount nest), because depredation in floating veg-
etation is lower [13,15], and also inundation is minimized if
the nest floats on the water surface. During extreme rain
events, the floating vegetation absorbs some water, and con-
sequently, nests are sometimes inundated for short periods,
typically for hours rather than for days.

Previous studies have related egg structure to nesting
environment. Specifically, it has been suggested that orna-
mentation could have evolved to increase survival of
dinosaur eggs incubated in high humidity nesting environ-
ments [27,28]. We hypothesized that the roughness
(eggshell surface structure, microarchitecture of the outside
of the eggshell) of caiman eggs has evolved to increase egg
survival during these short-term inundations. Caiman eggs
are characterized by having calcite micro-ornamentations
with the form of columns or deposits that extend on different
highs and are irregularly connected with adjacent columns
[29]. On the eggshell surface, there are micro depressions
and craters, producing concavities. These surface structures
on the outer eggshell (craters and columns) form cavities.
Typically, pores are centred in these concavities [29]. During
inundation events, due to the superficial water tension,
such cavities facilitate the formation of air bubbles that
could improve embryo survival. Moreover, those structures
could cushion air bubbles against higher hydrostatic pressure
of water when eggs are submerged, compared with smooth
surfaced eggs, devoid of any outer eggshell ultrastructure
(M. S. Fernandez 2014, personal communication).

In this study, we investigated whether eggshell roughness
affected hatching success when C. latirostris eggs were exper-
imentally inundated for short time periods during early
versus late development. Eggshell surface features were
experimentally removed by sanding, creating a ‘smooth” egg-
shell surface which tended to minimize entrapment of air
bubbles at the outer eggshell surface during submergence
under water. We hypothesized that embryonic survival and
hatching success would be greater in eggs with surface
‘roughness’, and reduced for eggs ‘smoothed” by mechanical
sanding to remove surface irregularities.

2. Material and methods

Eight Ca. latirostris nests were collected from the wild within
Santa Fe province, Argentina in December 2014, as part of the
ranching programme ‘Proyecto Yacaré’. At the time of harvest,
egg viability was based on the presence of an opaque band
[30]. Nests were located by active search by researchers within
swamps on the floating vegetation and forest. Eggs were
marked, removed from the nest and transported in containers
(plastic tank of 20 1) to Proyecto Yacaré facilities (Laboratorio
de Zoologia Aplicada: Anexo Vertebrados-FHUC; UNL/MAS-
PyMA). In the laboratory, one egg per clutch was opened to
determine developmental stage; all eight nests were younger

than stage 4 (4 days of incubation at 31°C; [30]). Clutch size n

ranged from 37 to 40 per nest. The eight nests were randomly
separated into two groups of four clutches; each nest was split
into four treatments (nine eggs per nest per treatment).

Eggshell roughness was modified when the eggs were about
5 days old, by a gentle sanding of the eggs until they felt smooth
to touch. Sanding was done with a commercially available fine
sand paper of aluminium oxide grade 150 (from a hardware
shop) without rotating or changing the egg’s orientation, in
order to avoid mechanical trauma to developing embryos.
Once sanded, eggs were brushed so no abraded material was
able to fill pores (see figure 1a,b; SEM images of rough and
smooth eggshell were taken at Laboratorio de Microscopia Elec-
tronica (CICyTTP-CONICET). We weighed every egg before and
after removing eggshell structures. Incubation of eggs was at
32 + 1°C and high relative humidity (estimated over 90% RH,
but not measured). During incubation, each egg was positioned
with the bottom surface on vermiculite, and the top surface
covered with nesting material. Each egg was submerged under
tap water for a 10h period (at room temperature, approx.
25°C). Four nests were inundated when they were 30 days old,
and the other four nests inundated at 60 days of incubation.
We weighed (nearest 0.1g) every egg before the inundation,
those inundated were weighed again after the treatment, and
then completed their incubation in the same conditions as the
treatments that were not inundated.

Prior to hatching, we isolated every egg in order to identify
hatchlings. Once hatched, the snout-vent length (SVL) was
measured (precision 1mm) and weighed (0.1g). We also
recorded hatchlings with any abnormality or malformation,
such as not absorbed vitelline sac, swollen jowls, spinal cord
deformation and limbs absent/deformation (figure 2). Data on
hatching success were analysed with Mix General Lineal
Model, using the four treatments as fixed effects, nest or origin
was used as a random effect and we used hatching success
(hatch or not hatched, binomial mode) a dependent variable.
We performed two analyses, one for the 30 days group, the
other for the 60 days group. Data on body mass and hatchling
size were analysed with General Lineal Model, using the four
treatments as fixed effects, nest or origin was used as a
random effect and we used SVL and mass as dependent vari-
ables. We performed two analyses, one for the 30 days group,
other for the 60 days group. Using a Mixed General Lineal
Model, we tested eggs inundated at 30 days using the four treat-
ments as fix effects, nest or origin was used as a random effect
and we used malformation (healthy or malformed, binomial
mode) as the dependent variable.

3. Results

Egg sanding resulted in a weight reduction of 0.6 + 0.2 g
(range 0-1.6g), and did not affect embryo development,
because when not inundated, sanded (smooth eggs) and
not sanded eggs (rough eggs) had similar hatching success
(over 90%; p=0.3501). Sanding eggs did not affect egg
weight when inundated, sanded eggs increased 1.0 + 0.7 g
(range 0.2-4.2 g); control eggs increased 1.3 + 0.7 g (range
03-35g).

When submerged, eggs in which the outer eggshell sur-
face was intact (natural), and unaltered by sanding,
exhibited air bubbles (of different sizes) and they were dis-
tributed throughout the entire surface of eggshell, in
contrast with those that were ‘smoothed’ by sanding off the
outer irregularities (figure 1c,d). This observation supports
the hypothesis that shell outer surface architecture facilitates
trapping air bubbles during inundation. The entrapped air
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Figure 1. Enlarged cross-section (top, a,b) images of outer surface of a Caiman latirostris egg, rough’ surface (a) showing interconnected columns and thin sec-
ondary shell layer atop columns, and ‘smoothed’ outer surface after sanding (b) to remove irreqular features shown in upper left view. When submerged in water
(bottom, ¢,d) large and small air bubbles are evident on the rough surface (c) but not on the ‘smoothed’ surface that was sanded (d). SEM images from CICyTTP-
CONICET (Diamante, Entre Rios, Argentina). (Online version in colour.)

Figure 2. Malformations. Most common malformations were (a) spinal cord deformation, (b) limbs absent/deformation, (c) unabsorbed vitelline sac and (d) swollen
jowls. (Online version in colour.)
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Figure 3. Hatching success of Ca. latirostris eggs for the four treatments (rough eggshell-non-inundated (RENI), rough eggshell-inundated (REI), smooth eggshell-
non-inundated (SENI) and smooth eggshell-inundated (SEI)) when inundation occurs at 30 days (a), and at 60 days (b) of embryos’ development. Differences are

statistically at p-value lower than 0.05, and different letters indicate differences.

bubbles may act as oxygen reservoirs during submergence,
resulting in an increase in egg survival during these short
periods of flooding.

When inundated, at day 30, eggs with a ‘smooth’ eggshell
structure produced more than twice as many dead embryos
(16 versus 6, smooth versus rough; N =36 in each group),
and less than half as many healthy embryos (6 versus 13,
smooth versus rough respectively; N =36 in each group).
Inundated eggs with rough eggshells had a hatching success
similar to that of not inundated eggs; smooth eggs that were
inundated had lower hatching success than the other three
treatments (p = 0.0016; table 1 and figure 3). On the other
hand, at day 60 of embryo development, inundation
decreased hatching success in both groups (with or without
scraping eggshell surfaces) (the treatment smooth eggshell-
inundated was excluded from our analyses because no
caiman hatched from this group; p =0.0004; table 1 and
figure 3). Inundation (at day 30 or at day 60) or removal of
eggshell roughness did not influence morphometric charac-
teristics of hatchlings, all treatments presented similar SVL
and mass (at day 30 SVL p = 0.6612, mass p = 0.3011; and
at day 60 SVL p = 0.0644, mass p = 0.6534).

Inundation of eggs increases the percentage of malfor-
mations in hatchlings, independently if eggs are rough or
smooth (p = 0.0039, table 1). At 60 days, two caiman hatched
from rough eggshell inundated treatment; these two hatchl-
ings died soon after hatching. Embryos from all of the
smooth eggs that were inundated died prior to hatching
(table 1). The most common malformations on inundated
eggs were spinal cord deformation (11/31; figure 2a), limbs
absent/deformation (8/31; figure 2b) and unabsorbed vitel-
line sac (6/31; figure 2c). The most common malformations
on non-inundated eggs were unabsorbed vitelline sac
(10/16), and swollen jowls (4/16; figure 2d).

4. Discussion

Hatching success of eggs inundated at 30 days of incubation
with rough eggshells was similar to ‘non-inundated’ treatments
(with or without eggshell roughness). In the experimentally
‘smoothed’ eggs, in which the outer surface irregularities
were removed by sanding, hatching success was reduced by

Table 1. Number of healthy hatchlings and malformed hatchlings resulting
from four experimental treatments, rough eggshells inundated, and smooth
eggshells inundated; when inundation occurs at 30 day (italics) and at
60 days (bold) of embryos development. Experimental inundations of
10 h duration.

treatments healthy malformed
rough eggshell-non-inundated 25 7
rough eggshell-inundated 13 17
smooth eggshell-non-inundated 25 8
smooth eggshell-inundated 6 14
rough eggshell-non-inundated 33 0
rough eggshell-inundated 2 0
smooth eggshell-non-inundated 34 1
smooth eggshell-inundated 0 0

32% (compared with the mean of the other three treatments).
This indicates that the unaltered natural, ‘rough’ eggshell struc-
ture is possibly related to a normal egg’s ability to tolerate
inundations or other suboptimal conditions such as if nesting
material does not allow for proper gas exchange of the egg.

Sanding eggs did not affect egg weight when inundated,
sanded eggs increased 1.0 + 0.7 g (range 0.2-4.2 g); control
eggs increased 1.3 + 0.7 g (range 0.3-3.5 g). Because smooth
eggs did not increase their weight when inundated compared
with the rough eggs, this outer eggshell architecture seems to
have little effect on water interchange, relative to submergence
events. Larger embryos seem to be more susceptible to flood-
ing, since at 60 days of incubation, hatching success when
inundated was very low, less than 5% (figure 3b), irrespective
of eggshell roughness. In this study, we recorded a hatching
success higher than 90%, even in smooth eggs, when eggs
were not subjected to experimental flooding. This result indi-
cates that our procedure to remove eggshell roughness did
not affect the normal development of the embryos.

The relationship between embryo development and the
effect of inundation (larger, older embryos being more suscep-
tible) could be related to the higher oxygen demand of a
developing crocodylian embryo [21]; this has been also
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observed in other species [31-33]. Oxygen demand starts to
increase exponentially at about 60% of the incubation period
(day 43 approx.), and the peak demand for oxygen occurs
very late in development, i.e. at 90% of incubation (in our
case, estimated to be day 64 approx.; extrapolated from [34]).
However, there are certain limits to embryonic tolerance to
flooding, prolonged inundation will probably kill all embryos,
irrespective of its age/stage [1,6]. In the light of results pre-
sented here, a similar experimental protocol which tested
embryonic tolerance midway through development (at
approx. 45 days for this species), rather than early (30 days)
when oxygen demand is very low, or later in development
(60 days) when oxygen demand is very high might be more
instructive. It is likely that the shell architecture entrapping
air bubbles at the outer shell surface may be of maximum
benefit to embryos experiencing inundation during the
period of exponential increases in oxygen consumption
during this middle period, rather than during the initial stage
because at initial period oxygen demand is very low, or later
when oxygen demand is maximal, and demand is so high that
bubbles are unable to provide oxygen to embryos needs.

Our study demonstrated that in Ca. latirostris, the natural,
irregular outer shell architecture, characterized in this study
as a ‘rough’ eggshell surface, provides the embryo within the
egg with a higher tolerance to inundation, when compared
with the lower tolerance shown in eggs in which the outer
shell architecture has been experimentally removed by ‘sand-
ing’ off the irregularities consisting of columns and/or a
secondary shell layer. When submerged, embryonic death
could result from water entry into the egg or from lack of
oxygen, i.e. hypoxia. Our results support the idea that hatching
success is related to gas exchange via the eggshell surface layer.
‘Rough’ eggshells produced more and larger air bubbles than
‘smooth’ eggshells when submerged, thus providing an
oxygen reservoir during the brief time (hours rather than
days) when the nest is flooded (figure 1c,d). These bubbles
could also act as ‘bubble gills’ facilitating oxygen diffusion,
similar to ‘bubble gills’ of diving water insects and spiders.
According to Fernandez et al. [29], roughness originates from
the discontinuous superposition of calcareous layers, consist-
ing of adjacent columns of different heights on the
underlying shell surface. These columns are interconnected,
and overlaid in places with a secondary thin shell outer
layer. Additional structural and functional details of the shell
structure of C. latirostris are outlined in [18].

We note that as embryonic development proceeds, the
thickness of the calcareous layer of the eggs decreases (up to
20%), mostly after the middle third of incubation (day 50
approx.); similar observations have been made in other species
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