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Abstract

We study the behavior of strongly interacting matter under an external constant magnetic field

in the context of nonlocal chiral quark models within the mean field approximation. We find that

at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis

effect, our predictions being in good quantitative agreement with lattice QCD results. On the

other hand, in contrast to what happens in the standard local Nambu−Jona-Lasinio model, when

the analysis is extended to the case of finite temperature our results show that nonlocal models

naturally lead to the Inverse Magnetic Catalysis effect.

PACS numbers: 21.65.Qr, 25.75.Nq, 75.30.Kz, 11.30.Rd
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Over the last years the understanding of the behavior of strongly interacting matter un-

der extremely intense magnetic fields has attracted increasing attention, due to its relevance

for various subjects such as the physics of compact objects like magnetars [1], the analy-

sis of heavy ion collisions at very high energies [2] or the study of the first phases of the

Universe [3]. Consequently, considerable work has been devoted to study the structure of

the QCD phase diagram in the presence of an external magnetic field (see Refs. [4–6] for

recent reviews). On the basis of the results arising from most low-energy effective models

of QCD it was generally expected that, at zero chemical potential, the magnetic field would

lead to an enhancement of the chiral condensate (“magnetic catalysis”), independently of

the temperature of the system. However, lattice QCD (LQCD) calculations carried out with

physical pion masses [7, 8] show that, whereas at low temperatures one finds indeed such an

enhancement, the situation is quite different close to the critical chiral restoration temper-

ature: in that region light quark condensates exhibit a nonmonotonic behavior as functions

of the external magnetic field, which results in a decrease of the transition temperature

when the magnetic field is increased. This effect is known as inverse magnetic catalysis

(IMC). Although many scenarios have been considered in the last few years to account for

the IMC [9–28], the mechanism behind this effect is not yet fully understood. With this

motivation, in this work we study the behavior of strongly interacting matter under an ex-

ternal magnetic field in the framework of nonlocal chiral quark models. These theories are

proposed as a sort of nonlocal extensions of the well-known Nambu−Jona-Lasinio (NJL)

model, intending to go a step further towards a more realistic effective approach to QCD.

In fact, nonlocality arises naturally in the context of successful descriptions of low-energy

quark dynamics [29, 30], and it has been shown [31] that nonlocal models can lead to a mo-

mentum dependence in quark propagators that is consistent with LQCD results. Another

advantage of these models is that the effective interaction is finite to all orders in the loop

expansion, and therefore there is no need to introduce extra cutoffs [32]. Moreover, in this

framework it is possible to obtain an adequate description of the properties of light mesons

at both zero and finite temperature/density [31, 33–42]. A previous attempt of considering

the effect of an external magnetic field within these models was done in Ref. [43]. In that

work the magnetic field was introduced by using a simplified extension of the method usually

followed in the local NJL model, and no signal of IMC was found. In the present article we

concentrate on the analysis of nonlocal quark models with separable interactions, including
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a coupling to a uniform magnetic field. We address the problem by following a more rigorous

procedure based on the Ritus eigenfuncion method [44], which allows us to properly obtain

the corresponding mean field action and to derive the associated gap equation. Then we

solve this equation numerically for different values of the external magnetic field, considering

the case of systems at both zero and finite temperature. We find that at zero temperature

the behavior of the quark condensates shows the expected magnetic catalysis effect, our

predictions being in good quantitative agreement with LQCD results. On the other hand,

in contrast to what happens in the standard local Nambu−Jona-Lasinio model, when the

analysis is extended to the case of finite temperature our results show that nonlocal models

naturally lead to the IMC effect already at the mean field level.

Theoretical formalism

We begin by stating the Euclidean action for a simple nonlocal chiral quark model that

includes two light flavors,

SE =

∫
d4x

{
ψ̄(x) (−i/∂ +mc)ψ(x)−

G

2
ja(x)ja(x)

}
. (1)

Here mc is the current quark mass, which is assumed to be equal for u and d quarks. The

nonlocal currents ja(x) are given by

ja(x) =

∫
d4z G(z) ψ̄(x+ z

2
) Γa ψ(x−

z

2
) , (2)

where Γa = (11, iγ5τ⃗), and the function G(z) is a nonlocal form factor that characterizes the

effective interaction. Since we are interested in studying the influence of a magnetic field, we

introduce in the effective action Eq. (1) a coupling to an external electromagnetic gauge field

Aµ. For a local theory this can be done by performing the replacement ∂µ → ∂µ− i Q̂Aµ(x),

where Q̂ = diag(qu, qd), with qu = 2e/3, qd = −e/3, is the electromagnetic quark charge

operator. In the case of the nonlocal model under consideration the situation is more

complicated since the inclusion of gauge interactions implies a change not only in the kinetic

terms of the Lagrangian but also in the nonlocal currents in Eq. (2). One has

ψ(x− z/2) →W (x, x− z/2) ψ(x− z/2) , (3)

and a related change holds for ψ̄(x+ z/2) [31, 39, 42]. Here the function W (s, t) is defined

by

W (s, t) = P exp

[
− iQ̂

∫ t

s

drµ Aµ(r)

]
, (4)
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where r runs over an arbitrary path connecting s with t. As it is usually done, we take it to

be a straight line path.

To proceed we bosonize the fermionic theory, introducing scalar and pseudoscalar fields

σ(x) and π⃗(x) and integrating out the fermion fields. The bosonized action can be written

as [31, 42]

Sbos = − ln detD +
1

2G

∫
d4x

[
σ(x)σ(x) + π⃗(x) · π⃗(x)

]
, (5)

where

D
(
x+

z

2
, x− z

2

)
= γ0 W

(
x+

z

2
, x
)
γ0

[
δ(4)(z)

(
− i/∂ +mc

)
+

G(z)
[
σ (x) + iτ⃗ · π⃗ (x)

]]
W

(
x, x− z

2

)
. (6)

Let us consider the particular case of a constant and homogenous magnetic field orientated

along the 3-axis. Choosing the Landau gauge, the corresponding gauge field is given by

Aµ = B x1 δµ2. Next, we assume that the field σ has a nontrivial translational invariant

mean field value σ̄, while the mean field values of pseudoscalar fields πi are zero. It should

be stressed at this point that the assumption that σ̄ is independent of x does not imply that

the resulting quark propagator will be translational invariant. In fact, as discussed below,

one can show that such an invariance is broken by the appearance of the usual Schwinger

phase. Our assumption just states that the deviations from translational invariance that are

inherent to the magnetic field are not affected by the dynamics of the theory. In this way,

within the mean field approximation (MFA) we get

DMFA(x, x′) = δ(4)(x− x′)
(
−i/∂ − Q̂B x1 γ2 +mc

)
+

σ̄ G(x− x′) exp

[
i

2
Q̂B (x2 − x′2) (x1 + x′1)

]
. (7)

At this stage it is convenient to follow the Ritus eigenfuncion method [44]. Thus, we

introduce the function

DMFA

p,p′ =

∫
d4x d4x′ Ēp(x) DMFA(x, x′) Ep′(x

′) , (8)

where Ep are the usual Ritus matrices, with p = (k, p2, p3, p4). The r.h.s. of Eq. (8) can be

worked out, and after some calculation one arrives to a relatively compact expression for
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DMFA

p,p′ , which is shown to be diagonal in flavor space. For each flavor f = u, d one has

DMFA,f
p,p′ = (2π)4 δkk′ δ(p2 − p2

′) δ(p3 − p3
′) δ(p4 − p4

′)×[[
I+ δk0(∆

sf − I)
](

− sf

√
2k |qfB| γ2 + p3 γ3 + p4 γ4

)
+

∑
λ=−1,1

∆λMλ,f
p̄,k

]
, (9)

where we have defined sf = sign(qfB) and ∆λ = diag(δ1λ, δ−1λ, δ1λ, δ−1λ), whereas M
λ,f
p̄,k is

given by

Mλ,f
p̄,k = (−1)k−

1−λ sf
2

∫ ∞

0

dr r exp(−r2/2)
[
mc + σ̄ g

(
|qfB|
2

r2 + p̄2
)]

L
k−

1−λ sf
2

(r2) . (10)

Here g(p2) stands for the Fourier transform of G(z), p̄ = (p3, p4) is a two-dimensional vector

and Ln(x) are the Laguerre polynomials. We use the standard convention L−1(x) = 0,

hence M
−sf ,f
p̄,0 = 0. From Eq. (9) we finally find that the MFA action per unit volume can

be expressed as

SMFA
bos

V (4)
=

σ̄2

2G
−Nc

∑
f=u,d

|qfB|
2π

∫
d2p̄

(2π)2

{
ln

[
p̄2 +

(
M

sf ,f
p̄,0

)2
]
+

∞∑
k=1

ln

[(
2k|qfB|+ p̄2 +M−1,f

p̄,k M+1,f
p̄,k

)2

+ p̄2
(
M+1,f

p̄,k −M−1,f
p̄,k

)2
]}

. (11)

The corresponding gap equation can be now easily found by minimizing this expression

with respect to σ̄. It is worth mentioning that this gap equation can be also obtained using

the Schwinger-Dyson formalism for the quark propagator discussed in e.g. Refs. [45–47].

Actually, it turns out that the two point function in Eq. (9) can be casted into a form

similar to that given in Ref. [46]. Thus, using the analysis discussed in that work, one

can show that the associated quark propagator in coordinate space can be written as the

product of the exponential of a Schwinger phase (which breaks translational invariance)

times a translational invariant function.

The above results can be now extended to finite temperature using the Matsubara for-

malism. This amounts to perform the replacement∫
d2p̄

(2π)2
F (p̄2) → T

∞∑
n=−∞

∫
dp3
2π

F (p̄ 2
n) , (12)

where p̄n = (p3, ωn), ωn = (2n+1)πT being the Matsubara frequencies for fermionic modes.

In this way one can easily obtain the MFA finite temperature thermodynamical potential

ΩMFA, as well as the related gap equation. Given ΩMFA, the magnetic field dependent quark
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condensate for each flavor can be calculated by taking the derivative with respect to the

corresponding current quark mass. This leads to

⟨q̄fqf⟩B,T = −Nc |qfB|T
π

∫
dp3
2π

∞∑
k=0

∞∑
n=−∞

M−1,f
p̄n,k

[
p̄ 2
n + 2k|qfB|+M+1,f

p̄n,k

2
]

+ (+ ↔ −)(
2k|qfB|+ p̄ 2

n +M−1,f
p̄n,k

M+1,f
p̄n,k

)2

+ p̄ 2
n

(
M+1,f

p̄n,k
−M−1,f

p̄n,k

)2 . (13)

As it is usually found in the context of nonlocal models [38], this expression turns out

to be divergent beyond the chiral limit. We obtain a regularized condensate by subtracting

the corresponding expression in the absence of quark-quark interactions and adding it in a

regularized form. Thus we have

⟨q̄fqf⟩regB,T = ⟨q̄fqf⟩B,T − ⟨q̄fqf⟩freeB,T + ⟨q̄fqf⟩free,regB,T . (14)

Notice that “free” condensates are defined keeping the interaction with the magnetic field.

In the case of ⟨q̄fqf⟩free,regB,T the Matsubara sum can be performed analitically, leading to

⟨q̄fqf⟩free,regB,T = −Ncm
3
c

4π2

[
ln Γ(xf )

xf
− ln 2π

2xf
+ 1−

(
1− 1

2xf

)
lnxf

]
+

Nc|qfB|
π

∞∑
k=0

αk

∫
dp

2π

mc

ϵfk

[
1 + exp(ϵfk/T )

] , (15)

where xf = m2
c/(2|qfB|), αk = 2 − δk0 and ϵfk =

√
2k|qfB|+ p2 +m2

c . Finally, to make

contact with the LQCD results quoted in Ref. [8] we define the quantity

Σf
B,T =

2mc

S4

[
⟨q̄fqf⟩regB,T − ⟨q̄fqf⟩reg0,0

]
+ 1 , (16)

where the scale S is given by S = (135 × 86)1/2 MeV. We also introduce the definitions

∆Σf
B,T = Σf

B,T − Σf
0,T and ∆Σ̄B,T = (∆Σu

B,T +∆Σd
B,T )/2 .

Numerical results

To obtain the numerical predictions that follow from the above formalism, it is necessary

to specify the particular form of the nonlocal form factor. Here, for simplicity, we consider the

often-used Gaussian form g(p2) = exp(−p2/Λ2), where the effective scale Λ is an additional

parameter of the model. This form factor has the particular advantage that the integral in
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Eq. (10) can be performed analytically. One gets

Mλ,f
p̄,k = mc + σ̄

(1− |qfB|/Λ2)
k−

1−λ sf
2

(1 + |qfB|/Λ2)k−
1+λ sf

2

e−p̄2/Λ2

(17)

Numerical results at T = 0 are shown in Fig. 1. In the upper panel we quote the model

predictions for ∆Σ̄B,0 as function of eB for various model parametrizations, while in the lower

panel we show the corresponding results for Σu
B,0 −Σd

B,0. LQCD data from Ref. [8] are also

displayed in both cases for comparison. Note that the nonlocal model has three parameters,

namely, mc, G and Λ. They have been fixed so as to reproduce the empirical values of the

pion mass and decay constant, and to lead to a certain chosen value of the quark condensate

at zero temperature and magnetic field that we identify by Φ0 ≡ (−⟨q̄fqf⟩reg0,0)
1/3. Details of

this parameter fixing procedure can be found in Ref. [39], where the explicit values of the

parameters for Φ0 = 220 MeV and 240 MeV are given. As seen in Fig. 1, the predictions for

∆Σ̄B,0 are very similar for all parameterizations considered, and show a very good agreement

with LQCD results. In the case of Σu
B,0 − Σd

B,0 we see that, although the overall agreement

with LQCD calculations is still good, there is a somewhat larger dependence on the model

parametrization.

We turn now to our numerical results for the case of finite temperature. In the left panel

of Fig. 2 we quote the values obtained for ∆Σ̄B,T as a function of eB, for some representative

values of the temperature, while in the right panel we show the results for (Σu
B,T +Σd

B,T )/2

as a function of T , for some selected values of eB. All these values correspond to the

parametrization leading to Φ0 = 230 MeV, yet qualitatively similar results are found for the

other parametrizations under consideration. The plots in the left panel clearly show that,

in contrast to what happens at zero temperature, the quantity ∆Σ̄B,T does not display a

monotonous increase with eB when one approaches the chiral transition temperature [for

this parameter set one has Tc(eB = 0) = 129.8 MeV]. In fact, the curves reach a maximum

after which ∆Σ̄B,T starts to decrease with increasing eB, implying that the present nonlocal

model naturally exhibits the IMC effect found in LQCD. This feature can also be seen

from the results displayed in the right panel of Fig. 2. As expected, all curves show a

crossover transition from the chiral symmetry broken phase to the (partially) restored one

as the temperature increases. However, contrary to what happens e.g. in the standard

local NJL model [4–6], it is seen that within the present model the transition temperature

decreases as the magnetic field increases. To be more specific, let us define the critical
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Figure 1: Normalized condensates as functions of the magnetic field at T = 0. The curves corre-

spond to different model parametrizations identified by Φ0 = (−⟨q̄fqf ⟩reg0,0)
1/3. Full square symbols

correspond to LQCD results of Ref. [8]. Upper panel: subtracted flavor average; lower panel: flavor

difference [see Eq. (16) and text below].

transition temperature as the value of T at which the derivative ∂[(Σu
B,T + Σd

B,T )/2]/∂T

reaches a maximum. Since, as known from previous analyses [36, 38, 40], the present model

is too simple so as to provide realistic values for the critical temperatures even at vanishing

external magnetic field, for comparison with LQCD calculations we consider the relative

quantity Tc(B)/Tc(0). The corresponding results for our four parameterizations are shown

in Fig. 3, together with LQCD results from Ref. [8]. From the figure it is clearly seen that

for magnetic fields beyond eB ≃ 0.4 GeV2 all parameter sets considered here lead to a

decrease of the critical temperature when eB gets increased, i.e. in all cases the IMC effect

is observed. In fact, only for the case of Φ0 = 240 MeV a slightly opposite behavior is found

for lower values of eB. On the other hand, the strength of the IMC effect is rather sensitive

to the parametrization, the best agreement with LQCD corresponding to the parameter set

associated with the lowest value of Φ0 considered here.

To shed some light into the mechanism that produces the IMC effect in the
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present model it is important to note that the associated non-local form factor

turns out to be magnetic field dependent. This can be clearly seen in Eq.(10).

It is important to remind here that such form factors play the role of some fi-

nite range gluon-mediated effective interaction. Thus, in a way, this magnetic

field dependence follows from the backreaction of the sea quarks on the gluon

fields. Interestingly, as seen from Eq.(17), in the particular case of the gaussian

interaction a clear separation between parallel and transverse components can

be performed. It follows that while the 3, 4 (parallel) components preserve the

original exponential form (i.e. exp [−p̄2/Λ2]) the 1, 2 (transverse) part gives rise

to a polynomial dependence on B/Λ2. It is tempting to interpret such transverse

part as a sort of effective magnetic dependent coupling constant in the line of

those considered in e.g. Ref.[16] in the framework of the local NJL model. Of

course, one should proceed with some care since, contrary to what happens in

the case of the local NJL, here such coupling is not the same for all the Landau

modes. This important difference prevents a detailed comparison with the par-

ticular forms used in the local NJL calculations. In spite of this, the qualitative

relevant feature is that for any value of k the effective strength decreases as eB

increases in analogy to what happens with the B-dependent coupling constant

used in e.g. Refs.[16, 17], thus leading to the IMC effect in a similar way.

Summary and outlook

In this work we have studied the behavior of strongly interacting matter under an external

homogeneous magnetic field in the context of nonlocal chiral quark models. These theories

are a sort of nonlocal extensions of the local NJL model, intending to represent a step further

towards a more realistic modelling of QCD. We have found that at zero temperature the

behavior of the quark condensates under the external field shows the expected magnetic

catalysis effect, our predictions being in good quantitative agreement with LQCD results.

On the other hand, in contrast to what happens in the standard local NJL model at the mean

field level, when the analysis is extended to the case of finite temperature our results show

that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect. It is worth

stressing that in these models the current-current couplings turn out to be dependent on the

temperature and the magnetic field through the nonlocal form factors, which in principle
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Figure 2: Left: subtracted normalized flavor average condensate as a function of eB for different

representative temperatures. Right: normalized flavor average condensate as a function of the

temperature for different representative values of eB. Results in both panels correspond to Φ0 =

230 MeV.

follow from some finite range gluon-mediated effective interaction. Our results indicate that

this scheme seems to capture the main features of more sophisticated approaches to the

QCD dynamics in the presence of external magnetic fields, in which IMC is observed. In

this work we have just discussed the numerical results corresponding to a simple Gaussian

nonlocal form factor. Although numerically more involved, the extension to other form

factor shapes often considered in the literature (see e.g. Ref. [39]) is straightforward. A

detailed comparison of the predictions arising from different form factors, together with a

more extended presentation of the formalism, will be provided in a forthcoming article [48].

We point out, however, that the results we have already obtained using Lorenztian form

factors indicate that the presence of the IMC effect at finite temperature appears to be

a general feature of the present type of nonlocal models. It is also worth noticing that,

as a first step in this research line, we have considered here a simple version of nonlocal

models in which e.g. we have not incorporated interactions leading to quark wave function
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Figure 3: Normalized chiral restoration temperatures as functions of eB for various model

parametrizations. For comparison, LQCD results of Ref. [8] are indicated by the grey band.

renormalization, nor the coupling of fermions to the Polyakov loop. It is clear that the

inclusion of these interactions is important to provide a more realistic description of strong

interaction thermodynamics [40, 41]. We expect to report progresses in this direction in the

near future.
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