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a b s t r a c t

We study the origin of the universe (or pre-inflation) by suggesting that the primordial space–time in the
universe suffered a global topological phase transition, from a 4D Euclideanmanifold to an asymptotic 4D
hyperbolic one.We introduce a complex time, τ , such that its real part becomes dominant after started the
topological phase transition. Before the big bang, τ is a space-like coordinate, so that can be considered as
a reversal variable. After the phase transition is converted in a causal variable. The formalism solves in a
natural manner the quantum to classical transition of the geometrical relativistic quantum fluctuations:
σ , which has a geometric origin.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and proposal

The inflationary theory of the universe provides a physical
mechanism to generate primordial energy density fluctuations on
cosmological scales [1]. The primordial scalar perturbations drive
the seeds of large scale structure which then had gradually formed
today’s galaxies, which is being tested in current observations of
cosmicmicrowavebackground (CMB). These fluctuations are today
larger than a thousand size of a typical galaxy, but during inflation
were very much larger than the size of the causal horizon. Accord-
ing with this scenario, the almost constant potential depending of
a minimally coupled to gravity inflation field ϕ, called the inflaton,
caused the accelerated expansion of the very early universe. The
cosmic microwave background that we observe today is almost
isotropic. The background temperature is about 2.7 K with a tiny
fluctuation at a level of about 10−5 K. This is consistent with
measurements ofmatter structures in the universe at cosmological
scales, where the universe is almost homogeneous.

The theory that describes the earlier evolution of the universe
is called pre-inflation [2]. The existence of a pre-inflationary epoch
with fast-roll of the inflaton field would introduce an infrared
depression in the primordial power spectrum. This depression
might have left an imprint in the CMB anisotropy [3]. It is supposed
that during pre-inflation the universe begun to expand from some
Planckian-size initial volume to thereafter pass to an inflationary
epoch. Somemodels consider the possibility of an pre-inflationary
epoch in which the universe is dominated by radiation [4]. The

* Correspondence to: Departamento de Física, Facultad de Ciencias Exactas y
Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del
Plata, Argentina.

E-mail address:mbellini@mdp.edu.ar.

metric fluctuations can be studied as a more profound phenomena
in which the scalar metric fluctuations appear as a geometric
response to the scalar field fluctuations by means of geometrical
displacement from a Riemann manifold to a Weylian one, through
RQG. The dynamics of the geometrical scalar field is defined on
a Weyl-integrable manifold that preserves the gauge-invariance
under the transformations of the Einstein’s equations, that involves
the cosmological constant. Our approach is different to quantum
gravity. The natural way to construct quantum gravity models is
to apply quantum field theory methods to the theories of classi-
cal gravitational fields interacting with matter. Our approach is
different to quantum gravity because our subject of study is the
dynamics of the geometrical quantum fields [5].

With the aim to describe the origin of the universe during pre-
inflation we shall consider a complex manifold, in terms of which
the universe describes a background semi-Riemannian expansion,
with a line element for this case is

dŜ2 = ĝµνdx̂µdx̂ν
= e2iθ (t)dt̂2 + a2(t)η̂ijdx̂idx̂j, (1)

with the signature: (+, −, −, −). Here θ (t) =
π
2

a0
a , with a ≥ a0,

t is a real parameter time and H0 = π/(2a0) = 1/tp, such that
tp = 5.4 × 10−44 s is the Planckian time. Notice that the metric
(1) describes a complex manifold such that, at t = 0 the space–
time is Euclidean, but after many Planckian times, when θ → 0, it
becomes hyperbolic. We shall define the background action I on
this manifold, so that it describes the expansion driven by a scalar
field, which is minimally coupled to gravity

I =

∫
d4x

√
ĝ

[
R̂

16πG
+

[
1
2
φ̇2

− V (φ)
]]

, (2)

where
√
ĝ = ia3eiθ . The metric (1) is not sufficiently explicit to de-

scribe the transition to an inflationary universe from a topological
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Fig. 1. Plot of τ (t). The red line describes the real part of τ , and the blue line shows
the imaginary part of τ for H0 = 10−5 G−1/2 . Before the big bang, τ is a space-like
coordinate, so that canbe considered as a reversal variable. However, after the phase
transition it changes its signature and then can be considered as a causal variable
in the framework of a 4D space–time. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

phase transition, because t is not exactly the dynamical coordinate
that describes this transition.

2. Origin of time in the universe

The correct dynamical variable in (1) is: τ =
∫
eiθ̂ (t)dt , which

describes the time on the complex plane. The real part of τ is the
causal time, that increases linearly with t for t > 1/H0. However, it
is oscillating around zero, with increasing amplitude, for t < 0. On
the other hand, the imaginary part of τ oscillates around a fixed
value for t < 0, but it remains constant for t > 1/H0. In other
words, for t > 1/H0 the imaginary part of τ is freezed, so that its
real part increases and dominates to determinate the hyperbolicity
of space–time. The plot of the real and imaginary parts of τ can
be seen in the Fig. 1. Notice that for t ≫ 1/H0, we obtain that
τ → t . The idea is that τ to be a space-like coordinate before the big
bang, so that it can be considered as a reversal variable. However,
after a topological phase transitionwemust require that it changes
its signature and then can be considered as a causal (irreversible)
variable.

We shall consider a scale factor, related to a de Sitter expansion
in the t-dynamical scale:H0 = ȧ/a(t), such thatH(τ ) =

1
a(τ )

da(τ )
dτ =

H0 e−iθ̂ (τ ), is

a(τ ) = a0 e
Ei

[
1,i π2 a0e−H0τ

]
. (3)

Notice thatwehave used the fact that θ̂ (τ ) =
π
2

a0
a(τ ) . The expression

(3) for the scale factor written in terms of τ makes very difficult
to describe the cosmological dynamics of the universe. For this
reason, we shall search another variable to describe the dynamics
of this topological phase transition.

3. New dynamical variable and pre-inflation

A good candidate is the phase θ̂ . Since θ̂ (t) =
π
2 e

−H0t , we can
rewrite the metric (1), as

dŜ2 =

(πa0
2

)2 1

θ̂2

[
dθ̂

2
+ η̂ijdx̂idx̂j

]
. (4)

If we desire to describe an initially Euclidean 4D universe, that
thereafter evolves to an asymptotic value θ̂ → 0, we must require

that θ̂ to be with an initial value θ̂0 =
π
2 . Furthermore, the nonzero

components of the Einstein tensor, are

G00 = −
3

θ̂2
, Gij =

3

θ̂2
δij, (5)

so that the radiation energy density and pressure, are respec-
tively given in this representation by ρ(θ̂ ) =

1
2πG

3
(πa0)2

, P(θ̂ ) =

−
1

4πG
3

(πa0)2
. The equation of state for the metric (4), describes an

vacuum expansion: ω(θ̂ ) = −1. In this case the asymptotic scale
factor, Hubble parameter and the potential are respectively given
by

a(t) = a0 eH0t ,
ȧ
a

= H0 V =
3

8πG
H2

0 , (6)

so that the background field solution is given by a constant value:
φ(t) = φ0. This solution describes the field that drives a topological
phase transition from a 4D Euclidean space to a 4D hyperbolic
space–time.

3.1. Quantum back-reaction

In order to describe the exact back-reaction effects, we shall
consider Relativistic Quantum Geometry (RQG), introduced in [5].
In this formalism the manifold is defined with the connections1

Γ α
βγ =

{
α

β γ

}
+ σ α ĝβγ , (7)

where δΓ α
βγ = σ α ĝβγ describes the displacement of the Weylian

manifold [6] with respect to the Riemannian background, which
is described by the Levi-Civita symbols in (7). In our approach,
σ (xα) is a scalar field and the covariant derivative of the metric
tensor in the Riemannian background manifold is null (we denote
with a semicolon the Riemannian-covariant derivative): ∆gαβ =

gαβ;γ dxγ
= 0. The variation of the metric tensor in the sense of

(7)2: δgαβ , will be

δgαβ = gαβ|γ dxγ
= −

[
σβgαγ + σαgβγ

]
dxγ , (8)

where3

dxα
|B⟩ = ÛαdS|B⟩ = δx̌α(xβ )|B⟩, (9)

is the eigenvalue that results when we apply the operator δx̌α(xβ )
on a background quantum state |B⟩, defined on the Riemannian
manifold.4 We shall denote with a hat the quantities represented
on the Riemannian background manifold. The Weylian-like line
element is given by

dS2 δBB′ =

(
ÛαÛα

)
dS2 δBB′ =

⟨
B
⏐⏐δx̌αδx̌α

⏐⏐ B′
⟩
. (10)

Hence, the differential Weylian-like line element dS provides the
displacement of the quantum trajectories with respect to the

1 To simplify the notation we denote σα ≡ σ,α .
2 In what follows we shall denote with a ∆ variations on the Riemann manifold,

and with a δ variations on a Weylian-like manifold.
3 We can define the operator

x̌α(t, x⃗) =
1

(2π )3/2

∫
d3k ěα

[
bk x̌k(t, x⃗) + b†k x̌∗

k (t, x⃗)
]
,

such that b†k and bk are the creation and destruction operators of space-time, such

that
⟨
B
⏐⏐⏐[bk, b†k′]⏐⏐⏐ B⟩ = δ(3)(k⃗ − k⃗′) and ěα

= ϵα
βγ δ ě

β ěγ ěδ .
4 In our case the background quantum state can be represented in a ordinary

Fock space in contrast with LQG, where operators is qualitatively different from the
standard quantization of gauge fields.
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‘‘classical’’ (Riemannian) ones. When we displace with parallelism
some vector vα on the Weylian-like manifold, we obtain

δvα
= σ αgβγ vβdxγ , →

δvα

δS
= σ αvβ gβγ Ûγ , (11)

where we have taken into account that the variation of vα on the
Riemannian manifold, is zero: ∆vα

= 0. Hence, the norm of the
vector on the Weylian-like manifold is not conserved: δvα

δS
δvα

δS =

−

(
σ αÛα

)(
vγ Ûγ

)
(σ νvν) ̸= 0. However, the Weylian covariant

derivative [6] on themanifold generated by (7) is nonzero: gαβ|γ =

σγ gαβ . From the action’s point of view, the scalar field σ (xα)
is a generic geometrical transformation that leads invariant the
action [5]

I =

∫
d4x̂

√
−ĝ

[
R̂
2κ

+ L̂

]

=

∫
d4x̂

[√
−ĝe−2σ

] {[
R̂
2κ

+ L̂

]
e2σ

}
. (12)

Hence, Weylian quantities will be varied over these quantities in
a semi-Riemannian manifold so that the dynamics of the system
preserves the action: δI = 0, and we obtain

−
δV
V

=

δ

[
R̂
2κ + L̂

]
[

R̂
2κ + L̂

] = 2 δσ , (13)

where δσ = σµdxµ is an exact differential and V̂ =

√
−ĝ is the

volume of the Riemannian manifold. Of course, all the variations
are in theWeylian geometrical representation, and assure us gauge
invariance because δI = 0. The metric that takes into account the
quantum back-reaction effects is

gµν = diag
[(πa0

2

)2 e2σ

θ̂2
, −a2(t)

(πa0
2

)2 e−2σ

θ̂2
,

− a2(t)
(πa0

2

)2 e−2σ

θ̂2
, −a2(t)

(πa0
2

)2 e−2σ

θ̂2

]
, (14)

with a volume: V = V̂ e−2σ . The scalar curvature is altered due to
the quantum back-reaction effects:

R − R̂ = −3
[
∇µσµ

+ σµσµ
]
, (15)

such that the ∇-operator acts on the Riemann manifold.

3.2. Energy density fluctuations

The amplitude of energy density fluctuations are [7]: 1
ρ̂

δρ̂

δS =

−2
(

π
2a0

)
θ̂σ ′, where for σ ′

=
⟨
(σ ′)2

⟩1/2, such that
⟨
(σ ′)2

⟩
=

1
(2π )3

∫
∞

2
√
2ϵ/π d3k(ξk)′ (ξ ∗

k )
′. Here, the modes ξk must be restricted

by the normalization condition: (ξ ∗

k )
′ξk − (ξk)′ξ ∗

k = iθ̂2
(

2
πa0

)2
, in

order for the field σ to be quantized [5][
σ (x), σµ(y)

]
= i h̄Θµδ(4)(x − y). (16)

Here, Θµ =

[
θ̂2

(
2

πa0

)2
, 0, 0, 0

]
are the components of the

background relativistic 4-vector on the Riemann manifold. The

equation of motion for the modes of σ : ξk(θ̂ ), is

ξ ′′

k −
2

θ̂
ξ ′

k + k2 ξk(θ̂ ) = 0, (17)

where the prime denotes the derivative with respect to θ̂ . The
quantized solution of (17) results to be

ξk(θ ) =
i
2

(
π

2a0

)
k−3/2 e−ikθ̂

[
kθ̂ − i

]
. (18)

Therefore, since ϵ ≪ 1 and k0(θ̂ ) =

√
2

θ̂
, the amplitude of density

energy fluctuations on super Hubble scales, become⏐⏐⏐⏐ 1ρ̂ δρ̂

δS

⏐⏐⏐⏐ =
πϵ2

4
√
2a20

, (19)

which is a constant.

4. Conclusions

We have solved in a natural manner the quantum to classical
transition of the geometrical relativistic quantum fluctuations: σ ,
which has a geometric origin. The modes of σ with wave number
k > k0(θ̂ ) are stable and oscillate, but modes with k < k0(θ̂ )
are unstable. Notice that at the beginning of pre-inflation k0(θ̂ =

π/2) =
2
√
2

π
, so that almost all the spectrum is stable, but with

the transition from an Euclidean to an hyperbolic space–time, the
modes become unstable on almost all the range of the spectrum
as θ̂ → 0. This quantum-to-classical transition can be seen in
the evolution of the commutator (16), which is proportional to θ̂2,
so that it becomes null with the expansion of the universe. This
means that our formalism of pre-inflation describes in a natural
manner the quantum-to-classical transition of the geometric rela-
tivistic quantum fluctuationsσ . Therefore, the causal time emerges
simultaneously with the classicality of the fluctuations. It can be
seen in the Fig. 1, where the ℜ [τ (t)] is begins to increase with
the expansion of the universe, but ℑ [τ (t)] remains frozen. It is
very interesting to notice that limℜ [τ (t)]t→∞ → t , so that, both
ℜ [τ (t)] and t become indistinguishable with the increasing of the
universe.
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