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ABSTRACT
We analyse the clustering of cosmic voids using a numerical simulation and the main galaxy
sample from the Sloan Digital Sky Survey. We take into account the classification of voids
into two types that resemble different evolutionary modes: those with a rising integrated den-
sity profile (void–in–void mode, or R–type) and voids with shells (void–in–cloud mode, or
S–type). The results show that voids of the same type have stronger clustering than the full
sample. We use the correlation analysis to define void clumps, associations with at least two
voids separated by a distance of at most the mean void separation. In order to study the spa-
tial configuration of void clumps, we compute the minimal spanning tree and analyse their
multiplicity, maximum length and elongation parameter. We further study the dynamics of
the smaller sphere that encloses all the voids in each clump. Although the global densities of
void clumps are different according to their member–void types, the bulk motions of these
spheres are remarkably lower than those of randomly placed spheres with the same radii dis-
tribution. In addition, the coherence of pairwise void motions does not strongly depend on
whether voids belong to the same clump. Void clumps are useful to analyse the large–scale
flows around voids, since voids embedded in large underdense regions are mostly in the void–
in–void regime, were the expansion of the larger region produces the separation of voids.
Similarly, voids around overdense regions form clumps that are in collapse, as reflected in the
relative velocities of voids that are mostly approaching.

Key words: cosmology: observations – large scale structure of Universe

1 MOTIVATION

The structure of the mass distribution in the Universe at large scales
can be described as a network with a typically filamentary structure,
which intersect forming even denser clumps, the preferred places
where galaxy clusters are formed. The origin and evolution of this
arrangement can be understood in the framework given by the cos-
mological models, and supported by observational evidence (e.g.
Liddle 2003; Dodelson 2003) which depict nearly the same pic-
ture of hierarchical structure formation (Padmanabhan 1993; Pee-
bles 1993). Among the currently discussed scenarios in the litera-
ture, the concordance ΛCDM is the preferred model at the present,
given its ability to predict a large variety of observed phenomena
(Weinberg 2008). As the Universe evolves, mass is accreted onto
the densest concentrations, giving rise to large empty regions in the
distant future (Dünner et al. 2006; Araya-Melo et al. 2009; Pearson
2015). A different picture of the same process is obtained by look-
ing at the initial low density fluctuations that become increasingly
emptier, larger and rounder, as mass flows towards dense regions.
These two pictures are complementary and manifest in the large–
scale distribution of matter (Einasto et al. 1986, 1997), producing a
filamentary–void network (e.g. Matsuda & Shima 1984; Way et al.
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2011; Icke & van de Weygaert 1991; Leclercq et al. 2015). Accord-
ing to this scenario, not only large–scale flows of mass play a key
role in shaping the largest structures, but also they are intimately
connected to the mass distribution itself. This reflects the recipro-
cal action between the source of gravity and the forces it produces,
as described by the field equations of general relativity. The scales
at which this action can be detected are considerable large (Watkins
et al. 2009; Feldman et al. 2010; Nusser et al. 2011; Turnbull et al.
2012). According to this model, large–scale flows of mass play a
key role in forming the largest structures and shaping the cosmic
web, and its effects can be detected up to considerable large scales
(Frisch et al. 1995; Watkins et al. 2009; Feldman et al. 2010; Nusser
et al. 2011; Turnbull et al. 2012).

In Lambas et al. (2016) we reported the motions of cosmic
voids as a whole, which also show a strong coherence pattern as-
sociated to the void velocity field up to large cosmological scales,
both in simulations and observations. This effect strongly depends
on the type of void considered, with a void–in–void and void–in–
cloud classification scheme proposed by Sheth & van de Weygaert
(2004) that distinguish the internal dynamical behaviour (Paz et al.
2013) according to their environment (Ceccarelli et al. 2013). The
coherence pattern in the relative velocities is twofold once voids are
divided according to this classification: void coherent bulk veloci-
ties define a bimodal dynamical population of mutually attracting
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2 Lares et al.

Figure 1. Autocorrelation functions of voids, using the full sample (grey
lines), S–type voids (diamonds) and R–type voids (squares), for simulation
(solid lines, filled symbols) and SDSS data (dashed lines, empty symbols).
Distances are in units of h−1 Mpc, in real space for the simulation and in
redshift space for SDSS data. Error bars correspond to uncertainties com-
puted by means of Jackknife resampling.

(for shell like voids) or receding (for voids embedded on large-
scale underdensities) systems. We argue that these global motions
contribute to imprint large scale cosmic flows that will shape the
formation of structures in the distant future.

In what follows, we recap the properties of the catalogues
of voids and study the clustering of voids by computing the 2–
point autocorrelation function of voids (Sec. 3). Given the signif-
icant correlations between voids, a percolation algorithm is suit-
able to identify conspicuous groups of voids. We then analyse these
groups, which we call “void clumps”, through their geometrical and
dynamical properties (Sec. 4). The dynamical behaviour of void
clumps is not equivalent to other regions of the same volume cen-
tred in random locations (Sec. 5). Thus, we explore the global dy-
namics of the regions occupied by the clumps and their internal
motions of mass as a function of the type of voids which compose
the clumps. Finally, in the Sec. 6, we discuss the results in the con-
text of the hierarchical structure formation scenario.

2 DATA

In this section we describe the galaxy catalogues, both observed
and simulated, and the void identification algorithm used in this
work.

2.1 Galaxy catalogues

We use the Main Galaxy Sample of the Sloan Digital Sky Survey
Data Release 7 (SDSS-DR7, Abazajian et al. 2009). This sample

counts with nearly a million of galaxies with spectroscopic mea-
sures, redshifts up to z 6 0.3 and an upper apparent magnitude in
the r-band of 17.77. For this Main Sample, we select galaxies with
a limiting redshift z = 0.08 and a maximum absolute magnitude in
the r-band of Mr − 5 log10(h) = −19.1. This guaranties a volume
complete galaxy sample at that redshift. The SDSS velocity field
we consider, corresponds to the peculiar velocity field derived by
Wang et al. (2009, 2012), where the authors employed the linear
theory relation between mass overdensities and peculiar velocities
to reconstruct the 3D velocity field of galaxies. A detailed analysis
of the effects of the linearised velocity field in estimating void bulk
velocities in the observational sample can be seen in the Appendix
of Ceccarelli et al. (2016).

We also use the semi-analytical galaxies presented by Guo
et al. (2011), which were constructed by applying the Munich semi-
analytic model (SAM) of galaxy formation to the dark matter only
Millennium Simulation (MS, Springel et al. 2005). The MS counts
21403 dark matter particles evolved from z = 127 to z = 0 in a
cubic comoving volume of (500h−1 Mpc)3. The cosmological pa-
rameters used in the MS correspond to a ΛCDM flat cosmology
with Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.045, σ8 = 0.9, h = 0.73 and
n = 1.0. This parameters are consistent with the WMAP1 results
(Spergel et al. 2003). The galaxy catalogue of Guo et al. (2011) is
public available at the Millennium Database1.

In order to make a fair comparison between observations and
the simulated data, we analyse SAM galaxy samples with the same
number density than the observed galaxy distribution (see e.g. Con-
treras et al. 2013, 2015). Using the same magnitude cut in the SAM
galaxies than in SDSS does not guaranties the same number den-
sity, because of the differences between their luminosity functions.
Instead, we select all SAM galaxies brighter than Mr − 5 log10(h) =

−19.7, which guarantees the volume density needed.

2.2 Void identification

The identification of voids was performed following the procedures
described in Ruiz et al. (2015), which is a modified version of the
algorithms presented in Padilla et al. (2005) and Ceccarelli et al.
(2006).

The identification starts using the galaxy catalogues as trac-
ers of the density field and constructing a contrast density field
estimation using a Voronoi tessellation, selecting as void candi-
dates all the underdense cells with a density contrast bellow −0.8.
We identify voids both in a numerical simulation and in the SDSS
data. Centred in these underdense cells, we compute the integrated
density contrast ∆(r) at increasing values of radius r, and select
as void candidates the largest spheres which satisfy the condition
∆(Rvoid) < −0.9, with Rvoid as the void radius. In order to recen-
tre each candidate, the centre position is randomly shifted and the
procedure described previously is repeated in this new centre, al-
lowing the sphere to grow in size. Finally, a void of radius Rvoid

is selected as the largest sphere satisfying the underdense condi-
tion that does not overlap any other underdense sphere. In the case
of SDSS data, we restrict our void definition to spherical regions
with a fixed global density, excluding those spheres that are not
completely within the survey mask. The final catalogues comprise
252 voids for the SDSS sample and 4015 voids for the full Millen-
nium box, both with similar radii distributions in the range 6–24

1 http://gavo.mpa-garching.mpg.de/Millennium
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The clustering of voids 3

Figure 2. Left: Relation between the maximum separation of voids within a clump and clump multiplicity, for R–type void clumps (a) and S–type void
clumps (b). Each grey square corresponds to one group. The means of maximum lengths for each multiplicity are also shown in solid lines, and repeated on
both panels for comparison (dashed lines). Centre: Relation between the length of the minimal spanning tree (MST) and the maximum length for R–type void
clumps (c) and S–type void clumps (d). The circle size is proportional to the clump multiplicity. Right: Empirical cumulative distributions of the elongation
parameter, for R–type (dark solid lines) and S–type void clumps (dark dashed lines). Dotted line corresponds to the distribution for groups of random points
with the same multiplicities than void clumps.

h−1 Mpc. The larger number of voids in the Millennium box simu-
lation is consistent with the volume difference with the SDSS data.

3 VOID CLUSTERING

As mentioned in Sec. 1, the gravitational growth of the large scale
structure can be described by means of two complementary sce-
narios, the accretion of mass onto massive objects and the expan-
sion of underdense regions. In this context, we analyse here the
spatial distribution of voids focusing on its relation to large scale
flows. Previous results have shown a coherent velocity field of
voids (Lambas et al. 2016), an effect that can be explained in terms
of the large–scale surrounding distribution of mass (Ceccarelli et al.
2016). Therefore, it is natural to expect a relation between the clus-
tering of mass, large–scale velocity flows, and the clustering of un-
derdense regions.

It must be taken into account that the void definition used in
our study comprises regions that contain at most the 10 per cent of
the mean density of the Universe. The clustering of voids, as anal-
ysed here, is thus a manifestation of the locations of almost empty
regions, and has a valuable information from a cosmological per-
spective since it will eventually allow to study the volumes, shapes,
percolation and density profiles of the largest underdense regions
at a fixed degree of underdensity.

The correlation function, ξ(r), measures the probability ex-
cess of finding a pair of objects at a given relative distance r with
respect to a random distribution. This tool has been extensively
used to quantify the clustering of galaxies (Einasto et al. 1997;
Kerscher et al. 2000) and is a key observable to distinguish cos-
mological models and test the structure formation scenarios (Mat-
subara 2004). In a pioneer work, Padilla et al. (2005) examined
the void-void correlation function in a numerical simulation. They

compared the clustering of haloes and galaxies finding larger voids
to be strongly clustered. However the correlation amplitude is not
statistically significant due to the small simulation box. Similarly,
Clampitt et al. (2016), using the autocorrelation function of SDSS
and simulated voids, also find a stronger signal for the larger voids.
There are other algorithms to identify voids that are not restricted to
the spherical condition. A usually adopted algorithm is the ZOBOV
finder (Neyrinck 2008), which makes a Voronoi tessellation of the
space to estimate de density field. Voids are identified through a
watershed algorithm, as regions around local minima limited by
ridges in the density field that separate different minima. The clus-
tering of ZOBOV voids has been analysed in simulations (Hamaus
et al. 2014b; Chan et al. 2014; Hamaus et al. 2014a). Hamaus et al.
(2014b) analyse the void bias and describe two different popula-
tions: small voids, which are overcompensated by the mass in the
surrounding regions, and large, undercompensated voids. While
small voids have large bias with respect to the dark matter distri-
bution, larger voids are preferentially anti–correlated. The authors
argue that the high bias in small voids is due to an overcompen-
sation of void shells around small voids, that are typically voids–
in–clouds. This resembles the S-type classification we use in our
work, although we find that while most of the large voids are of R–
type, small voids can be of either type in nearly equal number (see
Ceccarelli et al. 2013). In spite of these differences, this classifica-
tion is also based on the spirit of the void–in–cloud (overcompen-
sated) and void–in–void (undercompensated) types and results in
different dynamical evolution and different bias parameters. How-
ever, Hamaus et al. (2014b) show that the distribution of voids is
dominated by a Poisson noise for small voids, and with smaller
power for large voids given by the exclusion effects. Hamaus et al.
(2014a) expand these ideas and use the void clustering statistic in
a cosmological simulation to probe the cosmic expansion history

MNRAS 000, 1–9 (XXXX)
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Figure 3. Mean velocity components of SAM galaxies in the directions
parallel (upper panel) and perpendicular (bottom panel) to the direction be-
tween the two void centres, in clumps formed by two R–type voids (filled
circles) or two S–type voids (empty circles). The different curves (see figure
key) correspond to galaxies within a perpendicular separation D⊥ range to
the axis along the two void members (i.e. cylindrical shells). Vertical dotted
lines indicate the position of each void in the pair.

of the universe. These features could be explained by an excur-
sion set formalism (Chan et al. 2014). Zhao et al. (2016) use a
different void finder based on a Delaunay triangulation of a set
of tracers (DIVE) and identify two different populations of voids
characterised by their radii, which resemble the void–in–void and
void–in–cloud regimes. The authors compute the power spectrum
of DIVE voids and find that, on large scales, large voids show a
low bias while small voids are strongly biased, in agreement with
previous results. The clustering of voids has also been analysed by
Liang et al. (2016), where the authors find a conspicuous signal
at nearly 100h−1 Mpc which indicates the presence of the Baryon
Acoustic Oscillations of mass in the early Universe. The definition
of voids in their study does not account for the so called exclusion
effect, i.e., all overlapping underdense spheres are considered. The
authors also find a scale dependent bias for different samples of
voids depending on void radius, with the larger voids showing the
strongest signal. This favours a larger clustering signal for voids
in the void–in–void regime. This result was confirmed later by Ki-
taura et al. (2016), who analyse overlapping density troughs of the
density field and argue that the detection of baryonic acoustic os-
cillations is not significant for the classical definition of disjoint
voids.

In this work, we use the correlation function of the distribution
of distances between the centres of pairs of voids to measure the
degree of clustering of voids. In order to compute this function, we
counted pairs in bins of relative distance, that is the comoving sep-
aration between void centres divided by the sum of its radii. Here,
a separation of r/(R1 + R2) = 1 means that the pair of voids are
in contact, with a separation between centres equal to the sum of
their radii. The normalization of the correlation function to the sum
of the void radii is convenient since the signal would have a mix-
ture of different contributions from small and large voids in natural
units of distance. To construct these functions, we generated mock
catalogues in the same box than that of the simulation, using a sim-
ple sequential inhibition algorithm to reproduce the exclusion effect
produced by the finite size of the voids. This is important since the
scales of interest, where the correlation signal is observed, is com-
parable to the size of the voids. The results, applied to our sample
of voids, are shown in Fig. 1 for several samples of voids in the sim-
ulation and in the SDSS galaxy catalogue. We compute ξ(r) (simu-
lation) and ξ(s) (observations) for relative distances larger than the
unity, due to the exclusion imposed in the identification algorithm
(see Sec. 2.2). The dashed (solid) grey line, show the results for the
autocorrelation of voids identified on the SDSS (SAM catalogue).
Beyond roughly a relative distance of 2, the distribution of pairs of
voids is consistent with a Poisson distribution. On the other hand,
there is a range of distances with a significant excess of void pairs,
for a typical void size of 10-12h−1 Mpc this corresponds to scales
between 20 and 45h−1 Mpc. This scale is larger than that of the void
shells reported in Paz et al. (2013).

In order to explore the role of the environment on the correla-
tion, we separated voids according to the criteria presented in Cec-
carelli et al. (2013), that in turn follows the ideas proposed by Sheth
& van de Weygaert (2004). Voids that have a steep integrated den-
sity profile resembling a shell–like surrounding structure are clas-
sified as S–type, while voids with a gently rising profile are clas-
sified as R–type. This classification was used in previous works
(Ceccarelli et al. 2013; Paz et al. 2013; Ruiz et al. 2015; Lambas
et al. 2016; Ceccarelli et al. 2016), where it was proved effective at
separating two distinct populations of void environments. In Fig. 1
we show the autocorrelation of R–type (squares) and S–type (dia-
monds) voids for SDSS (dashed lines) and SAM data (solid lines).
Remarkably, the autocorrelation of R–type voids is significantly
higher than that of the general population within r & 2 (R1+R2),
indicating that this type of voids are preferentially clustered. At
distances larger than r & 2 (R1+R2), there is no evidence of a signif-
icant difference between the sample populations. This is related to
the relatively small volume of the survey data, which gives large un-
certainties as indicated by the error bars of the lines corresponding
to SDSS galaxies. Similarly, but with lower significance, S–type
voids tend to be more clustered than the general void population.

We compute the statistical uncertainties of the correlation on
each distance bin using Jackknife or leave–one–out resampling.
For a sample of voids with size Nv, we use the ”natural” estimator
(Kerscher et al. 2000) of the correlation function, which estimates
the correlation function ξ(i) in terms of the number of void pairs
(DD(i)) and the number of random void pairs (RR(i)) at the i–th
distance bin that spans from ri to ri+1. The central tendency mea-
sure of ξ(i) is given by the Jackknife average (Efron 1987; Lupton
1993):

ξ̄J(i) =
1

Nv − 1

Nv∑
j=1

ξ[ j](i), (1)

MNRAS 000, 1–9 (XXXX)
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Figure 4. Number density of void pairs as a function of cos(θ) for all voids
in the the simulation. We show separately the estimations of the distri-
butions of cos(θ), with histograms for all R– and S–type voids and with
smoothed curves for voids within the same clump or in different clumps
(see figure key). The shaded regions are estimations of the distributions
after a dimensionality reduction with a Fourier expansion and represent 1-
σ bootstrap uncertainties. The results for R–type voids and S–type voids
are shown separately, where S–type distributions favour negative values of
cos(θ), corresponding to approaching pairs, and R–type voids are dominated
by positive values, corresponding to receding pairs.

where ξ[ j](i) is the j-th Jackknife realization, i.e., the value of ξ
computed by leaving the j-th element element out. The number of
Jackknife realizations is equal to the number of voids in the sam-
ple. For a Jackknife realization the data-data pair counts turn to be
DD[ j]. The random-random pairs < RR(i) > are not affected by the
Jackknife step since we use the average of a large number of void
sample mocks. Then, the correlation function estimation for the j-th
Jackknife realization is given by:

ξ[ j](i) =
DD[ j](i)
< RR(i) >

Nv

Nv − 1
− 1. (2)

The compensation factor Nv/(Nv − 1) compensates for the dif-
ferent number of centre voids in the centre-tracer scheme of pair
computations. Since it is an autocorrelation and the random sam-
ples are generated with the same number of voids for each void
sample, the number of tracer is the same and no other correction is
required. Finally, the uncertainty is estimated by:

σ̂2
J(i) =

Nv − 1
Nv

Nv∑
j=1

(ξ̄[ j](i) − ξ̄J(i))2 (3)

4 CLUMPS OF VOIDS

In this Section we present the definition and identification proce-
dure used to detect void clumps both in the simulation and SDSS
data. Also we present an analysis of its geometrical properties.

4.1 Identification procedure

The detection of clustering in the void distribution (as shown in
Sec. 3) leaded us to apply a percolation algorithm in order to iso-
late groups of voids, and obtain insight on the origin of the higher
correlation observed for the two void types. We searched for groups
of voids by implementing the friend–of–friends algorithm. This is
a simple algorithm that links together all voids that have at least a
subset pair having centres closer than a given linking length, here-
after `. The numerical value of this length, however, depends on the
nature of the problem and must be determined. For both samples
(R– and S–type voids) we start by considering the mean inter-void
separation `MVS :

`MVS =

(
3

4πn

)1/3

(4)

where n is the number density of a given void sample. This value
can be interpreted as the radius of a sphere placed at random con-
taining on average one void centre. For the R–type sample of voids
we obtain a value `MVS = 21.64h−1 Mpc, whereas for S–type voids
`MVS = 21.47h−1 Mpc is obtained. Then, we explored several val-
ues of the linking length parameter ` as a variable fraction f of
`MVS (i.e. ` = f `MVS ). For each case we computed the multiplic-
ity function, i.e., the distribution of multiplicities of the resulting
groups. By taking values of f < 1, a larger abundance of S–type
void clumps are obtained in comparison to the R–type clumps for
the whole range of multiplicities. On the other hand, for f > 1
the opposite behaviour is observed, namely, multiplicities are larger
for R–type void clumps. Therefore, we defined R–type and S–type
void clumps as friend–of–friends groups with a linked length equal
to `MVS , which preserves similar multiplicity distributions for both
samples.

4.2 Properties of void clumps

We study the geometrical properties of the void clumps by esti-
mating their size and shape. Since the number of members of the
groups is typically low, usual methods to compute the shape ten-
sor do not work (Paz et al. 2006). Instead, we computed the min-
imal spanning tree (hereafter MST, Kruskal 1956) of the centres
of voids in each group, and compared it to the maximum separa-
tion between any two members. The MST is the graph of minimal
length which connects all members in the group. If the group is
very elongated, the numerical values of both measures are similar,
otherwise, the length of the MST is larger than the maximum length
separation.

Panels (a) and (b) of Fig. 2 show the maximum length, L, de-
fined as the maximum separation between any pair of void centres
that belong to the same void clump, as a function of group mul-
tiplicity, for R–type and S–type void clumps respectively, These
results are repeated in both panels (dashed lines) in order to al-
low comparison among void types. Each grey square corresponds
to a clump. Solid lines show the mean of the maximum lengths for
each multiplicity value. As expected, more populated clumps tend
to be larger, with no significant difference between the two types of
voids.

Another estimator of the size of a void clump is the length
of the MST, which is the sum of its edge longitudes. In panels
(c) and (d) of Fig. 2 we show the MST length for R–type and S–
type void clumps, respectively, as a function of L. The size of the
filled circles is proportional to the multiplicity of the void clump.
All triplets have an MST length of order 40h−1 Mpc, although the

MNRAS 000, 1–9 (XXXX)
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maximum length ranges from 20h−1 Mpc to 40h−1 Mpc. Similarly,
more populated clumps have a larger range of values of the max-
imum length than in the MST length, which is also verified for
both types of void clumps for a fixed multiplicity. However, when
comparing the R–type and S–type cases, there is a slight excess
of R–type clumps for maximum lengths over 50h−1 Mpc and MST
lengths over 100h−1 Mpc.

The MST length can be compared to the maximum length to
get an insight on the shape of the clump. According to this, an elon-
gation parameter can be defined as the ratio of the maximum sep-
aration length and the length of the MST for each clump. In panel
(e) of Fig. 2 we show the cumulative distribution of this parame-
ter. The results for clumps of R–type voids are shown in dark solid
lines, and for clumps of S–type voids with dark dashed lines. Errors
represent 1-σ uncertainties from a bootstrap resampling estimation.
By applying suitable tests, we find no compelling evidence that the
observations and the random case are different, independent of mul-
tiplicity.

4.3 Dynamics of galaxies in two-void clumps

In this subsection, we analyse the dynamics of SAM galaxies in the
region surrounding clumps of N=2. As mentioned in Sec. 2.1, we
consider a limited magnitude sample of galaxies in order to match
the number density of the SDSS volume limited sample. We de-
fine two velocity components: V‖, along the line containing the two
void centres; and V⊥, the projection onto the plane normal to this
line. The sign of V‖ is defined positive in the direction to the largest
void (i.e. positive velocities are from left to right). For each clump
we also define the system centre as the position in the middle of
two void members. For each galaxy we compute the two cylindri-
cal components of its separation vector to the system centre, one
component along the line of the two void members, D‖, and the
other, D⊥, as a cylindrical radial component on the plane normal to
this line. We stack all clumps with N=2 for each type, and consider
the normalized projected distance, d, along the direction of the two
voids: d = |D‖| / void-void half distance. With this definition, the
smallest void is at d =-1 and the largest at d =1. In Fig. 3 we plot
the mean V‖ (upper panel) and V⊥ (bottom panel) for galaxies in
D⊥ bins (different line types, see key figure), for the R–type (filled
circles) and S–type (empty circles) stacked void clumps, as a func-
tion of the normalized distance along the parallel direction. Vertical
dotted lines indicate the positions of the two void centres. For the
case of clumps of two R–type voids, we find parallel components
of the velocity being mainly positive for D‖ > 0, and negative for
D‖ < 0. This implies an outward flux from the void–pair centre.

For S–type voids, is clear that the flux of halos along the par-
allel direction behaves very differently than the R–type case. The
V‖ values are negative for D‖ > 0 and positive for D‖ < 0, re-
flecting an inward motion of galaxies. These effects are less pro-
nounced for the outer regions as seen in the different line types. For
both void types, these velocity fluxes are predominantly in the par-
allel direction, since the perpendicular velocity component, shown
in the lower panel, is at most a 10 percent of the maximum paral-
lel velocity. These results are in agreement with those presented in
previous works (Lambas et al. 2016; Ceccarelli et al. 2016), where
the dynamics of void pairs was analysed accordingly to their envi-
ronments.

5 ENVIRONMENT AND VOID CLUMPS MOTIONS

In this Section we analyse different spatial and dynamical prop-
erties of voids in clumps, as well as the global motions of void
clumps. We also perform a similar analysis applied to the SDSS
data.

5.1 Dynamics of void pairs within clumps

In Lambas et al. (2016) we showed that the dynamical behaviour of
voids is characterised by a combination of two coherent motions:
approaching or receding movements between pairs of voids. This
produces a bimodal distribution of the relative velocities that can be
represented by the values of the cosines between the two velocity
vectors of each pair. This bimodal distribution disappears once the
pairs of the same type are considered, giving rise to approaching
or receding voids in the void-in-cloud or in the void–in–void cases,
respectively. Here we explore the relation between this bimodality
and the groups of voids. As in Lambas et al. (2016), we compute for
each void its bulk velocity, or simply the void velocity, by taking
the average velocity of all galaxies within a shell of 0.8 and 1.2 void
radius. This is equivalent to the void bulk velocity computed in the
full radii range within the void radius (Ceccarelli et al. 2016; Lam-
bas et al. 2016). We then reproduce the procedure used in that work
to compute the angle θ subtended by the void clump members pair-
wise velocity (∆V ) and the void relative separation (∆R). In Fig.
4 we show the number density of void pairs as a function of cos(θ),
for several selections of the void pairs used to compute the angle.
The density distribution for the complete sample of void pairs, sep-
arated accordingly to its void type, is estimated by computing the
histogram of the cos(θ) values. These distributions are shown for
reference as green shaded histograms in Fig. 4.

The estimation of the distributions for voids within the same
clump and for voids in different clumps are shown, for S– and R–
type voids, with the shaded regions. These regions are similar to
the histograms, but are computed without using bins, by fitting the
empirical cumulative distribution with a Fourier expansion, and fil-
tering the hight frequency components that are produced by the
noise in the random sampling (Berg & Harris 2008). The width of
the regions indicate the resampling uncertainty computed for each
sample. In the Figure, it can be seen that the bimodal behaviour re-
ported by Lambas et al. (2016) holds for the two subsets of voids
pairs, irrespective of them being part of a clump or not, except for
a slight difference at the extreme values of cos(θ) in the S–type
clumps.

5.2 Dynamics of void clumps

In this subsection we analyse the global density contrast and the
dynamics of the large-scale regions around void clumps. To that
end, we use the Minimal Enclosing Sphere (MES) of each clump
as an approximation of how much spread is the group of voids. The
MES is defined as the smallest bounding sphere that completely
includes all the voids in the clump. We chose to use this approach
by virtue of its simplicity, which also allows the define a centre and
explore the dependence of different properties on the distance to
this centre.

We have computed the mean mass density contrast and the
total mean velocity of the galaxies inside the MESs considering
separately clumps of R–type or S–type voids. For comparison, we
have also computed these quantities in spheres located at random
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Figure 5. Panel (a): Probability distribution estimates of the density contrast of tracers within the MESs. Thick lines show the kernel density estimates of
the distribution of density contrast values for MESs associated to all (solid), R–type (dashed) and S–type (dot–dashed) void clumps. The histograms show
the distribution estimates for randomly placed spheres with the same radii distribution than that of the full sample (thin black), R–type (grey), and S–type
(grey, vertical dashed) void clumps. The medians of the R/S–types distributions are located with vertical solid lines. The box plots at the top of the panel
correspond to R–type and S–type void clumps in the SDSS sample. Panel (b): Empirical cumulative distribution functions of the bulk velocity magnitudes.
Curves correspond to the simulation and box plots to the data from SDSS. The three curves on the left correspond to R–type (dotted), S–type (dashed) and the
full sample (solid) of void clumps, respectively. The box plots correspond to the same subsets in the sample of SDSS void clumps, according to the one curve
that crosses each box. The curves on the right of this panel correspond to samples of randomly placed spheres within the simulation box with the same radii
distribution than those in the data with the same line type.

positions, and with the same radii distribution than that of the cor-
responding sample. In the left panel of Fig. 5 we show the probabil-
ity distribution estimates of the density contrast of tracers within the
MESs. Thick lines show the kernel density estimates (KDE, R Core
Team 2016) of the distribution of density contrast values for MESs
associated to all (solid), R–type (dashed) and S–type (dot-dashed)
void clumps. The vertical marks correspond to the locations of the
medians of the R/S–type distributions. The histograms show the
distribution estimates for randomly placed spheres with the same
distribution of radii than that of the full sample (thin black), R–type
(grey), and S–type (grey, vertical dashed) void clumps. According
to this figure, the MES density contrast distribution for the com-
plete sample of void clumps is similar to that of random spheres
with the same radii distribution. However, when void clumps are
split into R/S types, the distributions differ significantly. The dis-
tributions of the MES density contrast values of each type of void
clumps Individual R– and S–type void clumps have narrower dis-
tributions than the full sample and have opposite signs. The fact
that a large region containing a number of S–type voids has a pos-
itive global density requires the presence of overdense structures
between void members of a clump to overcome their low densities.
We notice the low number of clumps in the SDSS catalogue given
the limited its volume, which makes it difficult a direct comparison
of the distributions. The box plots in the top of panel (a) corre-
spond to R– and S–type void clumps in the SDSS sample. These
plots are constructed using the median (central mark), the first and
third quartiles (borders of the boxes) and the extreme values in the
sample (minimum and maximum, indicated by the lines). Although

the differences are not very significant, the observations suggest the
same trend than the simulation.

In panel (b) of Fig. 5 we show the cumulative distribution
functions of the bulk velocity moduli of the simulation void clump
MESs. As in panel (a), the box plots correspond to the SDSS data.
The three curves on the left correspond to R–type (dotted), S–type
(dashed) and the full sample (solid) of void clumps MESs, respec-
tively. The box plots are associated to the same subsets in the sam-
ple of SDSS void clumps according to the curve that crosses each
box. The curves on the right of this panel correspond to samples of
randomly placed spheres within the simulation box with the same
radii distribution than those in the data following the same line
types. We find results for both R– and S–type void clumps remark-
ably similar, showing less than half the bulk velocity of random
spheres of similar radii distributions. We stress the observed simi-
larity of R– and S–type void clump MES global motions in spite of
their different environments and internal dynamics.

6 DISCUSSION

In this work we study the clustering of cosmic voids by computing
their autocorrelation function in a cosmological simulation and in
a galaxy catalogue. Albeit the different void definitions and identi-
fication methods found in the literature, we consider those defined
as spheres that have total densities of at most 10 per cent the mean.
We explore two different void types characterised according to the
shape of their integrated density profiles (Ceccarelli et al. 2013),
following theoretical work by Sheth & van de Weygaert (2004),
who introduced void–in–void or void–in–cloud scenarios. We find
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significant differences in the distribution of voids with respect to a
Poisson distribution and make use of the R/S void type definition to
provide further insight on their clustering properties. Following this
line, we define clumps of voids as large regions comprising voids
of the same type according to the R/S classification. In this work,
we look forward to deepen our understanding on the large–scale
structure formation through the dynamics of voids. The results ob-
tained for the dynamics of voids are consistent with the sparkling
universe picture (Lambas et al. 2016; Ceccarelli et al. 2016), where
the large–scale structure growth receives an imprint from void ex-
pansions and bulk motions.

Padilla et al. (2005) analysed the clustering of voids identified
in a simulation, reporting stronger clustering for the larger voids.
This result is consistent with our findings of a higher correlation
amplitudes for R–type voids, given their larger average radii (Cec-
carelli et al. 2013). Chan et al. (2014) also studied the clustering
of voids using numerical simulations, although their definition of
voids is different from ours, making it difficult a direct compari-
son. More recently Clampitt et al. (2016) estimated the correlation
of voids in SDSS, obtaining results consistent with our findings.
As mentioned in previous sections, we obtain higher correlation
amplitudes which can be explained in terms of the environmental
classification. The detection of a correlation of larger amplitudes
for voids embedded in similar large–scale environments, is a mo-
tivation to search for clumps of voids of the same type. Both R–
and S–type void clumps have similar geometrical properties, with
R–type void clumps slightly more spherical.

Our environmental classification of R/S void types is a nat-
ural scenario to study the properties and evolution of voids and
their relation to the mass distribution and dynamics. In Paz et al.
(2013), we analysed the dynamics of void surroundings using red-
shift space distortions of the void–galaxy cross–correlations, ac-
cording to the void environment, finding that large voids are typ-
ically in an expansion phase, whereas small ones tend to be sur-
rounded by collapsing overdense regions. This twofold behaviour
was observed both in simulations and SDSS data. Clustering and
environment of voids have been used to analyse their bias, provid-
ing tests for the growth of cosmic structure and measures of cos-
mological parameters (Hamaus et al. 2015; Chuang et al. 2016;
Hamaus et al. 2016). Using redshift space distortions, Achitouv
& Blake (2016) present a test to discriminate between modified
gravity models. Hawken et al. (2016) perform a similar study at
larger redshifts using VIPERS, obtaining consistent results for the
measurement of the linear growth rate. Cai et al. (2016) also use
redshift–space distortions around voids and find that the distortion
pattern depends on the type of void being considered. The large–
scale flows of mass induced by this void evolution scenario seem to
be an essential part of structure formation, although the effects are
limited to the presence of a single void. These previous results are
in agreement with the velocity field around void clumps defined by
R/S–type voids, reported in Sec. 5, where clumps of R/S–type voids
introduce divergent/convergent large–scale flows. Since clumps of
R/S-type voids are embedded in larger under/overdense regions,
these stream motions can be understood as driven by the clump in-
ner mass distribution. The analysis of pairwise velocity of voids
in clumps performed reinforces the receding (approaching) pro-
cesses dominating the relative dynamics of R–type (S–type) voids,
although we find voids in different clumps behave similarly. We
also analyse the bulk motions of void clumps finding significantly
lower velocities than randomly placed spheres with the same radii
distribution. In the context of the sparkling universe scenario where
voids move in a coherent fashion, void clumps are dynamically

conspicuous regions. A low bulk motion has also been reported
for watershed voids (Hamaus et al. 2014a; Sutter et al. 2014). It
must be noticed, however, that the void clumps described in this
work and the voids resulting from the ZOBOV algorithm are of a
different nature, and is not straightforward to associate both types
of regions. On the other hand, spherical voids have been reported
to have non–negligible velocities. This had been suggested by Got-
tlöber et al. (2003) using spherical voids in a numerical simulation.
Also, the bulk velocities are comparable to the velocity of random
spheres of the same size (Ceccarelli et al. 2016). Given the differ-
ent definitions and identification procedures, a direct comparison
of the results is not straightforward although their similarity is re-
markable.

This work reports on the clustering of voids, as an alterna-
tive approach to study the large–scale distribution of mass and its
dynamics. The prevalence of a characteristic scale for the cluster-
ing of voids allows to define groups of nearby voids, which are
suitable laboratories to further explore the implications of the void
environments on its evolution and on the formation of the large–
scale structure of the universe. Galaxies residing in the suburbs of
void clumps display dynamical behaviours dominated by veloci-
ties toward (away) systems defined by S–type (R–type) of voids.
The mean velocities compare well with those derived in Paz et al.
(2013) for expanding and collapsing voids and are govern by the
global density. All these effects are consistent with the sparkling
universe picture (Lambas et al. 2016; Ceccarelli et al. 2016), where
the large–scale structure growth can be considered as the result of
the voids motions and evolution.

It is worth mentioning that the void statistics is limited by the
low number of voids in the observed Universe and this become
more restrictive when we consider subsamples of voids according
their global density. Besides the observational limitations such as
low number of voids, small volume, positions in redshift space
and linearized velocities, we obtain, when it is possible perform
the comparison, compatible results in theoretical and observational
analysis. In the context of the new galaxy surveys such as HETDEX
(Hill et al. 2008), Euclid (Laureijs et al. 2011), SDSS-III (Eisen-
stein et al. 2011), VIPER (Micheletti et al. 2014) and the Dark En-
ergy Survey (Dark Energy Survey Collaboration et al. 2016), the
extent of the new data available hold a promising scenario to con-
front and improve the results on void clustering introduced here.

Given the relevance of void clumps on void dynamics, study-
ing their relation to large structures can shed new light on large–
scale flows and the formation of the supercluster–void network.

ACKNOWLEDGMENTS

This work was partially supported by the Consejo Nacional de In-
vestigaciones Científicas y Técnicas (CONICET), and the Secre-
taría de Ciencia y Tecnología, Universidad Nacional de Córdoba,
Argentina. Plots were made using R software and post–processed
with Inkscape. This research has made use of NASA’s Astrophysics
Data System. The authors would like to thank the anonymous re-
viewer for their valuable suggestions. Funding for the SDSS and
SDSS-II has been provided by the Alfred P. Sloan Foundation,
the Participating Institutions, the National Science Foundation, the
U.S. Department of Energy, the National Aeronautics and Space
Administration, the Japanese Monbukagakusho, the Max Planck
Society, and the Higher Education Funding Council for England.
The SDSS Web Site is http://www.sdss.org/. The SDSS is managed
by the Astrophysical Research Consortium for the Participating In-

MNRAS 000, 1–9 (XXXX)



The clustering of voids 9

stitutions. The Participating Institutions are the American Museum
of Natural History, Astrophysical Institute Potsdam, University of
Basel, University of Cambridge, Case Western Reserve University,
University of Chicago, Drexel University, Fermilab, the Institute
for Advanced Study, the Japan Participation Group, Johns Hopkins
University, the Joint Institute for Nuclear Astrophysics, the Kavli
Institute for Particle Astrophysics and Cosmology, the Korean Sci-
entist Group, the Chinese Academy of Sciences (LAMOST), Los
Alamos National Laboratory, the Max-Planck-Institute for Astron-
omy (MPIA), the Max-Planck-Institute for Astrophysics (MPA),
New Mexico State University, Ohio State University, University
of Pittsburgh, University of Portsmouth, Princeton University, the
United States Naval Observatory, and the University of Washing-
ton.

REFERENCES

Abazajian K. N., et al., 2009, ApJS, 182, 543
Achitouv I., Blake C., 2016, preprint, (arXiv:1606.03092)
Araya-Melo P. A., Reisenegger A., Meza A., van de Weygaert R., Dünner

R., Quintana H., 2009, MNRAS, 399, 97
Berg B. A., Harris R. C., 2008, Computer Physics Communications, 179,

443
Cai Y.-C., Taylor A., Peacock J. A., Padilla N., 2016, MNRAS, 462, 2465
Ceccarelli L., Padilla N. D., Valotto C., Lambas D. G., 2006, MNRAS, 373,

1440
Ceccarelli L., Paz D., Lares M., Padilla N., Lambas D. G., 2013, MNRAS,

434, 1435
Ceccarelli L., Ruiz A. N., Lares M., Paz D. J., Maldonado V. E., Luparello

H. E., Garcia Lambas D., 2016, MNRAS, 461, 4013
Chan K. C., Hamaus N., Desjacques V., 2014, Phys. Rev. D, 90, 103521
Chuang C.-H., Kitaura F.-S., Liang Y., Font-Ribera A., Zhao C., McDonald

P., Tao C., 2016, preprint, (arXiv:1605.05352)
Clampitt J., Jain B., Sánchez C., 2016, MNRAS, 456, 4425
Contreras S., Baugh C. M., Norberg P., Padilla N., 2013, MNRAS, 432,

2717
Contreras S., Baugh C. M., Norberg P., Padilla N., 2015, MNRAS, 452,

1861
Dark Energy Survey Collaboration et al., 2016, MNRAS, 460, 1270
Dodelson S., 2003, Modern cosmology. Academic Press
Dünner R., Araya P. A., Meza A., Reisenegger A., 2006, MNRAS, 366, 803
Efron B., 1987, The Jackknife, the Bootstrap, and Other Resampling Plans

(CBMS-NSF Regional Conference Series in Applied Mathematics).
Society for Industrial Mathematics

Einasto J., Saar E., Klypin A. A., 1986, MNRAS, 219, 457
Einasto J., Einasto M., Frisch P., Gottlober S., Muller V., Saar V., Starobin-

sky A. A., Tucker D., 1997, MNRAS, 289, 813
Eisenstein D. J., et al., 2011, AJ, 142, 72
Feldman H. A., Watkins R., Hudson M. J., 2010, MNRAS, 407, 2328
Frisch P., Einasto J., Einasto M., Freudling W., Fricke K. J., Gramann M.,

Saar V., Toomet O., 1995, A&A, 296, 611
Gottlöber S., Łokas E. L., Klypin A., Hoffman Y., 2003, MNRAS, 344, 715
Guo Q., et al., 2011, MNRAS, 413, 101
Hamaus N., Sutter P. M., Lavaux G., Wandelt B. D., 2014a, J. Cosmology

Astropart. Phys., 12, 013
Hamaus N., Wandelt B. D., Sutter P. M., Lavaux G., Warren M. S., 2014b,

Physical Review Letters, 112, 041304
Hamaus N., Sutter P. M., Lavaux G., Wandelt B. D., 2015, J. Cosmology

Astropart. Phys., 11, 036
Hamaus N., Pisani A., Sutter P. M., Lavaux G., Escoffier S., Wandelt B. D.,

Weller J., 2016, Physical Review Letters, 117, 091302
Hawken A. J., et al., 2016, preprint, (arXiv:1611.07046)
Hill G. J., et al., 2008, in Kodama T., Yamada T., Aoki K., eds, Astronomical

Society of the Pacific Conference Series Vol. 399, Panoramic Views of
Galaxy Formation and Evolution. p. 115

Icke V., van de Weygaert R., 1991, QJRAS, 32, 85
Kerscher M., Szapudi I., Szalay A. S., 2000, ApJ, 535, L13
Kitaura F.-S., et al., 2016, Physical Review Letters, 116, 171301
Kruskal J. B., 1956, Proc. Amer. Math. Soc., 7, 48
Lambas D. G., Lares M., Ceccarelli L., Ruiz A. N., Paz D. J., Maldonado

V. E., Luparello H. E., 2016, MNRAS, 455, L99
Laureijs R., et al., 2011, arXiv:astro-ph/1110.3193
Leclercq F., Jasche J., Wandelt B., 2015, A&A, 576, L17
Liang Y., Zhao C., Chuang C.-H., Kitaura F.-S., Tao C., 2016, MNRAS,

459, 4020
Liddle A., 2003, An Introduction to Modern Cosmology, Second Edition.

Wiley
Lupton R. H., 1993, Statistics in theory and practice. Princeton University

Press
Matsubara T., 2004, ApJ, 615, 573
Matsuda T., Shima E., 1984, Progress of Theoretical Physics, 71, 855
Micheletti D., et al., 2014, A&A, 570, A106
Neyrinck M. C., 2008, MNRAS, 386, 2101
Nusser A., Branchini E., Davis M., 2011, ApJ, 735, 77
Padilla N. D., Ceccarelli L., Lambas D. G., 2005, MNRAS, 363, 977
Padmanabhan T., 1993, Cosmology. Cambridge University Press, Cam-

bridge, UK
Paz D. J., Lambas D. G., Padilla N., Merchán M., 2006, MNRAS, 366, 1503
Paz D., Lares M., Ceccarelli L., Padilla N., Lambas D. G., 2013, MNRAS,

436, 3480
Pearson D. W., 2015, MNRAS, 449, 3212
Peebles P., 1993, Principles of Physical Cosmology. Princeton University

Press, Princeton
R Core Team 2016, R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/

Ruiz A. N., Paz D. J., Lares M., Luparello H. E., Ceccarelli L., Lambas
D. G., 2015, MNRAS, 448, 1471

Sheth R. K., van de Weygaert R., 2004, MNRAS, 350, 517âĂŞ538
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