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Criticality of the phase transition on stage two
in a lattice-gas model of a graphite anode in a
lithium-ion battery

E. M. Gavilán Arriazu,a B. A. López de Mishima,a O. A. Oviedo,b E. P. M. Leivab and
O. A. Pinto *a

Herein, a Monte Carlo study within the canonical assembly has been applied to elucidate the lithium-ion

phase transition order of a stage II lithium–graphite intercalation compound (LiC12) around the critical point.

The results reveal a weakly first-order phase transition at 354.6 � 0.5 K via measurements that follows the

power laws with effective exponents. The graphite–lithium system was emulated within a lattice-gas model,

comprising specific insertion sites arranged in four parallel planes with a triangular geometry. Moreover, two

different types of energetic interactions were used: a Lennard-Jones potential, for particle interactions in the

same plane, and a power law potential that decreased with distance, for particles in different planes. The

energy per site and order parameter distribution were used to classify the order of the transition. Furthermore,

the order parameters, susceptibility, and heat capacity were computed and analyzed.

1. Introduction

Lithium-ion batteries have attracted wide interest in current
science and technology due to the high demand for energy
storage in a large range of electrical products.1–3 A high energy
density, good cycle life, high operating voltage, and low cost are
some of the main characteristics of this type of rechargeable
battery. Graphite, a material used as an anode since early 90’s,
and several cathode materials, including transition metal oxides
or phosphates, have been employed as active materials.4,5 For
this reason, knowing how external variables, such as temperature
and pressure, affect the battery materials is crucial to improve
their functionality since the changes that produce these variables
alter their properties and, hence, the operation of the battery.

The intercalation process of lithium in graphite involve
formation of stages, known as lithium–graphite intercalation
compounds (LGIC).6 The stages are characterized by the periodic
structure of the lithium ion layers between graphite sheets and
have been analyzed by XRD and electrochemical techniques.6–8

The number of graphite sheets between adjacent lithium layers
define the stage names. In stage II (LiC12), which has been
described in numerous works,9–12 there are two graphite layers

between adjacent lithium planes, and the lithium ions follow a
specific in-plane ordered structure (O3 � O3, R301). Moreover,
three types of phase transition may occur during the formation of
stage II: (1) an order–disorder phase transition:13–19 in this case,
the divergences in the thermodynamic functions are associated
with the critical exponents (power laws) around the critical point
when the correlation function diverges; (2) a first-order phase
transition:20–27 at the critical point, the ordered and disordered
states co-exist; and finally, (3) a first-order phase transition that
follows the power laws in the neighborhood of the critical point,
also known as weak first-order phase transitions.28–30 In this kind
of transition, a few effective exponents, each one associated with
some thermodynamic function can be observed, similar to the
phase transition described in (1).

There are experimental and theoretical studies reported on
the phase transition of various graphite intercalation compounds
(GIC)31–34 and, more specifically, on the LGIC phase transition.35–37

Elastic neutron scattering and scanning calorimetry36 and ac
calorimetry and neutron diffraction35 show a weak first-order
melting of the Li layers in the LGIC stage-one (LiC6). The latter
authors studied the criticality of stage-one for lithium-
intercalated graphite and concluded that the phase transition
corresponded to a 3D three-state Potts universality class. Stage-
one of C8Cs, CsRb, and C6Li compounds was examined within
the Landau–Ginzburg theory. In all the cases, a first-order
transition was identified, and a 3D three-state Potts model was
suggested for C6Li.37 The same authors analyzed the stage-two of
other GIC’s, and they concluded that all GIC showed a smeared
first-order phase transition.34
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Monte Carlo (MC) simulations and finite size scaling are the
most commonly used techniques to study phase transitions
occurring on the surfaces.25,38 On the other hand, MC simulations
have also been applied to study intercalated substrates.39–41 More-
over, kinetic Monte Carlo (kMC) simulations has been used to model
silicate oligomerization in solution,42 in the formation of silicate
oligomers,43 and in interstellar grain chemistry.44 With standard MC
simulation, the cluster ordering in a two-dimensional lattice model
has been studied in.45

If the electrochemical operation of a lithium-ion battery has
to be mimicked, it is convenient to apply the grand canonical
ensemble. In this scheme, the temperature is constant, but the
potential of the electrode and the number of Li ions changes.
However, to study critical phenomena, it is more appropriate to use
the canonical ensemble, where the number of Li ions is constant
and the temperature varies around the critical point. Consequently,
in the present study, a standard finite size scaling method in the
canonical ensemble was used to analyze the criticality of the phase
transition involved in the formation of stage II (LiC12) in LGIC.

The study is organized as follows. In Section 2, the lattice-
gas model and details of the theoretical model are presented.
Section 3 describes the Monte Carlo simulations and finite-size
scaling. The order of the phase transition and estimation of the
critical temperature are presented in Section 4. Finally, the
conclusions are drawn in Section 5.

2. The theoretical model

An idealized anode electrode designed with four graphite
planes was used to carry out the Monte Carlo (MC) simulations.
This model has been presented and described in detail by
Perassi and Leiva.39 The authors employed it to study the
intercalation of lithium ions in graphite to calculate intercalation
entropy and enthalpy for the stage II to stage I transition. The
authors found a good agreement with experimental measurements.
With regard to the model, the adsorption sites correspond to the
centers of the carbon hexagons in the graphite bulk with AA
stacking and are located at the half distance between two graphene
layers.46–48 This data was used to define the lattice-gas model,
where the distance between adjacent planes was d1 = 3.35 Å and the
distance between first nearest neighbors in the same plane was
d2 = 2.13 Å, as is indicated in Fig. 1. Fig. 1(a) shows a lateral view of
the system. The grey spheres represent the carbon atoms and the
white circles correspond to the empty insertion sites (the real lattice-
gas). Then, the lattice was formed by the N = 4L2 specific adsorption
sites, where L2 is the number of sites in each plane. L can be
considered as the linear dimension (lateral size) of the system.

The total energy of the system, with lithium ions inserted
into graphite, is given by the Hamiltonian function:

H ¼ r
2
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(1)

The first sum corresponds to a Lennard-Jones potential and
considers the in-plane interactions, i.e., the interactions
between the lithium ions placed in the same graphite layer.
The second sum corresponds to the repulsive out-plane inter-
actions in this case the lithium ions placed in different graphite
layers. The last sum considers the specific lithium–graphite
interaction. Nxy and Nz correspond to the number of in-plane
and out-plane neighbors, respectively. ci is the usual occupation
variable and takes the value 1 if the i site is occupied and 0
otherwise. rij is the distance between the ij sites in Angstrom
units. The factor 1/2 is included due to the double counting
links. All the other constants were fitted from the experimental
data reported by Perassi and Leiva:39 r = 0.0025 eV is the
attractive interaction value at a distance of 4.26 Å, k = 0.025 eV
controls the repulsive interactions, a = 4 is a parameter that
adjusts the drop of the out-plane interactions, and g = �0.029 eV
is the energy related to the lithium–graphite interactions.

3. Monte Carlo simulations and
finite-size scaling

To study the thermodynamic properties of the Hamiltonian
function given in eqn (1), a parallel tempering algorithm or
replica Monte Carlo exchange30,49–51 was used. This method
consists of a system with M-independent replicas, which do not
interact between them, each one at a defined temperature. In
other words, each ith replica was inserted into a heat bath at a
temperature Ti.

The algorithm involves two steps: (i) replica update; vacancy–
particle exchange. This means that an ad-particle and an empty
site are randomly selected from one of the M replicas, which is
also randomly selected. Then, an attempt was made to exchange
their occupancy state,52 with a probability given by the Metropolis
rule.53 (ii) Replica exchange; this involves the exchange attempt of
the Xi and Xj configurations, which correspond to the ith and jth
adjacent replicas, which are randomly selected. The probability of
exchange is given as follows:49

W Xi;Ti ! Xj ;Tj

� �
¼

1; if do 0

expð�dÞ if d � 0

(
(2)

where d = (1/kBTi � 1/kBTj)(H(Xj) � H(Xi)) and kB is the Boltzmann
constant.

Fig. 1 (a) The lateral scheme of the system. The grey spheres correspond
to the carbon atoms and the white circles correspond to the empty
adsorption sites. (b) The lateral scheme of stage II. The red spheres
correspond to the Li-ions. (c) Top-view of stage II, the Li-ion forms a
(O3 � O3)R301 structure.
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One tempering Monte Carlo step (TMCS) comprises repeti-
tion of steps (i) and (ii) 4L2 times.

The initialization of the M replicas starts with a random
initial condition of the system. The final configuration of the
first replica was obtained after n Monte Carlo steps (MCS) at
T1 (one MCS consists of L2 realizations of the replica update
sub-routine). Then, the initial configuration of the second
replica was taken as the same as the final configuration of
replica 1. In the same way, the initial configuration of the third
replica was the same as the final configuration of the replica 2
(after n MCS at T2) and so on for all replicas.30 All the observables
were averaged over each replica. Periodic boundary conditions
were included in three spatial directions.

Moreover, 6 � 106 TMCS were needed to equilibrate each i
replica. At low temperatures T o Tc, large quantities of TMCS
were used to discard any possible metastable state. The quantities
of the TMCS required for the parameters averaging step are the
same as those needed in the equilibration step. Averages were
taken over 5 � 102 different initial configurations. In all the
cases, the standard statistical error bars are always smaller than
the symbol size used in the figures. A total of M = 50 replicas
were used, all equally spaced in each of the temperature ranges
analyzed.

The simulations were carried out using a HUAUKE parallel
cluster located at the Instituto de Bionanotecnologı́a del NOA,
Universidad Nacional de Santiago del Estero, Santiago del
Estero, Argentina.

To study the phase transition by finite size scaling, it was
necessary to properly define the thermodynamics parameters to
be used. The geometrical order parameter will allow the recognition
of the structural order of stage II from the disordered state. Stage II
is characterized by two full insertion sites planes separated by an
empty plane, as indicated in Fig. 1(b), where the red spheres are Li
ions. In each plane, when T o Tc, Li ion forms a (O3 � O3)R301
structure, as is shown in Fig. 1(c).

To describe stage II, a (O3 � O3)R301 ordered structure, a
global order parameter, cp, was defined as follows:

cp � A|r1 � r2 + r3 � r4| (3)

where 0.0 r ri r 1.0 is the local order parameter of the i plane,
as indicated in Fig. 1(a) and A = 1/2 is the normalization constant.
The (O3 � O3)R301 structure has three different configurations
with the same energy, each one situated in a different two-
dimensional sub-lattice. This can be expressed as follows:

ri � b
X
j;k

yj � yk
�� �� (4)

where yj and yk are the surface coverage of the j and ‘‘k’’ sub-
lattices, respectively. The sum of the differences was taken over
the three sub-lattices. b = 3/2 is a normalization constant.

For stage II and T o Tc, cp = 1.0; however, when T 4 Tc, the
systems are completely disordered and cp E 0.0.

The other quantities related are as follows: the susceptibility,

wðN;TÞ ¼ N
cp

2
D E

T
� cp

�� ��D E
T

2
h i

kBT
(5)

the energy per site,

E ¼ Hh i
N

(6)

the specific heat, sampled from the energy fluctuations,

CvðN;TÞ ¼
H2
� �

T
� Hh iT2

	 

NkBT2

(7)

and the reduced fourth-order cumulant54

ULðN;TÞ ¼ 1�
cp

4
D E

T

3 cp
2

D E
T

� �2 (8)

Another interesting quantity used to describe the system is
the fourth-order cumulant of the energy. Using the energy per
site E and its moments

ULEðN;TÞ ¼ 1�
E4
� �

T

3 E2h iT
� �2 (9)

4. The order of the phase transition
and estimation of the critical
temperature

The full lithium-ion occupation in graphite (LixC6 with x = 1)
was equal to the third part of the total number of lattice sites.
The lattice sizes used are as follows: L = 12 (N = 576), 18
(N = 1296), 24 (N = 2304), 30 (N = 3600), 36 (N = 5184), 42
(N = 7056), and 48 (N = 9216).

The order parameters, susceptibilities, specific heats, and
energies per site are shown in Fig. 2(a–d) for different L sizes as
a function of kBT. The order parameters and the energy per site,
(2a) and (2d), respectively, present a steep variation around the
inflexion point, which is different for each size. The susceptibility
and specific heat, (2b) and (2c), respectively, show a maximum
value that increases with L. These maxima and inflection points
coincide with the critical temperature for each size, Tc (L). All
these behaviors imply finite size effects, which indicate the
existence of a phase transition.

To classify the order of the transition, it is convenient to
analyze the Binder cumulants behaviour UL and ULE, defined in
eqn (8) and (9), respectively. These parameters are shown in
Fig. 3(a) and (b). As the lattice size increases, UL presents a
minimum whose value becomes more negative, and ULE shows
a peak that becomes sharper. In both cases, the trend followed
by the cumulants corresponds to a first-order transition.27,30,38

The critical temperature at the thermodynamic limit, Tc (N),
can be obtained via extrapolation of the Tc (L) vs. V�1 plot
for ULE(T), susceptibility, specific heat, and the logarithmic
derivative of cp. For these quantities, the next relationship
can be written as follows:

Tc (L) = Tc (N) + aV�1, L - N (10)

where V = 4L2 is the volume of the system and a is a constant
that depends on the quantity considered, i.e. Cv, w, cp or ULE.
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This behavior is shown in Fig. 4, where it can be seen that
Tc (N) = 354.6 � 0.5 K.

To confirm the order of the transition, the order parameters
(P(cp)) and energy per site (P(E)) distributions were analyzed.
Both are in arbitrary units and were obtained for L = 36 at three
different temperatures (Fig. 5). In both distributions, two peaks
are observed in all the cases; several observations can be
claimed: (i) At T o Tc (L = 36), panels (a) and (d), the major

peak corresponds to the ordered phase, whereas the minor
peak is the frequency of the disordered phase. (ii) At Tc

(L = 36) = 355 � 2 K, panels (b) and (e), the two peaks heights
are practically equal, which means that both phases co-exist at
the transition point. Finally, (iii) at T 4 Tc (L = 36), the panels
(c) and (f), the opposite of (i) takes place. All these observations
are consistent with the behavior of a first-order phase
transition.27,28

Fig. 2 Several thermodynamics parameters versus kT as a function of the size L: (a) The order parameter, (b) susceptibility (c) specific heat and (d) energy
per site.

Fig. 3 (a) The fourth-order cumulant of the order parameter and (b) the fourth-order cumulant of energy.
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Moreover, to complete the picture, it is possible to estimate
the critical temperature as the temperature where the crossing
of the UL curves occurs (Tcross)

30 (Fig. 3(a)). Then, Tcross =
(353 � 5) K E Tc, this value was comparable with that obtained
in the thermodynamic limit.

Although the phase transition seems to be a first-order transition,
it is possible to establish power laws with the thermodynamic
parameters, as shown Fig. 2, like in an order–disorder phase
transition. Thus, following ref. 27, effective exponents can be
obtained. It is important to notice that these exponents are not

critical. The way of measuring the effective exponents was similar to
the method applied for the order–disorder phase transitions.55–59

From the standard theory of finite size scaling,15,38,50,60,61 the next
relationship can be established as follows:

Cv / L
ae
ne ;

cp / L
�bene ;

w / L
ge
ne :

(11)

The sub-index e identifies the effective exponents. The next table
summarizes all the effective exponents calculated in this study.

Effective exponent Value

n 1/2
b 1/5
g 1/10
a 3/2

With these exponents, the Rushbrooke62 equality can be
applied, which relates critical exponents as follows:

ae
ne
þ 2be
ne
þ ge
ne
¼ 2

ne
(12)

In summary, from all the analyses performed herein, it is
possible to observe that the behavior of the system in the

Fig. 4 Tc (L) versus V�1 for Cv, w, ULE and d lnc, as indicated.

Fig. 5 The distributions for T o Tc (L = 36), Tc (L = 36) = 355 � 2 K and T 4 Tc (L = 36). The order parameter distribution P(cp): Panels (a–c). The energy
per site P(E) distribution: panels (e), (d) and (f).
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critical region is similar to the development reported in ref. 28.
Therefore, it is possible to identify this transition as a weak
first-order phase transition. Otherwise, the effective exponents
values determined herein are similar to those found via other
MC studies on the discrete 3D, three-state Potts model (which
yields a weak first-order phase transition).29 This universality
class was also observed in stage I by Landau theory.37 The same
results, for the a and b effective exponents, were obtained by
Robinson et al.35 in the experimental study of the melting
transition of stage I.

5 Conclusions

Using the parallel tempering Monte Carlo technique in the
canonical assembly, the criticality of the phase transition in
stage II (Li0.5C6) was studied. In this study, a lattice gas-model
for the graphite anode of a lithium-ion battery was implemented.
The model comprised four planes with a triangular geometry,
where Li ions could be intercalated. Moreover, two kinds of
interactions were used: a Lennard-Jones potential, for particle
interactions in the same plane, and a power law potential, for
interactions between planes. The finite size scaling method was
used to classify the order of the phase transition. The finite size
effects observed in the parameters analyzed indicate that stage II
was generated via a phase transition. The distribution of the
order parameter and energy confirms the occurrence of a first-
order phase transition at 354.6 � 0.5 K. However, the parameters
measured show a behavior similar to an order–disorder phase
transition. All this evidence confirms that the occurrence of stage
II can be identified as a weak first-order phase transition.
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60 P. M. Pasinetti, F. Romá, J. L. Riccardo and A. J. Ramirez-
Pastor, Critical behavior of repulsive linear k-mers on triangular
lattices, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 74(15),
1–8.

61 H. G. Katzgraber, K. Mathias and A. P. Young, Universality
in three-dimensional Ising spin glasses: A Monte Carlo
study, Phys. Rev. B: Condens. Matter Mater. Phys., 2006,
73, 224432.

62 G. S. Rushbrooke, On the Thermodynamics of the Critical
Region for the Ising Problem, J. Chem. Phys., 1963, 39, 842.

Paper PCCP




