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Abstract The aim of this study is to assess—for the first
time—the concentration of the 16 polycyclic aromatic hydro-
carbons (PAHs) in the muscle tissues of four fish species
(Micropogonias furnieri, Cynoscion guatucupa, Ramnogaster
arcuata, and Mustelus schmitti) from Bahía Blanca estuary,
Argentina and to evaluate their sources, distribution, and the
human health risks implicated. Considering the four species
under study, mean total PAH concentrations showed the fol-
lowing decreasing accumulation trend:M. schmitti, R. arcuata,
C. guatucupa, and M. furnieri. Low molecular weight PAHs,
such as naphthalene and phenanthrene, were generally predom-
inant, displaying properties of PAH mixtures generated from
petrogenic pollution. Of the four fish species analyzed,
M. furnieri was the only one that did not raise any human
consumption warning. In the case of the other species, exceed-
ing values were found above the safety human consumption
guidelines. Nevertheless, the screening criteria for carcinogenic

PAHs proposed by the USEPA indicated a good quality status
for these fish species.

Keywords Bahía Blanca estuary . Polycyclic aromatic
hydrocarbons . Fish species . Health risk assessment

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are broadly distrib-
uted within marine and coastal environments (Ramalhosa
et al. 2012; Storelli et al. 2013). PAHs involve a broad class
of compounds consisting of two or more fused benzene rings
and emerge as priority pollutants due to their persistence, bio-
accumulation ability, and toxicity to both aquatic organisms
and human populations (Boitsov et al. 2009). According to the
Environmental Protection Agency (USEPA), 16 PAHs have
been established as top priority control pollutants. Moreover,
according to the International Agency for Research on Cancer
(IARC 2010), over half of them are potentially carcinogenic to
humans. Due to the ability of the reactive metabolites of some
PAHs to bind to cellular proteins and DNA several biological
effects of PAHs are known, including tissue and genetic alter-
ations, cancer, effects on growth and development, and effects
of immune function, among others (Delistraty 1997; Hoffman
2003). Regarding their origin, PAHs can be originated from
petrogenic (i.e., petroleum derivate), biogenic (e.g., perylene,
retene), and/or pyrogenic (i.e., burning of organic matter)
sources (Wilcke 2000, 2007; Neff et al. 2005). The common
routes by which they reach the aquatic environment include
atmospheric depositions, oil spills, urban runoff, waste water
discharges, and emissions from watercraft and vehicles,
among others (Fu and Wu 2005; Vuorinen et al. 2006;
Ramalhosa et al. 2012; Abdolahpur Monikh et al. 2014;
Bandowe et al. 2014). Once in the aquatic ecosystem, PAHs
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are primarily accumulated in fine grained sediments and
suspended particles due to their hydrophobic nature; after that,
they could be remobilized into the water column to finally
become bioavailable to organisms (Wetzel and Van Vleet
2004). Uptake of PAHs by these aquatic organisms may occur
by inhalation, ingestion, or skin surfaces (Neff 1985; Fu and
Wu 2005; Oluseyi et al. 2011; Owabor et al. 2010; Zhang et al.
2011; Castro-Gutiérrez et al. 2012).

To assess the environmental condition of coastal zones
such as estuaries, the concentration of PAH levels in edible
fishes is advisory and is of considerable interest due to the
toxic risk effects not only to the fish themselves but also to
the top-level organisms that consume these contaminated fish,
such as humans (Klumpp et al. 2002; Ashley et al. 2003). Fish
communities have been recognized as efficient tools to eval-
uate possible organic pollution impacts due to their vulnera-
bility to exposure, the visibility of some adverse effects such
as tumors and lesions, their centrality in aquatic food webs,
and both recreational and commercial importance (Logan
2007).

Bahía Blanca estuary (BBE) is the second largest estuary
of Argentina (South America). This environment has shown
a significant increment both in the industrial development
and in the population growth during the past decades
(Marcovecchio et al. 2008). This coastal area supports an
intensive anthropogenic activity, including five national har-
bors and one of the biggest industrial parks in South America
that comprise refineries, oil terminals, tanks for storing oil
products, and multiple docks. Moreover, several industries
are located on the northern coast and directly release hydro-
carbons, muds with heavy hydrocarbon fractions, crude oil,
and smoke particles into the estuary (Limbozzi and Leitao
2008). In the BBE waters, 30 fish species have been regis-
tered, where Cynoscion guatucupa (Cuvier, 1829),
Micropogonias furnieri (Desmarest, 1823), and Mustelus
schmitti (Springer, 1939) are the most important fishing re-
source (Lopez Cazorla 2004). C. guatucupa and M. furnieri
are migratory fish species. In BBE, adults perform seasonal
migrations, moving into the estuary in April and September
(autumn and spring) and since October to March (spring-
summer), respectively. Spawning occurs outside estuaries
along the Argentinean coast, from spring to mid-autumn.
Small juveniles during the first year life (age 0+) are into
the estuary (Lopez Cazorla 1996, 2000). C. guatucupa feeds
on crustaceans on its early stages and its diet shifts to pelagic
fish as it develops into adulthood (Lopez Cazorla 1996;
Sardiña and Lopez Cazorla 2005a). On the other hand, juve-
niles of M. furnieri feed on polychaetes and adult on crabs
(Lopez Cazorla 1987; Sardiña and Lopez Cazorla 2005b).
M. schmitti is another migratory fish species, in BBE adults
moving into the estuary since August (winter) to December
(spring), and juveniles stay here during the first year life. It
feeds on crabs (Lopez Cazorla 2004). Finally, Ramnogaster

arcuata (Jenyns, 1842) is a small pelagic, zooplanktivorous
fish species. It has often been reported to be an estuarine-
resident species that exhibits a wide spatio-temporal distri-
bution and completes its whole life cycle within the BBE
(Lopez Cazorla and Sidorkewicj 2009; Lopez Cazorla et al.
2011). R. arcuata is not fit for consumption, nevertheless is
an important fish species for studying PAH accumulation
since, as permanent inhabitant of the BBE, it shows more
accurately what happens within the estuarine system.

Even though the occurrence of PAHs in sediments has been
intensively addressed in the past (Arias et al. 2010a, b, 2010;
Oliva et al. 2015a, b), information regarding the biota contam-
ination with PAHs is scarce (Arias et al. 2009). The lack of
available data of PAH accumulation within fish species
inhabiting the BBE gives emphasizes to the evaluation of
the present condition of this environment. Then, the main
aim of this study is to determine the concentration of PAHs
in fish muscle tissues, discussing its accumulation through
four species with different habitat use under analysis. In addi-
tion, this study addresses the safety of fish consumption issue
by evaluating PAHs in terms of accumulation trends.

Materials and methods

Sample collection and preparation

Fish samples were trimonthly caught at the BBE (Fig. 1)
from August 2013 to June 2014. Fish catches were carried
out with shrimp nets at two sampling sites (Galvan Harbor
and Embudo Channel) to ensure proper geographical rep-
resentation. Overall, 536 individuals were collected, corre-
sponding to four fish species: M. furnieri (n = 106),
C. guatucupa (n = 132), R. arcuata (n = 287), and
M. schmitti (n = 11). Each of the analyzed individual was
classified in size classes following different criteria for
each species. In C. guatucupa and M. furnieri, trophic
groups were formed by different sizes throughout the first
year of life of each one according to Sardiña and Lopez
Cazorla (2005a and b) and adults with sizes larger than
350 mm of total length (TL). In R. arcuata, each class
corresponds to an age according to Lopez Cazorla and
Sidorkewicj (2009). For M. schmitti, the classes were ju-
veniles and adults with sizes larger than 450 mm of TL
(Lopez Cazorla 1987).

After being caught, for each fish, TL was measured to the
nearest millimeter and the samples were transported to the
laboratory with ice. Feeding activity for each species and
month was analyzed by the vacuity index (VI). VI indicates
the percentage of individuals in the population who have been
feeding, and it was calculated as follows: (number of empty
stomachs/total number of stomachs examined) × 100
(Molinero and Flos 1992). Dissection was performed with a
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stainless steel knife in order to obtain tissue subsamples from
dorsal muscle. After that, with pooling criteria adjusted to
discriminate among size classes, samples were weighed, ho-
mogenized, and pooled if necessary. A total of 23 composite
samples were analyzed. The samples were then lyophilized
during 48 h, smashed in a mortar, and stored in desiccators
prior to analyses.

Analytical procedure

The analytical procedure for PAH analyses involved an ex-
traction according to the method of UNEP/IAEA/FAO/IOC
(1993). Before extraction, 100 μL of the mixture of four
predeuterated PAHs (napthalene-d8, acepnapthene-d10,
phenanthene-d10, crysene-d12) was added as subrogate stan-
dards. Muscle tissue (5 g) was digested under reflux with
methanol for 8 h, and then potassium hydroxide (0.7 M) and
tridistilled water were added and left to reflux for two more
hours. The non-saponifiable fraction was extracted with n-
hexane; the organic phase was dried with anhydrous sodium
sulfate and concentrated close to 5 mL in a rotary evaporator
with a low-temperature thermostatic bath. Furthermore, the
concentrate was reduced to 1.5 mL under a gentle high purity
nitrogen flow. The extract was seeded in an alumina-silica
(2:1) gel column to carry out the sample clean- up. PAHs were
eluted with 70 mL of hexane-dichloromethane (9:1), and the
volume of eluates was then reduced to 5 mL by rotary evap-
orator and further to 1.5 mL under nitrogen flow. Finally, just
before the GC/MS injection, 100 μL of deuterated internal
standard (benzo-[a]-anthracene-d12) was added to the extract
vials for recovery asses.

PAHs were quantified using a gas chromatograph (Agilent
7890 B, Santa Clara, USA) coupled with a mass spectrometer
(Agilent 5977A, Santa Clara, USA), equipped with a fused
silica column (HP-5MS; 30 m; 0.25 mm i.d.; 0.25 μm film
thickness). Helium was used as a carrier gas. The mass spec-
trometer was operated in selected ion monitoring mode (SIM)
and electron impact mode (70 eV). The samples were injected
in the splitless mode at 250 °C, and the temperature program
used was as follows: initial temperature 70 °C for 2 min; heat-
ed to 150 °C at 30 °C/min and then to 310 °C at 4 °C/min; and
held for 10 min. The 16 priority PAHs proposed by USEPA
were analyzed: naphthalene (NA), acenaphthylene (ACY),
acenaphthene (ACE), fluorene (FL), phenanthrene (PHE), an-
thracene (AN), fluoranthene (FLU), pyrene (PY),
benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]-fluo-
ranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene
(BaP), indeno[1,2,3-cd]pyrene (IP), dibenzo[a,h]anthracene
(DBA), and benzo[ghi]perylene (BPE). Each individual
PAH compound was confirmed by the retention time and the
abundance of quantification/confirmation ions with respect to
authentic PAH standards. Quantification of individual com-
pounds was based on the ratios of analyte peak areas/
surrogate standards areas (naphthalene-d12, acenaphthene-
d10, phenanthrene-d10, chrysene-d12, internal standard meth-
od) using the corresponding calibration curves.

Quality control and assurance

To ensure quality control, procedural blanks were regularly
performed during the extraction process. Blanks were pre-
pared following the same procedure but without adding the

Fig. 1 Map of the Bahía Blanca
Estuary, indicating with circles
the two sampling zones
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fish tissue. Quality controls for the PAH analyses were
carried out by monitoring the recovery of the internal stan-
dard (benzo-[a]-anthracene-d12) spiked just before GC in-
jection; recoveries ranged from 76 to 107%.

Sample concentrations were expressed as nanograms
per gram wet weight (ng/g ww). For that, results were
normalized to a water content of 70% (Soclo et al.
2008).The laboratory detection limits of the method
(DLs) for individual PAH ranged from 0.5 to 1.3 ng/g
dry weight. DL was set at five times the detected amount
of the procedural blank. A PAH standard mixture of 16
PAHs, deuterated internal standard solutions, and
benzoanthacene-d12 were obtained from Supelco
(Bellefonte, PA, USA). All solvents used for sample pro-
cessing and analyses (hexane, methanol, and dichloro-
methane) were of analytical and chromatographic grade
from Merck (Darmstadt, Germany). Merck silica gel 60
(70–230 mesh ASTM) and aluminum oxide activated at
450 °C were heated at 120 °C for 12 h prior to use.
Glassware was washed with non-ionic detergent, rinsed
with ultrapure water and acetone/hexane, and dried at
120 °C prior to use.

Health risk assessment

The carcinogenic potential of PAHs was evaluated using the
toxic equivalent of benzo[a]pyrene (TEQ BaP) and was cal-
culated as follows

TEQ BaP ¼ ∑ci� TEF ð1Þ

in which ci is the concentration of the individual PAH (ng/g)
and TEF is the toxic factor of PAHs relative to BaP (USEPA
1993; Nisbet and Lagoy 1992).

The daily dietary intake (DDI) value via fish consumption
was calculated based on Eq. 2

DDI ¼ C � IR ð2Þ

where C is the concentration of single or sumatory PAHs in
fish muscle (ng/g) and IR is fish ingestion rate (13 g/day per
person; FAO 2016)

The excess cancer risk (ECR) resulting from a lifetime fish
consumption was also calculated by the following equation
(Bandowe et al. 2014)

ECR ¼ ∑Q� TEQ BaP� IR� ED

BW� AT
ð3Þ

whereQ is the potential cancer factor of BaP (7.3 mg/kg/day),
ED is the life expectancy (70 years for adults), BW is the
average adult body weight (70 kg), and AT is the average life
span for carcinogens (25,500 days).

Statistical analyses

All statistical analyses were carried out using STATISTICA
7.0 (StatSoft, Inc.), following Zar (1996). One-way analysis of
variance (ANOVA) and Scheffé contrast were performed to
assess differences in PAH concentrations between fish species
and fish size classes. If necessary, data was previously trans-
formed to meet the required assumptions of homogeneity and
normality for the parametric tests. When the data did not meet
the assumptions, a non-parametric test was used (Kruskal-
Wallis). The acceptable level of statistical significance used
throughout the study was p < 0.05. PAH concentrations re-
ported as below the laboratory detection limit (DLs) were
substituted by half of the DL for statistical analyses.

Results and discussion

Concentration of PAHs

PAH concentrations in muscle tissues of M. furnieri,
C. guatucupa, R. arcuata and M. schmitti are listed in
Table 1. The levels of total PAHs found in the different fish
species (sum of 16 PAHs analyzed) ranged from 8.42 to
661.15 ng/g ww. Mean total PAHs accumulated in each of
the four fish species, including both juveniles and adults,
showed the following decreasing concentrations: M. schmitti
(308.96 ng/g) > R. arcuata (182.35 ng/g) > C. guatucupa
(98.25 ng/g) > M. furnieri (34.87 ng/g). Beyond this, statisti-
cal comparisons indicated that there were no significant dif-
ferences in total PAH concentrations among the different spe-
cies under analysis (ANOVA, p < 0.05). In regard to the fish
size classes, there were no significant differences in PAH con-
centration between them; nevertheless, C. guatucupa
achieved the maximum PAH levels in adult tissues, while
the lowest values were found in the smallest individuals (class
II). As bioaccumulation is generally non-demonstrable for
PAHs in fish (Varanasi et al. 1989), this suggested a possible
quite recent PAH uptake for this species. contrast, for the other
analyzed species, no clear trends were observed. Species-
specific differences in biochemical and physiological param-
eters, such as basal levels of xenobiotic-metabolizing enzymes
and lipid content of tissues, appear to have significant effects
on the disposition of PAHs and their metabolites (Varanasi and
Stein 1991), and could be responsible for the variations in
PAH accumulation. The differential trends in PAH accumula-
tion have already been shown in other studies, since PAH
levels can be naturally higher in different fish species because
of diet or habitat use (Escartín and Porte 1999), also indicating
that organisms show different selectivities towards
contaminants.

According to the NOAA (National Oceanic and
Atmospheric Administration), PAH concentration in muscle
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tissues can be grouped into four categories: not polluted
(<10 ng/g), minimally polluted (10 to 99 ng/g), moderately
polluted (100 to 1000 ng/g), and highly polluted (>1000 ng/g)
(Varanasi et al. 1993; Soares-Gomes et al. 2010). The appli-
cation of the NOAA criteria in the Bahía Blanca estuarine
samples (Fig. 2) revealed that 43.5% of the samples analyzed
could be categorized as minimally polluted (11.29 to
88.10 ng/g), whereas 43.5% could be classify as moderately
polluted (102.86 to 661.15 ng/g). In fact, at least two samples
of each species could be categorized as moderately polluted.
Finally, only three samples (13.0%) showed no polluted levels
at all (8.35 to 9.42 ng/g) (Fig. 2).

Comparison of these data with other studies should be ap-
plied with caution due to differences in fish species, number
and type of PAH compound analyzed, and methodology
employed, among others. However, the range of PAH levels
found in this study forM. furnieri showed to be slightly higher

than records from the same fish species inhabiting the estua-
rine environment of Guanabara Bay, Brazil (Da Silva et al.
2007; Meniconi et al. 2001), but lower than those previously
reported for another fish species (Odontesthes sp.) from the
BBE (Arias et al. 2009).

Regarding the time of the samples catches, the lowest
mean values of PAHs were recorded for all the fish spe-
cies during June 2014 (late autumn). Considering the
ingested food as a source of PAHs to fishes, in this study,
the vacuity indexes for both C. guatucupa and R. arcuata
were evaluated. These fish species were selected upon
their better representative. According to the results (Fig.
3), differences were found between the indexes of vacuity
(VI), with June 2014 as the time of the year with the
higher proportion of empty stomachs concordantly with
the lowest PAH values. Thereafter, an increment in the
vacuity levels could be, at least in part, responsible for

Fig. 2 Classification of PAH
levels in fishes from the BBE
according to NOAA criteria.
Striped bars and full bars
represent adults and juveniles
samples, respectively
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the observed lower PAH values found for the colder sam-
pling time. In agreement with this, the maximum levels of
PAHs and the lower VI were detected in December 2013
(late spring), a period whit higher feeding activity for
these species. This allowed to positively correlating the
feeding cycle/behavior with the PAH muscle content at
the area of study. Previous studies with juveniles of
C. guatucupa from the BBE (Sardiña and Lopez Cazorla
2005a) had already found during the time of year with
cold temperatures the highest vacuity levels and shorter
quantity of ingested food items.

It is well known that the lipid content is an important factor
for determining the distribution of lipophilic compounds, such
as PAHs (Bruner et al. 1994, Hellou et al. 2003; Barhoumi
et al. 2016), and it has been suggested that the rate of uptake of
hydrophobic chemicals in fish increase with a higher lipid
content of the biological membranes (Spacie and Hamelink
1982; Van der oost et al. 2003). As the lipid content is related
to the reproductive stage period (Sprung 1993; Bruner et al.
1994), it is important to note the time when the spawning
season takes place. In the case of the fish species from the
BBE, the spawning season takes place throughout the spring,
the summer, and the beginning of autumn. Thus, the low PAH
concentrations found in late autumn could be at least in part
attributed to a natural decrement in the lipid concentrations
after the spawning season.

Composition of PAHs

PAHs in marine environments commonly originate from py-
rogenic or petrogenic sources. Pyrogenic PAHs are dominated
by compounds with high molecular mass (HMW-PAHs) with
four to six rings, whereas petrogenic PAHs are dominated by
PAHs with lower molecular weight (LMW-PAHs) with two to
three rings (Sanders et al. 2002; Dahle et al. 2003). In this
work, similar trends in the distribution and composition pat-
tern of PAH congeners can be advised for all fish species (Fig.
4). The preferential accumulation of PAHs is determined by
their solubility and bioavailability, related to the octanol-water
partition coefficient (Kow), molecular weight, exposure route,
and ingestion of PAHs (Conell and Miller 1984). In this study,
LMW-PAHs prevailed in all the samples, achieving together
between 37.5 and 100% of total PAHs in each species. In
contrast, PAHs with more than five rings were usually lower
than the DL. The dominance of LMW-PAHs in fish muscles
has also been reported in several other studies (Ramalhosa
et al. 2009, 2012; Xu et al. 2011; Storelli et al. 2013;
Barhoumi et al. 2014, 2016). PAHs composed of two to three
fused rings have higher water solubility, bioavailability, and
uptake rates than PAHs with four to six rings and can be
assimilated by these species by ingestion, direct absorption
from water, or via passive diffusion through the gills and skin.
As a consequence, organisms from the marine environment

Fig. 4 Average percentual
composition of PAH congeners in
fish tissues from each species and
size classes from the BBE
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are enriched in LMW compounds, whereas HMW-PAHs tend
to be absorbed onto or associated with organic particles pres-
ent in the water column or sediments, making them less bio-
available to fishes (Porte and Albaiges 1993; Baumard et al.
1998; Thorsen et al. 2004; Tolosa et al. 2005).

Finally, the selective accumulation for LMW-PAHs could
also be an artifact attributed to the metabolic transformations
of heavier PAHs occurring in the fish liver through the
Cytochrome P450 System (Meador et al. 1995), since fish
can rapidly convert up to 99% of the PAHs to metabolites
within 24 h of uptake, changing the pattern and concentra-
tions of PAHs in their tissues (Varanasi et al. 1989; Barhoumi
et al. 2016). Half-life of parental PAHs is generally very
short, ranging from 1 day for ACE to 9 days for PHE
(Meador et al. 1995), and showing that the presence of these
PAHs in fish muscle is an indicator of recent episodes of
pollution exposure in the surrounding environment (Zhao
et al. 2014; Barhoumi et al. 2016). Nevertheless, it is

important to highlight that C. guatucupa and R. arcuata
showed an increasing trend in the abundance of HMW-
PAHs as the size classes of these fish species increased
(Fig. 4). Particularly for R. arcuata, it has been reported to
be an estuarine-resident species that completes its whole life
cycle within the area of study. Then, this characteristic could
have lead to a differential exposure pattern in comparison
with the rest of the fish species, which could have resulting
in a higher HMW PAH intake.

In terms of individual compounds, NAwas the most abun-
dant PAH in almost all the samples, accounting for 47.8 to
86.9% of total PAHs (Fig. 4). PHE was the second PAH com-
pound in terms of abundance. Such patterns are properties of
PAH mixtures generated from petrogenic pollution (Sauer
et al. 1993; Cheung et al. 2007). Petrogenic inputs could be
associated to the intense shipping activity in the study area,
like fishing fleet activities, tanker traffic, petroleum buoys,
spills of fuel, and lubricating oils.

Fig. 5 Excess cancer risk (ECR) values in each size class from the four fish species.Dashed lines represent the acceptable risk level proposed byUSEPA
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Human health risk assessment

Dietary intake has been recognized as the main route to uptake
persistent organic pollutants within humans (Barhoumi et al.
2016). Some PAHs and their metabolic products are considered
priority pollutants of environmental concern, representing a
threat to human health due to their toxic, carcinogenic and
mutagenic characteristics, reproductive impairments, and endo-
crine disruption in lower and higher trophic levels (USEPA
2002, IARC 2010). Among PAHs, the IARC has classified
the priority PAH compound BaP as carcinogenic to humans
(group 1), DBA as a possible human carcinogenic (group
2A), and NA, BaA, CHR, BbF, BkF, and IP as probable human
carcinogenics (Group 2B) (IARC 2010). In this study, the sum
of the PAHs within groups 1, 2A, and 2B (i.e., ∑cPAHs) in
fishes from the BBE varied from <DL to 570.27 ng/g ww and
accounted for up to 88.5% of total PAHs. NA was the largest
contributor to the cPAH levels while BaP, one of the most toxic
and well-investigated carcinogenic PAHs, was detected in sev-
en of the analyzed fish muscle samples. Of these samples, 43%
corresponded to C. guatucupa (two adults and one juvenile
class II), 43% corresponded to R. arcuata (two juveniles class
II and one adult), and 14% corresponded to M. schmitti (juve-
nile). On the other hand, all M. furnieri samples presented
values of BaP lower than DL.

BaP is the only PAH for which toxicological data are suffi-
cient for derivation of a carcinogenic potency factor among all
known potentially carcinogenic PAHs (Peters et al. 1999). Thus,
the carcinogenic potential of PAHs was evaluated using the toxic
equivalent of BaP (TEQ BaP). Total TEQ BaP calculated for
samples varied from 0.009 to 57.492 ng TEQ BaP/g ww, and
themedian of total TEQBaP in the four fish species achieved the
fo l lowing concen t r a t i ons in dec reas ing orde r :
M. schmitti > (0.569 ng/g) > R. arcuata (0.354 ng/g) > C.
guatucupa (0.295 ng/g) >M. furnieri (0.044 ng/g). In this study,
only five samples showed levels above the screening values for
the TEQ BaP (0.67 ng/g ww) suggested by USEPA (2000) for
human fish consumption. From those five samples, four of them
corresponded to fish species that are fishing resource in the area
(adults of C. guatucupa and juveniles of M. schmitti).

The Human Health Risks of fish consumption, due to dif-
ferences in food consumption rates, were assessed and com-
pared using the concept of daily dietary intake (DDI) (Shi
et al. 2016) (Eq. 2). Then, the mean DDI value via fish con-
sumption and for total PAHs was calculated in the present
study, reaching 2118.6 ng/day ww. It is important to highlight
that the DDI was calculated only for the fishes species nor-
mally consumed (adults of M. schmitti, C. guatucupa, and
M. furnieri). This value was lower than those reported from
fishes collected in Haimen bay, China (Shi et al. 2016), Gulf
of Guinea, Ghana (Bandowe et al. 2014), and from fish and
shellfish found in the coastal system of Catalonia, Spain
(Martorell et al. 2010).

In addition, the ECR values resulting from the consumption
of fishes during a lifetime were calculated according to Eq. 3
and are presented in Fig. 5. The ECR obtained from fishes from
the BBE ranged from 1.29 × 10−08 to 7.90 × 10−05. Compared
to the screening criteria for cancerigens proposed by the
USEPA, four samples (17.4% of the samples) exceeded the
acceptable risk level (1 × 10−06) above which consequences
are expected to occur. The samples that exceeded the risk levels
belong to one ofM. schmitti (juvenile of class III), two adults of
C. guatucupa, and one adult of R. arcuata (Fig. 5). On the other
hand, all the samples of M. furnieri presented ECR values
lower than the acceptable risk level. Finally, the serious risk
level (1 × 10−04) was not achieved by any sample caught in the
BBE. At first sight, these results suggested a low carcinogenic
risk posed by fish consumption; however, some considerations
should be made since PAHs can be metabolized and
biotransformed with the develop of metabolites that could be
more toxic and carcinogenic than their parent PAHs (Johnson-
Restrepo et al. 2008).

Conclusion

For the first time, the concentration of PAHs in muscle tissues
of four fish species (M. furnieri,C. guatucupa, R. arcuata, and
M. schmitti) from the BBE was evaluated. In general, while a
dominance of PAH petrogenic sources was strongly suggested
by the experimental evidence, feeding cycle/behavior studies
allowed to point to the relation predator/prey as a possible
route by which PAHs accessed these organisms. Considering
the four species under study, exceedances of safety human
consumption thresholds and carcinogenic risk warnings were
low to null, indicating a good quality status for these fish
species. In general, when compared with other worldwide
locations, warning values were located in the low range of
impact. Authors remark the need and usefulness of long-
term monitoring and further studies to deepen the present
analysis and confirm/discard trends.
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