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Abstract. In this paper, we address a collaborative learning team formation
problem in higher education environments. This problem considers a grouping
criterion successfully evaluated in a wide variety of higher education courses
and training programs. To solve the problem, we propose a hybrid evolutionary
algorithm based on adaptive mutation and crossover processes. The behavior of
these processes is adaptive according to the diversity of the evolutionary
algorithm population. These processes are meant to enhance the evolutionary
search. The performance of the hybrid evolutionary algorithm is evaluated on
ten different data sets, and then, is compared with that of the best algorithm
previously proposed in the literature for the addressed problem. The obtained
results indicate that the hybrid evolutionary algorithm considerably outperforms
the previous algorithm.
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1 Introduction

In higher education environments, collaborative learning is a pedagogical approach
usually used to both complement and enrich the individual learning of students. This
approach requires organizing students into collaborative learning teams. The students
of each collaborative learning team must work together to achieve shared learning
goals. The collaborative learning teams must be formed so that students can acquire
new knowledge and skills through the interaction with their peers, improving their
individual learning. In this context, the grouping criterion (i.e., the criterion to form
collaborative learning teams) is highly relevant because of the composition of each
collaborative learning team affects the learning level and the social behavior of their
student members as well as the performance of the team [1, 2]. Moreover, the way in
which the grouping criterion is applied (i.e., either manually or automatically) is very
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relevant because of many known grouping criteria require a considerable amount of
knowledge, time and effort to be manually applied [10]. In such cases, it is possible to
reduce considerably the workload of professors and also optimize the collaborative
learning team formation through automation.

Different works in the literature have described and addressed the problem of
forming collaborative learning teams automatically from the students [4, 10]. These
works differ in relation to several aspects including the grouping criteria considered,
and the algorithms utilized. In this regards, to the best of our knowledge, only few of
these works consider grouping criteria that have been both successfully and widely
evaluated in higher education environments.

In [5], the authors describe the problem of forming collaborative learning teams
automatically from the students enrolled in a given course. As part of the problem, the
authors consider a grouping criterion successfully evaluated in a wide variety of higher
education courses and training programs. Such grouping criterion corresponds to the
criterion defined by Belbin’s team role model [3]. This criterion considers the team
roles of students, and implies forming well-balanced teams regarding the team roles of
their members. A team role is the way in which a person tends to behave, contribute
and interrelate with others throughout a collaborative task. In this respect, the Belbin’s
model [3] defines nine team roles and balance conditions. Many different studies in the
literature indicate that collaborative learning team formation in higher education
environments according to the Belbin’s criterion leads to good interactions and dis-
cussions during the learning process, improves the social behavior of the students,
enhances the learning process of the students, and impacts positively on the learning
level of the students as well as on the performance of teams [4]. Thus, it is considered
that the collaborative learning team formation problem described in [5] is really
valuable in the context of higher education environments.

In this paper, we present a hybrid evolutionary algorithm to solve the collaborative
learning team formation problem described in [5]. This algorithm utilizes adaptive
mutation and crossover processes that adapt their behavior according to the diversity of
the evolutionary algorithm population. The utilization of these adaptive processes is
meant to improve the evolutionary search performance [6, 12, 13].

We present this hybrid evolutionary algorithm because of the following reasons.
The collaborative learning team formation problem described in [5] is an NP-Hard
optimization problem. In this respect, evolutionary algorithms with adaptive mutation
and crossover processes have been proven to be more effective than evolutionary
algorithms with non-adaptive mutation and crossover processes in the resolution of a
wide variety of NP-Hard optimization problems [6, 12, 13]. Therefore, we consider that
the hybrid evolutionary algorithm presented could outperform the best algorithm
previously presented in the literature for the addressed problem. We refer to the hybrid
evolutionary algorithm presented in [8].

The remainder of the paper is organized as follows. In Sect. 2, we describe the
problem addressed. In Sect. 3, we present the hybrid evolutionary algorithm. In Sect. 4,
we present the computational experiments carried out to evaluate the performance of
the hybrid evolutionary algorithm and an analysis of the results obtained. In Sect. 5, we
present related works. Finally, in Sect. 6 we present the conclusions of the present
work.
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2 Problem Description

In this paper, we address the collaborative learning team formation problem described
in [5]. We present below a description of this problem.

Suppose a course S has n students enrolled, S = {s1, s2, …, sn}, and the professor
must organize the n students into g teams, G = {G1, G2, …, Gg}. Each Gi team is
composed of a zi number of students, and each student can only belong to one team.
Regarding team size, students must be organized so that the g teams have a similar
number of students each. Specifically, the difference among the sizes of the teams must
not exceed one. The values of the terms S, n and g are known.

As regards the students, it is considered that they naturally play different team roles
when participating in a collaborative task. Regarding the team roles that can be played
by the students, the nine team roles defined in Belbin’s model [3] are considered.
Table 1 presents these nine roles and a brief description of the features of each.

According to Belbin’s model [3], it is considered that each student naturally plays
one or several of the nine roles presented in Table 1. In this sense, the roles naturally
played by each student are known data. These roles may be obtained through the
Belbin Team-Role Self-Perception Inventory (BTRSPI) developed by Belbin [3].

As part of the problem, teams must be composed so that the balance among the team
roles of their members is maximized. This grouping criterion requires analyzing the
balance level of the formed teams. To analyze such level, the balance conditions
established by Belbin are considered [3]. Regarding these conditions, Belbin [3] states
that a team is balanced if each role specified in his model is played naturally by at least
one teammember. In other words, in a balanced team, all team roles are naturally played.
Further, Belbin states that each role should be naturally played by only one teammember
[3]. Belbin states that a team is unbalanced if some roles are not played naturally or if
several of its members play the same role naturally (i.e., duplicate role) [3].

Table 1. Belbin’s role characteristics.

Role Characteristics

Plant (PL) Creative, imaginative, unorthodox. Solves difficult problems.
Resource Investigator
(RI)

Extrovert, enthusiastic, communicative. Explore opportunities. Develops contacts.

Co-ordinator (CO) Mature, confident, a good chairperson. Clarifies goals, promotes decision-making,
delegates well.

Shaper (SH) Challenging, dynamic, thrives on pressure. Has the drive and courage to overcome
obstacles.

Monitor Evaluator
(ME)

Sober, strategic and discerning. Sees all options. Judges accurately.

Teamworker (TW) Co-operative, mild, perceptive and diplomatic. Listens, builds, averts friction.
Implementer (IM) Disciplined, reliable, conservative and efficient. Turns ideas into practical actions.
Completer/Finisher
(CF)

Painstaking, conscientious, anxious. Searches out errors and omissions. Polishes
and perfects.

Specialist (SP) Single-minded, self-starting, dedicated. Provides skills in key areas.
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The grouping criterion considered as part of the problem is modeled by Formulas
(1), (2) and (3). Formulas (1) and (2) model the balance conditions defined by Belbin
[3]. Formula (1) analyzes the way in which a given r role is played within a given Gi

team and then gives a score accordingly. When r is naturally played by only one
member of Gi team, then 1 point is awarded to Gi. Conversely, when r is not naturally
played by any member of Gi, or otherwise r is naturally played by several members of
Gi, then 2 points and p points are taken off respectively.

Formula (2) defines the balance level of a given Gi team. This level is established
based on the scores obtained by Gi, through Formula (1), regarding the nine roles.
Thus, the greater the number of non-duplicate roles (i.e., roles played naturally by only
one member of Gi), the greater the balance level assigned to Gi. Conversely, the fewer
the number of roles played naturally, or the more duplicate roles, the lower the balance
level assigned to Gi. The balance conditions defined by Belbin [3] can be seen in
Formula (2). By using this formula, a perfectly balanced team (i.e., a team in which
each of the nine roles is played naturally by only one team member) will obtain a level
equal to 9.

Formula (3) maximizes the average balance level of g teams defined from the
n students of the course. In other words, this formula aims to find a solution (i.e., set of
g teams) that maximizes the average balance level of g teams. This is the optimal
solution to the addressed problem. In Formula (3), set C contains all the sets of g teams
that may be defined from the n students. The term G represents a set of g teams
belonging to C. The term b(G) represents the average balance level of the g teams
belonging to set G. Then, Formula (3) utilizes Formula (2) to define the balance level of
each Gi team belonging to the G set. Note that in the case of a G set of perfectly
balanced g teams, the value of the term b(G) is equal to 9.

For a more detailed discussion of Formulas (1), (2) and (3), we refer to [5].

nrðGi; rÞ ¼
1 if r is naturally played by only one member of Gi

�2 if r is not naturally played in Gi

�p if r is naturally played by p members of Gi

8<
: ð1Þ

nbðGiÞ ¼
X9
r¼1

nrðGi; rÞ ð2Þ

max
8G2C

bðGÞ ¼
Pg
i¼1

nbðGiÞ
g

0
BB@

1
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3 Hybrid Evolutionary Algorithm

The general behavior of the hybrid evolutionary algorithm proposed for the addressed
problem is described as follows. Considering a course with n students who shall be
organized into g teams, the algorithm starts creating a random initial population of
feasible encoded solutions. In this population, each solution codifies a feasible set of
g teams which may be defined from the n students. To encode these solutions, the
representation proposed in [5] is used. Then, the algorithm decodes and evaluates each
solution of the population by a fitness function. The set of g teams inherent to each
solution is built by the decoding process proposed in [5], and then evaluated regarding
the optimization objective of the problem. As mentioned in Sect. 2, this objective is
maximizing the balance level of the g teams formed from n students. Thus, the fitness
function evaluates the balance level of the g teams represented by each solution and
defines a fitness level for each solution (i.e., the fitness function calculates the value of
the term b(G) corresponding to each solution by Formulas (3), (2) and (1)). To such
evaluation, the function uses knowledge of the students’ roles.

Once each solution of the population is evaluated, a well-known parent selection
process named roulette wheel selection process [6] is used to decide which solutions of
the population will compose the mating pool. By this process, the highest fitness
solutions will have more probability of being selected for the mating pool. After the
mating pool is complete, the solutions in the mating pool are paired. Then, a crossover
process named partially mapped crossover [6] is applied to each of these pairs of
solutions with an adaptive probability APc, to generate new feasible ones. Then, a
mutation process named insert mutation [6] is applied to each solution obtained by the
crossover process, with an adaptive probability APm. Then, the traditional fitness-based
steady-state selection process [6] is applied in order to define which solutions from the
solutions in the population and the solutions generated from the mating pool will
integrate the new population. This survival selection process preserves the best solu-
tions found by the hybrid evolutionary algorithm [6]. Finally, an adaptive simulated
annealing algorithm is applied to each solution of the new population, excepting the
best solution which is preserved.

This process is repeated until a predefined number of iterations is reached.

3.1 Adaptive Mutation and Adaptive Crossover

The above-mentioned crossover and mutation processes are applied with adaptive
crossover and mutation probabilities, respectively. In this respect, we defined the
adaptive crossover probability APc and the adaptive mutation probability APm. These
probabilities are defined by Formulas (4) and (5), where PD refers to the population
diversity, and PDMAX refers to the maximum PD attainable. In Formula (4), the terms
CH and CL represent to the upper and lower bounds for the crossover probability,
respectively. In Formula (5), the terms MH and ML represent to the upper and lower
bounds for the mutation probability, respectively. Then, fmax is the maximal fitness of
the population, fmin is the minimal fitness of the population, and f is the fitness of the
solution to be mutated.
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The term PD is defined by Formula (6), where fmax is the maximal fitness of the
population, favg is the average fitness of the population, and (fmax – favg) is a measure of
the population diversity. This measure has been proposed by Srinivas and Patnaik [7],
and is one of the population diversity measures most well-known in the literature [6].

The term PDMAX is defined by Formula (7), where fMAX and fMIN correspond to the
upper and lower bounds for the fitness function, respectively.

By Formulas (4)–(7), APc and APm are adaptive regarding the population diversity.
When the population diversity decreases, APc and APm are increased, promoting the
exploration of unvisited regions of the search space. This is important to prevent the
premature convergence of the evolutionary search. When the population is diverse, APc

and APm are decreased, promoting the exploitation of visited regions of the search
space.

By Formula (5), APm is also adaptive according to the fitness of the solution to be
mutated. In this regards, lower values of APm are defined for high-fitness solutions, and
higher values of APm are defined for low-fitness solutions. This is meant in order to
preserve high-fitness solutions, while disrupting low-fitness solutions to promote the
exploration of the search space.

APc ¼ PDMAX � PD
PDMAX

� �
� CH � CL
� �þCL ð4Þ

APm ¼ fmax � f
fmax � fmin

� �
� PDMAX � PD

PDMAX

� �
� MH �ML
� �þML ð5Þ

PD ¼ ðfmax � favgÞ ð6Þ

PDMAX ¼ fMAX � fMINð Þ ð7Þ

3.2 Adaptive Simulated Annealing Algorithm

The adaptive simulated annealing algorithm applied is a variant of the one proposed in
[8], and is described below.

The adaptive simulated annealing algorithm is an iterative process. This process
starts from a given encoded solution s and a given initial value T0 for the temperature
parameter. In each iteration, the algorithm generates a new encoded solution s’ from the
current encoded solution s by a move operator, and then decides if s should be replaced
by s’. If the fitness value of s’ is higher than that of s, the algorithm replaces to s by s’.
Otherwise, if the fitness value of s’ is not higher than that of s, the algorithm replaces to
s by s’ with an acceptance probability equal to exp(-D/T), where T is the temperature
current value, and D is the difference between the fitness values of s and s’. This
probability mainly depends on T. When T is high, the probability is also high, and vice
versa. T is reduced by a given cooling factor at the end of each iteration. This process is
repeated until a predefined number of iterations is reached.

Regarding the initial value T0 for the temperature parameter, we defined this value
according to the population diversity. Specifically, T0 is inversely proportional to the
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population diversity, and is calculated by the next formula: T0 = 1/PD, where PD refers
to the population diversity, as mentioned in Sect. 3.1. By this formula, when the
population is diverse, T0 is low, and therefore, the acceptance probability of the sim-
ulated annealing algorithm is also low. As consequence of this, the algorithm fine-tunes
the solutions of the population, promoting the exploitation of visited regions of the
search space. When the population diversity decreases, T0 increases, and therefore, the
acceptance probability of the simulated annealing algorithm also increases. As con-
sequence of this, the algorithm introduces diversity into the population, promoting the
exploration of unvisited regions of the search space. Thus, the algorithm is adaptive to
promote either the exploitation or exploration of the search space.

Regarding the move operator of the simulated annealing algorithm, we applied a
well-known operator named swap mutation [6].

4 Computational Experiments

We used the ten data sets introduced in [5] to evaluate the performance of the hybrid
evolutionary algorithm. Table 2 presents the main characteristics of these data sets. For
a detailed description of the team roles of the students in each data set, we refer to [5].
Each data set has a known optimal solution with a fitness level equal to 9. These
optimal solutions are considered here as references.

We run the algorithm 30 times on each data set. After each run, this algorithm
provided the best solution achieved. To develop these runs, we set the algorithm
parameters as follows: population size = 80; number of iterations = 200; crossover
process: CH = 0.9 and CL = 0.5; mutation process: MH = 0.2 and ML = 0.01; survival
selection process: replacement factor = 40; simulated annealing algorithm: number of
iterations = 20 and cooling factor = 0.9. The algorithm parameters were set based on
preliminary experiments that showed that these values led to the best and most stable
results.

Table 2. Main characteristics of the data sets.

Data set Number of students (n) Number of teams to be built (g)

1 18 3
2 24 4
3 60 10
4 120 20
5 360 60
6 600 100
7 1200 200
8 1800 300
9 2400 400
10 3000 500
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We analyzed the results obtained by the hybrid evolutionary algorithm for each of
the ten data sets. Specifically, we analyzed the average fitness value of the solutions
reached for each data set, and the average computation time of the runs performed on
each data set. The experiments were performed on a personal computer Intel Core 2
Duo at 3.00 GHz and 3 GB RAM under Windows XP Professional Version 2002. The
algorithm was implemented in Java.

For the data sets 1–7 (i.e., the seven less complex data sets), the algorithm reached
an average fitness value equal to 9. This means that the algorithm achieved an optimal
solution in each run. For the data sets 8–10 (i.e., the three more complex data sets), the
algorithm reached average fitness values equal to 8.87, 8.81 and 8.76, respectively.
This means that the algorithm reached very near-optimal solutions for each data set.

Regarding the time required by the algorithm, we may mention the following. For
the data sets 1–6 (i.e., the six less complex data sets), the average time required was
0.18, 0.46, 3.78, 6.01, 14.9 and 19.03 seconds, respectively. For the data sets 7–10
(i.e., the four more complex data sets), the average time required was 72.4, 133.07,
211.18 and 303.84 seconds, respectively. Considering the complexity of the problem
instances represented by the data sets, the average computation times required by the
algorithm are considered acceptable.

4.1 Comparison with a Competing Algorithm

In this section, we compare the performance of the hybrid evolutionary algorithm with
that of the best algorithm previously presented in the literature for the addressed
problem. We refer to the hybrid evolutionary algorithm presented in [8].

For simplicity, we will refer to the hybrid evolutionary algorithm presented in [8] as
algorithm H. Like the hybrid evolutionary algorithm presented here, the algorithm H
incorporates an adaptive simulated annealing algorithm within the framework of an
evolutionary algorithm. Unlike the hybrid evolutionary algorithm presented here, the
algorithm H uses non-adaptive crossover and mutation processes. These processes do
not consider the population diversity.

In the experiments reported in [8], the algorithm H has been evaluated on the ten
data sets presented in Table 2, and has obtained the results that are mentioned below.
These experiments were performed on a personal computer Intel Core 2 Duo at
3.00 GHz and 3 GB RAM under Windows XP Professional Version 2002. The
algorithm was implemented in Java.

For the data sets 1–5, the algorithm H obtained an average fitness value equal to 9.
For the data sets 6–10, the algorithm H obtained average fitness values equal to 8.97,
8.86, 8.77, 8.74 and 8.7, respectively. In relation to the time required by the algorithm
H, for the data sets 1–6, the average time required was 0.29, 0.721, 5.81, 9.24, 21.46
and 29.27 seconds, respectively. For the data sets 7–10, the average time required was
103.43, 190.1, 301.69 and 405.118 seconds, respectively.

Comparing the results obtained by the algorithm H and the hybrid evolutionary
algorithm proposed here, we can mention the following points. Both algorithms have
obtained an optimal average fitness value for the data sets 1–5 (i.e., the less complex
data sets). However, the average fitness value obtained by the hybrid evolutionary
algorithm for the data sets 6–10 (i.e., the five more complex data sets) is significantly
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higher than that obtained by the algorithm H. Besides, the average time required by the
hybrid evolutionary algorithm for each one of the data sets is much lower than that
required by the algorithm H.

Therefore, the hybrid evolutionary algorithm outperforms the algorithm H on the
more complex data sets. The main reason for this is that, unlike the algorithm H, the
hybrid evolutionary algorithm utilizes adaptive mutation and crossover processes.
These processes adapt their behavior according to the population diversity, to promote
either the exploration or exploitation of the search space, and therefore, enhance the
performance of the evolutionary search. Thus, the hybrid evolutionary algorithm can
reach better solutions in less computation time than algorithm H on the more complex
data sets.

5 Related Works

To the best of our knowledge, only few works in the literature address the problem of
automatically forming collaborative learning teams based on the Belbin’s model [4,
10]. These works differ mainly in relation to the modeling of this problem, and the
algorithms proposed to solve it.

In the framework proposed in [11], this team formation problem is modeled as a
constraint satisfaction problem, and is solved by a DLV constraint satisfaction solver.
In the tool proposed in [4], this team formation problem is modeled as a coalition
structure generation problem, and is solved by means a linear programming method.

The two above-mentioned works propose exhaustive search algorithms to solve the
problem. However, this kind of algorithms only can solve very small instances of the
problem in a reasonable period of time.

In [5, 8, 9], different evolutionary algorithms are presented with the aim of solving
problem instances with very different complexity levels. Such algorithms, particularly
the algorithm presented in [8], achieved promising results. However, these algorithms
use non-adaptive mutation and crossover processes for developing the evolutionary
search.

6 Conclusions

In this paper, we proposed a hybrid evolutionary algorithm to solve the collaborative
learning team formation problem described in [5]. This algorithm utilizes adaptive
mutation and crossover processes, to improve the evolutionary search performance.
The behavior of such processes is adaptive in order to promote either exploration or
exploitation of the search space, according to the population diversity. The presented
computational experiments show that the hybrid evolutionary algorithm significantly
outperforms the best algorithm previously proposed in the literature for solving the
addressed problem.
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In future works, we will evaluate other adaptive mutation and crossover processes.
Besides, we will evaluate adaptive parent selection and survival selection processes.
Moreover, we will evaluate the integration of other adaptive search and optimization
techniques into the framework of the evolutionary algorithm.
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