
Expert Systems with Applications 39 (2012) 3810–3816
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Building an expert system to assist system refactorization

Santiago A. Vidal a,b,⇑, Claudia A. Marcos a,c

a ISISTAN Research Institute, Faculty of Sciences, UNICEN University, Campus Universitario, B7001BBO Tandil, Buenos Aires, Argentina
b CONICET, Concejo Nacional de Investigaciones Cientı́ficas y Técnicas, Argentina
c CIC, Comisión de Investigaciones Cientı́ficas de la Provincia de Buenos Aires, Argentina
a r t i c l e i n f o

Keywords:
Interface agents
Expert systems
Aspect-oriented software development
Aspect refactoring
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.09.084

⇑ Corresponding author at: ISISTAN Research In
UNICEN University, Campus Universitario, B7001
Argentina.

E-mail addresses: svidal@exa.unicen.edu.ar (S.A.
edu.ar (C.A. Marcos).
a b s t r a c t

The separation of concerns is an important issue in the building of maintenable systems. Aspect oriented
programming (AOP) is a software paradigm that allows the encapsulation of those concerns that crosscut
a system and can not be modularized using current paradigms such as object-oriented programming. In
this way, AOP increases the software modularization and reduces the impact when changes are made in
the system. In order to take advantage of the benefits of AOP, the legacy OO systems should be migrated.
To migrate object-oriented systems to aspect-oriented ones, specific refactorings for aspects should be
used. This is a complex and tedious task for the developer because he/she needs to know how the refact-
orings should be applied and under what context. Therefore, it is desirable to have tools that help him/her
through the process. In this article, we present an expert software agent, named RefactoringRecommender,
that assists the developer during a refactorization of a system. The agent uses a Markovian algorithm
with the goal of predicting the needed restructurings.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In order to develop highly extensible, reusable, adaptable, and
modifiable systems it is important to have proper separation of
concerns (Clements & Kazman, 2003). Building systems with these
quality attributes improves system modularization and mainte-
nance. Proper separation of concerns can be achieved by means
of object-oriented programming (OOP); however, there are some
concerns that orthogonally crosscut the components of a system
whose encapsulation is almost unviable. These kinds of concerns
are called crosscutting concerns (CCCs). Aspect-oriented program-
ming (AOP) is a software paradigm that complements OOP to
address the problem of separation of concerns (Kiczales et al.,
1997). AOP allows the encapsulation of CCCs into new components
called aspects (Elrad, Filman, & Bader, 2001). Typical examples of
CCCs are exception handling, logging, and concurrency control.

So as to take advantage of the benefits of aspect-oriented devel-
opment (Binkley, Ceccato, Harman, Ricca, & Tonella, 2005; Ceccato,
2008; da Silva, Figueiredo, Garcia, & Nunes, 2009; Hannemann &
Kiczales, 2002; Malta & de Oliveira Valente, 2009; Marin, Deursen,
Moonen, & Rijst, 2009; Monteiro & Fernandes, 2008; van Deursen,
Marin, & Moonen, 2005) and to achieve a system with the above
ll rights reserved.

stitute, Faculty of Sciences,
BBO Tandil, Buenos Aires,

Vidal), cmarcos@exa.unicen.
listed quality attributes, legacy object-oriented systems should
be migrated to aspect-oriented systems. To attain this goal, two
activities are used: aspect mining and aspect refactoring (Kellens,
Mens, & Tonella, 2007). During the aspect mining activity, the
crosscutting concerns that may potentially become aspects must
be discovered in the source code. Usually, there are different in-
stances of each CCC in a system, they are called candidate aspects.
Once the candidate aspects have been identified, they must be
converted, during the aspect refactoring activity, to final aspects
using a specific aspect language like AspectJ1 or a framework that
supports aspects like Spring/AOP.2 Aspect refactorings are mecha-
nisms or strategies of code restructuring similar to the OO refactor-
ings presented by Fowler (1999) but with the difference that aspect
refactorings take into account the presence of aspects in the source
code. This kind of restructuration is used to encapsulate into aspects
the CCCs found in the OO source code, to improve the internal struc-
ture of the created aspects and to apply OO refactorings updating the
references to the AOP constructions (Hannemann, 2006). In this
paper, we focus on the aspect refactoring activity.

The aspect refactoring activity is often tedious and repetitive
but, at the same time, it is also a complex process. On the one hand,
the refactorization of the candidate aspects of the same CCC are
based on the application of a set of aspect refactorings because,
in general, the candidate aspects are patterns in the source code
(da Silva et al., 2009; Hannemann & Kiczales, 2002). That is, all
1 http://www.eclipse.org/aspectj/.
2 http://www.springsource.org/.

http://dx.doi.org/10.1016/j.eswa.2011.09.084
mailto:svidal@exa.unicen.edu.ar
mailto:cmarcos@exa.unicen. edu.ar
mailto:cmarcos@exa.unicen. edu.ar
http://www.eclipse.org/aspectj/
http://www.springsource.org/
http://dx.doi.org/10.1016/j.eswa.2011.09.084
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

S.A. Vidal, C.A. Marcos / Expert Systems with Applications 39 (2012) 3810–3816 3811
the candidate aspects belonging to the same concern have a similar
code structure. On the other hand, there are variations in the
implementation of candidate aspects that cause differences in
the code transformations to be performed. This happens when,
after applying an aspect refactoring, additionals restructurings
should be applied with the goal of ensuring that the external
behavior of the code is not altered.For these reasons, it is important
to use refactoring tools that have user-level assistance in order to
help the developer during the refactorization of a system.

In order to build a tool with these characteristics we argue that
interface agents (Maes, 1994) are an appropriate approach. We
base our decision on the fact that interface agents learn users’
habits, preferences and interests to provide them personalized
assistance with the tasks they perform with software applications
(Hsu & Ho, 1999; Lieberman, 1997). Applying this to the refactor-
ization of OO systems to AO ones, we envision the following sce-
nario: (i) a developer begins the refactorization of a system being
based on the candidate aspects identified previously by aspect
mining; (ii) iteratively each candidate aspect is refactorized; (iii)
an interface agent designed to help the developer during the refac-
torization proposes the elements to be encapsulated, the aspect
refactorings to be applied, and the additional restructurings when
necessary.

Along this line, we have developed an expert software agent
called RefactoringRecommender which observes an aspect refactor-
ing tool called AspectRT (Vidal, Abait, Marcos, Casas, & Díaz Pace,
2009; Vidal & Marcos, 2009b) and proposes the aforementioned
refactoring activities to the developer. RefactoringRecommender
implements a Markovian algorithm (Rabiner, 1989) with the goal
of predicting the actions of the developer based on a recorded his-
tory of previous refactorizations and using a model that represents
the refactoring process impose by AspectRT. By mean of this tech-
nique it is possible to identify the variations between the imple-
mentations of the candidate aspects and propose restructurations
accordingly. That is to say, the use of this technique allows the
incorporation of new restructuration cases when they emerge
and they are saved in the recorded history of previous refactoriza-
tions. Therefore, the main contribution of this paper is assistance to
a developer during the refactorization of an OO system into an AO
one. The assistance is offered in the form of a proposition of a
fragment of aspectizable code to be migrated, the proposition of
an aspect refactoring to be applied, and the recommendation of
additional restructurings when necessary.

The rest of this paper is structured as follows: Section 2 pre-
sents an overview of our proposed approach; Section 3 describes
the main characteristics of our approach; Section 4 presents the
results obtained when evaluating our approach in a number of
experiments; Section 5 analyzes some related works; and Section
6 outlines the conclusions and future work.
2. AspectRT agent’s overview

The expert agent RefactoringRecommender helps developers dur-
ing the refactorization of a system. Fig. 1 shows an overview of the
RefactoringRecommender functionality. In this scenario a developer
interacts with a tool called AspectRT.3 This tool is implemented as a
plug-in for the Eclipse IDE and it is integrated with AspectJ. AspectRT
helps developers to refactor object-oriented systems to aspect-ori-
ented ones, providing a set of aspect refactorings (Monteiro, 2004).

When a developer4 is refactoring a system using AspectRT the
RefactoringRecommender agent monitors the user’s behavior register-
ing the context in which the changes are applied and by this means it
3 Available from http://sites.google.com/site/legacyandaop/Home/ar.
4 The words developer and user are used indistinctly in this article.
builds the evidence for future recommendations. In order to refac-
torize the system, the developer chooses iteratively a candidate as-
pect to be encapsulate into an aspect. Each candidate aspect is
spread over several Java elements, e.g. methods, classes, interface
declarations, statements, etc. To encapsulate a Java element into
an aspect, an aspect refactoring is applied and additional restructur-
ings are done when necessary. In particular, the agent registers the
aspect refactoring applied and also to which kind of Java element
it is applied. Also, the agent registers the order in which the kind
of Java elements are selected to be refactorized and registers the
additional restructurings done. This information collected by the
agent matches with a Hidden Markov Model (HMM) (Rabiner,
1989) of the process of refactoring implemented by AspectRT.

When the agent accumulates enough history it starts to advice
the user using a Markovian algorithm to calculate the probabilities
of the application of a particular action.In order to do that, the
agent observes the developer when he/she is refactoring a system
to determine the states of the process of refactoring. Once the state
has been determined, the agent recommends a list of possible
actions. The developer can accept one of them or ignore the sug-
gestions. The developer’s decision to accept or reject a recommen-
dation is used by the agent as implicit feedback. The possible kind
of recommendations of RefactoringRecommender are:

� A Java element of a candidate aspect to be refactorized.
� An aspect refactoring to be applied on a Java element previously

selected.
� Additional restructurings to an aspect refactoring in order to

complete the encapsulation of a Java element.

In the next section how evidence is collected and how the rec-
ommendations are proposed are explained in detail.
3. Capture of the user’s knowledge

RefactoringRecommender uses a Markovian algorithm to obtain
knowledge about how a developer refactorizes a system encapsu-
lating the CCCs into aspects. A Markovian algorithm enables us to
learn from the developer’s actions during the refactorization of a
system and to identify the restructurations necessary for different
contexts. In this way, this kind of technique allows a flexible adap-
tation of the agent under different situations when it offers a piece
of advice to the developer. This flexibility and learning can not be
achieved with others simple techniques such as ‘‘if-condition-
then-action’’ rules (Vidal & Marcos, 2009a). In our context, a
Markovian algorithm could be used, for example, to identify the
restructuring needed to complete the encapsulation of a Java ele-
ment into an aspect after the application of an aspect refactoring.

A HMM is a doubly stochastic process comprising an underlying
stochastic process that is not directly observable but can only be
visualized through another set of stochastic processes that produce
the sequence of observations (Rabiner, 1989). A Markov model de-
scribes a process that goes through a sequence of discrete states.
The model is called hidden because the state of the model at a time
t is not observable directly. A HMM has the Markov assumption,
that is that given the present state, future states are independent
of past states. The Markovian algorithm implemented by Refactor-
ingRecommender approximates this assumption.
3.1. Building the evidence

The Markovian algorithm that supports the assistance process is
the ON-line Implicit State Identification (ONISI) algorithm (Gorniak
& Poole, 2000; Gorniak, 2000). ONISI allows the prediction of the
future user actions by means of the use of a Markov model.

http://sites.google.com/site/legacyandaop/Home/ar

Fig. 1. Overview of our approach.

Fig. 2. Model of the refactoring process.

3812 S.A. Vidal, C.A. Marcos / Expert Systems with Applications 39 (2012) 3810–3816
Specifically, by the observation of the interaction of the developer
with AspectRT, ONISI infers a HMM composed of states and ac-
tions. This model is represented as a state machine in which the
transitions from one state to another occur when certain actions
are performed. As is shown in Fig. 2, the AspectRT model has five
states. The first state, called ‘‘Waiting decision on a Java element’’,
represents the situation in which a Java element has been selected
and an aspect refactoring will be chosen to encapsulate the Java
element. Once an aspect refactoring is selected, the model transi-
tions to another state. This situation is represented by 3 different
states: ‘‘Refactoring first Java element of a candidate aspect’’, ‘‘Refac-
toring intermediate Java element of a candidate aspect’’, and ‘‘Refac-
toring last Java element of a candidate aspect’’. This differentiation
occurs because additional activities are usually performed during
the encapsulation of the first and last element (e.g. some structures
are created to contain the changes or some actions are performed

S.A. Vidal, C.A. Marcos / Expert Systems with Applications 39 (2012) 3810–3816 3813
in order to improve the resultant code). Finally, when an aspect
refactoring has been applied, (i) an element could be selected tran-
sitioning to the first state; or (ii) additional activities to the refac-
toring could be applied transitioning to the state ‘‘Applying
additional restructurings’’.

In order to register the history of interactions between the user
and the tool, the agent saves into a database each activity as a pair
composed of a state and an action hS,Ai where S is the state in
which the model transitioned and A is the action which occurred
in the model. Both the state and the action belong to the AspectRT
model. For example, if the following scenario is considered:

1. A method is selected to be encapsulated into an aspect.
2. The aspect refactoring Move Method from Class to Inter-type

(Monteiro, 2004) is selected.
3. The aspect refactoring is applied.
4. Another Java element that is a statement is selected.

The pairs of states and actions saved by RefactoringRecommend-
er will be:

hJAVA ELEMENT METHOD SELECTED, WAITING DECISION ON A JAVA ELEMENTi.
hASPECT REFACTORING MOVE METHOD FROM CLASS TO INTER-TYPE SELECTED,
REFACTORING FIRST JAVA ELEMENT OF A CANDIDATE ASPECTi.
hASPECT REFACTORING MOVE METHOD FROM CLASS TO INTER-TYPE APPLIED,
REFACTORING FIRST JAVA ELEMENT OF A CANDIDATE ASPECTi.
hJAVA ELEMENT STATEMENT SELECTED, WAITING DECISION ON A JAVA ELEMENTi.

Another source of knowledge of the agent, besides those that
can be inferred from the context, is the feedback given by the
developer. The developer expresses implicit feedback when he/
she accepts (or not) a recommendation proposed by Refactoring-
Recommender. When the developer does not accept a recommen-
dation, he/she can apply an alternative solution and the activities
involved in this solution are saved as state-action pairs. In this
way the algorithm can use this information to make successful fu-
ture recommendations.

3.2. Making recommendations

The goal of our agent is to assist the developer during the refac-
torization of an OO system into an AO one by means of recommen-
dations. These recommendations are oriented to help in the
selection of a Java element to be encapsulated, the selection of
the aspect refactoring to be used, and the application of additional
restructurings to the refactorings when necessary.

With this goal in mind, the ONISI algorithm is used to analyze
the interaction history and predict the most probable action to
be taken given the current state. ONISI assigns probabilities to all
possible actions in the currently observed state. These probabilities
are calculated estimating how much observed history supports an
action in the current context. This estimation is accomplished
using a k-nearest neighbors scheme that ranks the actions in the
Fig. 3. Recomme
state taking into account the length of the sequences found in
the history. When the current state is observed by ONISI, probabil-
ities to all possible actions from that state are assigned and ranked.

At its core, the algorithm uses two measures: the match length
measure and the frequency measure (Gorniak & Poole, 2000;
Gorniak, 2000). The former calculates the average of the lengths
of the k longest sequences that end with a determined action in
a specific state where k is a small integer. The latter counts the
occurrence of an action in a state. The ranking of a possible action
for the current state is calculated using a parameter 0 6 a 6 1 to
indicate the weight between the match length measure normalized
and the frequency measure, also normalized. So, every time a tran-
sition is detected in the model, ONISI is executed with the goal of
proposing to the user possible actions to be made using the rank-
ings obtained for the potential actions of the current state.

When a recommendation is made, the first three results of the
ranking generated by ONISI are proposed to the developer in order
(where the first is the most possible). As is shown in Fig. 3, the rec-
ommendations are made in a noninvasive way, in order not to
interrupt the developer, using a recommendation bar that is inte-
grated with AspectRT. Some examples of possible advice are:
‘‘The aspect refactoring Extract Fragment into Advice should be se-
lected,’’ ‘‘The Java element Statement should be selected,’’ or an
additional restructuring related to aspect languages as ‘‘A privi-
leged statement should be added into the aspect.’’ The recommen-
dations are made in as much detail as possible in order to allow the
automatic application of the changes by AspectRT when the user
accepts a recommendation. This is especially useful in the recom-
mendation of additional restructurings where there are several
possible activities. In this case the level of detail is the change of
a Java (or aspect language) structure. This kind of recommendation
is proposed incrementally by the agent. That is, a restructuring rec-
ommendation is proposed and if accepted, then the next recom-
mendation is suggested. If the user does not accept any of the
three recommendations, he/she can proceed with a restructuration
on his/her own. This solution is stored in the database. When a rec-
ommendation is accepted (or not) by the developer, the agent uses
the developer’s decision as an implicit feedback in order to use this
knowledge in making future recommendations.

In regard to the values of the k and a parameters that are used
in the algorithm, they were determined experimentally for this do-
main.We uses a 0.7 6 a 6 0.9 in order to give more importance to
the match length measure normalized rather than the frequency
measure normalized. The next scenario will help to explain this
decision. When the model is in the state ‘‘Waiting decision on a
Java element’’ the selection of an aspect refactoring is expected.
So, in a situation like this it is not important how many times a
determined refactoring in this state was selected (which is mea-
sured by the frequency measure); however it is a priority to know
the frequency that an aspect refactoring was selected after the
selection of a Java element (which is measured by the match length
measure). With respect to the k parameter (Gorniak & Poole, 2000)
claim that low values show the same performance as high values.
ndation bar.

Fig. 4. Identification precision.

3814 S.A. Vidal, C.A. Marcos / Expert Systems with Applications 39 (2012) 3810–3816
We experimentally obtained the same results, therefore we pro-
pose a 3 6 k 6 5 value in order to make faster calculations.

4. Experimental results

In order to assess the recommendation precision of Refactoring-
Recommender we conducted the refactorization of two OO systems:
JHotDraw5 and FreeMind.6 Before the refactoring, the training of the
tool was carried out using small examples of CCCs encapsulation,
like the presented by Monteiro (2004) to illustrate his catalog. This
training allowed the agent to identify the context in which an aspect
refactoring is used and also some policies about the order in which
the Java elements should be encapsulated. In contrast, the training
did not contain situations of additional restructurings so as to show
how the ONISI algorithm learns the developer’s behavior during
refactorization. The ONISI algorithm was configured using k = 5
and a = 0.9.

The refactored CCCs from JHotDraw were Command, Undo, Per-
sistence, Observer and Composite (Marin, Deursen, & Moonen, 2007)
and in FreeMind they were Action and XML Attribute Serialization
(Yuen & Robillard, 2007).

The average precision of the agent during the refactorization of
JHotDraw was 84.27% as compared to FreeMind’s 91.51%. The pre-
cision was determined by how many of the recommendations
made by the agent were correct (where a recommendation is cor-
rect when it occupies the first position in the ONISI ranking). The
recommendations taken into account were of the three possible
kinds (the selection of a Java element to be encapsulated, the selec-
tion of an aspect refactoring to be applied, and the proposition of
additional restructurings), however, differences in the recommen-
dation precision among them were found. As can be seen in Fig. 4,
the percentage of Java elements and aspect refactorings identified
were above 80% for both systems as was the precision for the rec-
ommendation of additional restructurings for FreeMind. Instead,
the precision for the recommendation of additional restructurings
for JHotDraw was 57%. The differences between the recommenda-
tion precision of both system is due to the variation among the pat-
tern structuresof the candidate aspects of a concern. We found that
when the Java elements that compose the candidate aspects of a
same concern varies greatly, the agent experiences a delay in
adapting to the different candidate aspects. As consequence, these
fails in the identification of restructurings impact the identification
of a Java element. This is because in some of these cases, an addi-
tional step is wrongly proposed instead of the selection of a Java
5 http://www.jhotdraw.org, version 5.4b1.
6 http://freemind.sourceforge.net, version 0.8.0.
element. Also, we found that some of the additional restructurings
proposed by the agent are not specific enough in some occasions.
For example, the agent proposed making changes in the structure
of a pointcut; however, the specific changes to be made in the
pointcut were not proposed.

Since the lowest precision rates were in the recommendation
of additional restructurings it is useful to discuss these recom-
mendations. Fig. 5 shows the location of the ranking in which
the correct recommendation for the proposition of additional
restructurings appeared. As can be seen, taking into consider-
ation the three recommendations that the agent proposes (i.e.
the top three ONISI ranked positions and not simply the first),
the precision increases to 68% (57% were ranked at first place
and 11% were ranked between the second and third place) for
JHotDraw and 93% (82% and 11%) for FreeMind. Additional sig-
nificant percentages in both cases are those recommendations
that did not appear in the ranking. This mainly happens when
there is not enough information to predict an action for the cur-
rent state or when there are variations on the Java elements for
a candidate aspect.

The above situation in which there are variations on the Java
elements, can be seen in the charts presented in Fig. 6. Chart (a)
shows the refactorization of the Java elements for a candidate
aspect of the Command concern comparing one scenario with pre-
vious training and another without training (only the recommen-
dations of additional restructurings are shown). The letter Rplace

indicates the correct recommendation place of the ONISI ranking
when it was not in the first position (R� indicates that the correct
recommendation was not taken into account to generate the rank-
ing). In the untrained scenario it is shown the situation where
there is not enough information to predict an action and how the
correct recommendation ascends in the ranking. For example, dur-
ing the recommendation of the fourth Java element the ranking po-
sition for the correct action was 5, so it was not proposed. Later,
during the recommendation of the fifth Java element (which was
a case similar to the fourth Java element) the ranking position for
the correct action was 2, so it was proposed in second place. From
there the correct action was recognized in the first position. In the
chart (a), is also shown the improvement when the agent has a
previous training.

Fig. 6(b) shows the precision of the refactorization of the
candidate aspects of the Undo concern in the recommendation of
additional restructurings without training. As can be seen in the
chart, during the refactorization of the first two candidate aspects,
the recommendations are not successful. Then, the precision of the
recommendation improves incrementally to achieve 100% accu-
racy. When a variation in the code structure of the candidate as-
pect occurs, there is a descent in the percentage of precision (i.e.
the refactorization of the seventh candidate aspect). It was ob-
served that the descent of precision for these changes gradually de-
creases over time because the agent learns the possible additional
restructurings for a concern.
5. Related work

Since the emergence of AOP, the refactorization of systems has
been widely investigated, and a variety of aspect refactorings and
refactorization process have been proposed (Binkley et al., 2005;
Ceccato, 2008; Hannemann, Fritz, & Murphy, 2003; Hanenberg,
Oberschulte, & Unland, 2003; Iwamoto & Zhao, 2003; Laddad,
2002; Marin, Moonen, & van Deursen, 2005; Monteiro, 2004; van
Deursen et al., 2005; Vidal et al., 2009). The majority of these pro-
cesses try to refactorize an OO system to an AO one using different
kinds of refactorings (Hannemann, 2006). However, few of them
incorporate AI techniques to automatize the refactorization.

http://www.jhotdraw.org
http://freemind.sourceforge.net

Fig. 5. Distribution of the recommendations in the ONISI ranking.

Fig. 6. Identification of additional restructurings.

S.A. Vidal, C.A. Marcos / Expert Systems with Applications 39 (2012) 3810–3816 3815
The approaches presented by Binkley et al. (2005), Ceccato
(2008) base their automation on iterative processes that use a
small subset of aspect refactorings. The selection of these refactor-
ings is accomplished by means of rules such as ‘‘if the code has a
certain characteristic, then a particular refactoring is applied’’. In
contradistinction to RefactoringRecommen der, these approaches
do not fully cover the situation when additional restructurings
must be done after the application of an aspect refactoring. Addi-
tionally, RefactoringRecommender, takes into account the prefer-
ences of the developer during the refactorization.

The processes presented in Marin et al. (2009), van der Rijst,
Marin, and van Deursen (2008) use a type of CCC documentation
called crosscutting concerns sorts. The refactorization of each CCC
is done through a series of transformations associated with a cross-
cutting concerns sorts. When a compilation problem is found after
the refactorization, these approaches propose possible solutions
using the sort documentation. Unlike our approach, these pro-
cesses do not fully cover those cases in which variations in the
implementation of a CCC result in the incomplete encapsulation
of the CCC.

da Silva et al. (2009) propose a high level technique of aspect
refactoring based on metaphor-based heuristics. Similar to the
techniques enunciate above, the refactorings are used according
to the way in which the CCCs are documented. However, the ap-
proach only proposes a subset of possible refactorings, so the selec-
tion of a specific aspect refactoring and additional restructurings to
be applied are done by the developer.

Finally, some OO refactoring approaches that incorporate AI
techniques have been proposed (Hoffmann, Janssens, & Eetvelde,
2006; Kösker, Turhan, & Bener, 2009), but although useful, these
techniques can not be transferred to AOP.
6. Conclusions and future work

In this paper, we presented an approach that assists the devel-
oper in the refactorization of an object-oriented system into an as-
pect-oriented one. Toward this goal, we have developed an agent
called RefactoringRecommender which interacts with an aspect
refactoring tool. The agent observes the developer when he/she
is refactoring a system in order to recommend a fragment of a can-
didate aspect to be encapsulated, aspect refactorings to be applied,
and additional restructuring to them. RefactoringRecommenderuses
a Markovian algorithm to made the recommendation analyzing the

3816 S.A. Vidal, C.A. Marcos / Expert Systems with Applications 39 (2012) 3810–3816
interaction history of the user with the aspect refactoring tool. The
acceptance (or not) of a recommendation by the developer is saved
into the interaction history in order to improve the agent’s
knowledge.

The results obtained when evaluating the agent demonstrated
the advantages of using an agent-based approach during the refac-
torization of systems. Along this line, despite some limitations,
RefactoringRecommender has corroborated our feelings about the
advantages of agent-based assistance, reducing the developer’s
intervention during the refactoring process.

As future work, we are planning to refine the recommendations
of additional restructurings in order to enable their automatic
application when they are accepted by the developer.

References

Binkley, D., Ceccato, M., Harman, M., Ricca, F., & Tonella, P. (2005). Automated
refactoring of object oriented code into aspects. In ICSM ’05: Proceedings of the
21st IEEE international conference on software maintenance (pp. 27–36).
Washington, DC, USA: IEEE Computer Society.

Ceccato, M. (2008). Automatic support for the migration towards aspects. In CSMR
’08: Proceedings of the 2008 12th European conference on software maintenance
and reengineering (pp. 298–301). Washington, DC, USA: IEEE Computer Society.

Clements, P., & Kazman, R. (2003). Software Architecture in Practice. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

da Silva, B. C., Figueiredo, E., Garcia, A., & Nunes, D. (2009). Refactoring of
crosscutting concerns with metaphor-based heuristics. Electronic Notes in
Theoretical Computer Science, 233, 105–125.

Elrad, T., Filman, R. E., & Bader, A. (2001). Aspect-oriented programming:
Introduction. Communications of the ACM, 44(10), 29–32.

Fowler, M. (1999). Refactoring: Improving the design of existing code. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

Gorniak, P. (2000). Keyhole state space construction with applications to user
modeling. Ph.D. Thesis, University of British Columbia.

Gorniak, P., & Poole, D. (2000). Predicting future user actions by observing
unmodified applications. In AAAI/IAAI: AAAI Press/The MIT Press (pp. 217–222).

Hanenberg, S., Oberschulte, C., & Unland, R. (2003). Refactoring of aspect-oriented
software. In Proceedings of international conference on object-oriented and
internet-based technologies, concepts, and applications for a networked world
(Net.ObjectDays) (pp. 19–35).

Hannemann, J. (2006). Aspect-oriented refactoring: Classification and challenges. In
LATE ’06.

Hannemann, J., Fritz, T., & Murphy, G. C. (2003). Refactoring to aspects: An
interactive approach. In Eclipse’03: Proceedings of the 2003 OOPSLA workshop on
eclipse technology eXchange (pp. 74–78). New York, NY, USA: ACM.

Hannemann, J., & Kiczales, G. (2002). Design pattern implementation in java and
aspectj. SIGPLAN Not, 37(11), 161–173.

Hoffmann, B., Janssens, D., & Eetvelde, N. V. (2006). Cloning and expanding graph
transformation rules for refactoring. Electronic Notes in Theoretical Computer
Science, 152, 53–67.

Hsu, C.-C., & Ho, C.-S. (1999). Acquiring patient data by an intelligent interface agent
with medicine-related common sense reasoning. Expert Systems with
Applications, 17(4), 257–274<http://www.sciencedirect.com/science/article/
B6V03-3XSJS5W-3/2/1774b19527b11600db2a92724b53da05>.
Iwamoto, M., & Zhao, J. (2003). Refactoring aspect-oriented programs. In The 4th
AOSD modeling with UML workshop. UML’2003. ACM.

Kellens, A., Mens, K., & Tonella, P. (2007). A survey of automated code-level aspect
mining techniques. Transactions on Aspect-Oriented Software Development
(TAOSD), IV, 143–162 (Special Issue on Software Evolution).

Kiczales, G., Lamping, J., Mendheka, A., Maeda, C., Lopes, C. V., & Loingtier, J.-M.
(1997). Aspect-oriented programming. In Proceedings of the european conference
on object-oriented programming (ECOOP). In S. Gjessing & K. Nygaard (Eds.).
Lecture notes in computer science (Vol. 1241). Finland: Springer.

Kösker, Y., Turhan, B., & Bener, A. B. (2009). An expert system for determining
candidate software classes for refactoring. Expert Systems with Applications,
36(6), 10000–10003.

Laddad, R. (2002). I want my AOP: Separate software concerns with aspect-oriented
programming. URL <http://www.javaworld.com/javaworld/jw-01-2002/jw-
0118-aspect.html>.

Lieberman, H. (1997). Autonomous interface agents. In CHI ’97: Proceedings of the
SIGCHI conference on Human factors in computing systems (pp. 67–74). NY, USA,
New York: ACM.

Maes, P. (1994). Agents that reduce work and information overload.
Communications of the ACM, 37(7), 30–40.

Malta, M. N., & de Oliveira Valente, M. T. (2009). Object-oriented transformations
for extracting aspects. Information and Software Technology, 51(1), 138–149.

Marin, M., Deursen, A. V., & Moonen, L. (2007). Identifying crosscutting concerns
using fan-in analysis. ACM Transactions on Software Engineering Methodology,
17(1), 1–37.

Marin, M., Deursen, A., Moonen, L., & Rijst, R. (2009). An integrated crosscutting
concern migration strategy and its semi-automated application to jhotdraw.
Automated Software Engineering, 16(2), 323–356.

Marin, M., Moonen, L., & van Deursen, A. (2005). An approach to aspect refactoring
based on crosscutting concern types. In MACS ’05: Proceedings of the 2005
workshop on Modeling and analysis of concerns in software (pp. 1–5). New York,
NY, USA: ACM.

Monteiro, M.P. (2004). Catalogue of refactorings for aspectj. Tech. Rep. UM-DI-
GECSD-200402, Universidade do Minho.

Monteiro, M. P., & Fernandes, Jo a. M. (2008). An illustrative example of refactoring
object-oriented source code with aspect-oriented mechanisms. Software –
Practice and Experience, 38(4), 361–396.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

van der Rijst, R., Marin, M., & van Deursen, A. (2008). Sort-based refactoring of
crosscutting concerns to aspects. In LATE ’08: Proceedings of the 2008 AOSD
workshop on Linking aspect technology and evolution (pp. 1–5). New York, NY,
USA: ACM.

van Deursen, A., Marin, M., & Moonen, L. (2005). A systematic aspect-oriented
refactoring and testing strategy, and its application to jhotdraw. CoRR abs/cs/
0503015.

Vidal, S., & Marcos, C. (2009a). Identificación automática de refactorings. In Tenth
Argentine symposium on software engineering (ASSE 2009), 38 JAIIO (Jornadas
Argentinas de Informática).

Vidal, S., Abait, E. S., Marcos, C., Casas, S., & Díaz Pace, J. A. (2009). Aspect
mining meets rule-based refactoring. In PLATE ’09: Proceedings of the 1st
workshop on linking aspect technology and evolution (pp. 23–27) New York,
NY, USA: ACM.

Vidal, S., & Marcos, C. (2009b). Un proceso iterativo para la refactorización de
aspectos. Revista Avances en Sistemas e Informática, 6(1), 93–103.

Yuen, I., Robillard, M. P. (2007). Bridging the gap between aspect mining and
refactoring. In LATE ’07: Proceedings of the 3rd workshop on Linking aspect
technology and evolution (p. 1). New York, NY, USA: ACM.

http://www.sciencedirect.com/science/article/B6V03-3XSJS5W-3/2/1774b19527b11600db2a92724b53da05
http://www.sciencedirect.com/science/article/B6V03-3XSJS5W-3/2/1774b19527b11600db2a92724b53da05
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html

	Building an expert system to assist system refactorization
	1 Introduction
	2 AspectRT agent’s overview
	3 Capture of the user’s knowledge
	3.1 Building the evidence
	3.2 Making recommendations

	4 Experimental results
	5 Related work
	6 Conclusions and future work
	References

