
MNRAS 000, 1–10 (2016) Preprint 19 May 2017 Compiled using MNRAS LaTEX style file v3.0

Voids and Superstructures:
correlations and induced large–scale velocity flows

Marcelo Lares?, Heliana E. Luparello, Victoria Maldonado, Andrés N. Ruiz, Dante J.
Paz, Laura Ceccarelli, & Diego Garcia Lambas
Instituto de Astronomía Teórica y Experimental, CONICET-UNC, and Observatorio Astronómico de Córdoba, Argentina

Released 2016 Xxxxx XX

ABSTRACT
The expanding complex pattern of filaments, walls and voids build the evolving cosmic web
with material flowing from underdense onto high density regions. Here we explore the dynam-
ical behaviour of voids and galaxies in void shells relative to neighboring overdense super-
structures, using the Millenium Simulation and the main galaxy catalogue in Sloan Digital Sky
Survey data. We define a correlation measure to estimate the tendency of voids to be located
at a given distance from a superstructure. We find voids–in–clouds (S–types) preferentially
located closer to superstructures than voids–in–voids (R–types) although we obtain that voids
within ∼ 40h−1 Mpc of superstructures are infalling in a similar fashion independently of void
type. Galaxies residing in void shells show infall towards the closest superstructure, along with
the void global motion, with a differential velocity component depending on their relative po-
sition in the shell with respect to the direction to the superstructure. This effect is produced
by void expansion and therefore is stronger for R–types. We also find that galaxies in void
shells facing the superstrucure flow towards the overdensities faster than galaxies elsewere at
the same relative distance to the superstructure. The results obtained for the simulation are
also reproduced for the SDSS data with a linearized velocity field implementation.

Key words: large scale structure of Universe – cosmology: observations – methods: statistics
– data analysis

1 MOTIVATION

The cosmic web is the largest scale outcome of the anisotropic
growth of mass overdensities. It also represents the transition be-
tween the linear and non-linear regimes and encodes information
about the early phases of structure formation. The analysis of the
mass transport between different environments clearly shows how
matter flows from voids into walls, and then via filaments into clus-
ter regions, which form the nodes of the cosmic web (see e.g. Van
de Weygaert & Platen 2011; Cautun et al. 2014), producing dif-
ferent redshift evolution of haloes in different environments (Hahn
et al. 2007).

The relations between the different types of the largest struc-
tures in the universe have been suggested on several contexts
(Einasto et al. 1986, 1997; Platen et al. 2008; Aragón-Calvo et al.
2010; Einasto et al. 2011). This allows to analyse the large–scale
structure in terms of the large overdense structures, or alternatively
in terms of the large underdense regions. Actually, the largest over-
dense structures that shape the cosmic web, also serve as bound-
aries for voids (Cautun et al. 2014). Also, by understanding the
evolutionary processes of the different structures we can obtain a
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deeper insight on the origin and history of the present structure
(Leclercq et al. 2015).

In order to deepen our understanding on the nature of voids
and the evolution of their properties it is crucial to take into account
the surrounding environment where they are embedded (Paranjape
et al. 2012). Essentially, the hierarchy of voids arises by the as-
sembly of mass in the growing nearby structures. Sheth & van de
Weygaert (2004) suggest that while some voids remain as under-
dense regions, other voids fall in on themselves due to the collapse
of dense structures surrounding them. According to this scenario,
void evolution exhibits two opposite processes, expansion and col-
lapse, being the dominant process determined by the global density
around the voids. The distinction between these two types of void
behaviour depends on the surrounding environment. It is expected
that the large underdense regions with surrounding overdense shells
will undergo a void-in-cloud evolution mode. These voids are likely
to be squeezed as the surrounding structures tend to collapse onto
them. On the other hand, voids in an environment more similar to
the global background density will expand and remain as under-
dense regions following a so called void-in-void mode. In a series
of works (Ceccarelli et al. 2013; Paz et al. 2013; Ruiz et al. 2015)
we have considered an alternative classification of void according
to their environment taking into account the cumulative radial den-
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2 Lares et al.

Figure 1. A Visualization of a group of void–FVS pairs, including all the
voids (represented as spheres) that have the FVS (in the center of the Figure)
as their closest one. Arrows are scaled representations of the void velocity
vector, with dotted segments located inside or behind voids. This example
corresponds to a subset of data from the simulation. Other FVSs and voids
in the neighbourhood are not shown for simplicity. Darker spheres represent
R–type voids and delineated spheres represent S–type voids. The latest are
typically closer and moving towards the FVS.

sity profiles. Voids with a surrounding overdense shell exhibit a
rising cumulative density profile, which overcompensates the un-
derdensity and therefore reach possitive values between 2 and 3
times the void radius. These voids, dubbed S–type after its shell–
like structure, are likely collapsing. On the other hand, voids with a
smoothly rising integrated density profile that approaches the mean
density at large distances (hereafter R–type voids) show a contin-
uos expansion. In this scheme, R-type voids resemble void-in-void
objects while void in clouds are consistent with the S-type defini-
tion.

The origin of the large–scale flows observed in the local Uni-
verse has been subject of controversy during the last decades. While
several works have focused on the search of a great attractor con-
sistent with peculiar velocities of local structures, an alternative
approach includes the expansion of the local void as proposed
by Tully et al. (2008, 2014). Albeit the contribution of the local
void dynamics improves the description of the velocity fields in the
nearby Universe, the estimated peculiar velocity of the local group
is still conflicting with that predicted from the infall onto the Shap-
ley supecluster and the local void expansion, due to the presence
of residual velocities of ∼ 200 km/s for the local group (van de
Weygaert 2016, and references therein).

In recent works we have reported the non-negligible motions
of voids as a whole (Ceccarelli et al. 2016; Lambas et al. 2016),
adding a new component affecting galaxy peculiar velocities. These
global motions can be a key piece to complete the scenario of the
dynamics of local structures. In this work we show that the veloci-
ties generated by the mass under/over densities associated with the
large–scale structures of the galaxy distribution are complementary
to obtain a detailed description of the large–scale velocity flows. In
this context, we study the joint dynamics of galaxies with respect

Figure 2. Spatial distribution of voids with respect to FVSs, in the
simulation. Upper panel: The curves show the conditional probability,
P(void|FVS ), of finding a randomly placed sphere containing simultane-
ously void and FVS volume fractions, as a function of the probability
P(void) that the sphere contains a fraction of void volume, in spite of the
presence of FVS. If the locations of voids and FVSs were independent,
P(void|FVS ) ' P(void) for any value of sphere radius (dot–dashed line in-
dicating a one–to–one relation). The upper curve corresponds to the results
for S–type voids, and the lower curve to R–type voids. Circle radii scale
linearly with the radius of the random spheres. Uncertainties are computed
using Jackknife resamplings. Bottom panel: Void–FVS correlation function
ξ(r). We use the definition of ξ(r)−ξvoid−FVS(r) given in Eq. 4. S–type voids
exhibit a positive correlation in a wide range of scales, consistent with their
denser environment. On the other hand, R–type voids and FVSs are anticor-
related, with a stronger signal than that of S–type voids. The central curve
corresponds to the full sample of voids, without separating by type.

to voids and Future Virialized Structures (hereafter FVSs), in order
to explore coherent patterns of motions of mass from the shells of
voids to the largest overdensities.

In the next section, we describe the general methods used to
identify voids and FVSs, both in semianalytic galaxies and in an ob-
servational galaxy catalogue. Then, in Sec. 3 we analyse the spatial
distribution of voids relative to superstructures and their associated
dynamics. The same analysis is then performed to galaxies, where
their motions are considered separately for different configurations
of relative positions of galaxies, voids and FVSs. In Sec. 4 we also
present similar studies applied to observational data. Finally, we
present a discussion of our results in the context of recent works in
Sec. 5.

2 DATA

2.1 Galaxy catalogues

The observational galaxies used in this work correspond to the
Main Galaxy Sample of the Sloan Digital Sky Survey Data Release
7 (SDSS-DR7, Abazajian et al. 2009). This catalogue comprises
almost a million of spectroscopic galaxies with redshift measure-
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large–scale velocity flows 3

ments up to z 6 0.3 and an upper apparent magnitude limit of 17.77
in the r-band. From this sample we select galaxies with a limiting
redshift z = 0.12 and a maximum absolute magnitude in the r-band
of Mr − 5 log10(h) = −19.95, in order to obtain a volume com-
plete sample of galaxies at that redshift. The limits of this sample
are chosen on the basis of a compromise between the volume and
the number of tracers. For SDSS velocities, we adopt the peculiar
velocity field presented by Wang et al. (2012). The authors used
the linear theory connection between mass overdensity and pecu-
liar velocity to reconstruct the 3D peculiar velocity field of SDSS
galaxies (Wang et al. 2009). With this velocity field we compute
the bulk void velocities in the SDSS sample. For an analysis of
the effects of using linearised velocities, we refer the reader to the
Appendix of Ceccarelli et al. (2016). We also analysed the influ-
ence of large–scale flows in observational data. For this purpose
we used a galaxy group catalogue which follows the identification
method presented in Yang et al. (2005), applied to SDSS-DR4 in
Yang et al. (2007), and updated by the authors to the SDSS-DR71.
For this sample of groups, we also adopted the linearized velocity
field by Wang et al. (2012).

On the other hand, the simulated galaxies used were extracted
from a semi-analytical model of galaxy formation (SAM) applied
to the Millennium Simulation (MS, Springel et al. 2005), a cos-
mological N-body simulation which counts with 21403 dark mat-
ter particles evolved in a cubic comoving box of 500h−1 Mpc on a
side. The cosmological parameters adopted for the MS correspond
to WMAP1 results (Spergel et al. 2003), i.e. a flat Λ cold dark mat-
ter cosmology with Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.045, σ8 = 0.9,
h = 0.73 and n = 1.0. Given that the MS is a dark matter only
simulation, their dark matter haloes needs to be populated with a
SAM to obtain a galaxy population. In this work we use the pub-
lic catalogue developed by Guo et al. (2011), which is available
at the Millennium Database2. In order to make a fair comparison
between observations and simulated data for the complete simu-
lated galaxy population, we select a sample with the same number
density than the observations This was achieved by selecting all
galaxies brighter than Mr − 5 log h = −20.6, which guarantees the
volume density required. Althought this threshold in absolute mag-
nitude is not the same than the limiting magnitude used to define the
volume–limited sample of galaxies, it reproduces satisfactorily the
distribution of galaxies. (see e.g. Contreras et al. 2013, 2015). The
difference between the two values arises from the fact that semian-
alytical models does not reproduce exactly the luminosity function
of galaxies in SDSS.

2.2 Catalogues of cosmic voids

To construct the void catalogue we follow the procedure described
in Ruiz et al. (2015), which is a modified version of the algorithms
presented in Padilla et al. (2005) and Ceccarelli et al. (2006). The
galaxies (either simulated or observed) are the tracers of the den-
sity field used in void the identification. The method starts with a
contrast density field estimation performed with a Voronoi tessella-
tion, where underdense cells are selected as void candidates. Cen-
tred in those positions, we compute the integrated density contrast
∆(r) at increasing values of radius r, selecting as void candidate
the largest spheres which satisfy the condition ∆(Rvoid) < −0.9 and
defining Rvoid as the void radius. Afterwards, the centre position of

1 http://gax.shao.ac.cn/data/Group.html
2 http://gavo.mpa-garching.mpg.de/Millennium

Figure 3. Normalized histograms of the distribution of cos(θ), where θ is the
angle between the relative velocity and the relative position of the void–FVS
system (see text for details); for subsamples of R–type voids (dotted line)
and for S–type voids (solid line) in the simulation. These subsamples were
chosen in order to show the different values ofD. One sample comprises R–
type voids with a separation from the FVS greater than d>40h−1 Mpc, and
M< 1014h−1 M�. The sample of S–type voids is restricted to d<40h−1 Mpc,
and M> 1014.2h−1 M�. On the top of the figure, we show a scale indicating
the values of the dipole coefficient D for both samples. We also show, for
reference, model distributions for different values of the dipole coefficient
(-0.4, -0.2, 0, and 0.2, respectively).

void candidates are randomly tilted and the sphere is allowed to
grow in order to recentre the void. Finally, a void of radius Rvoid is
selected as the largest sphere satisfying the underdense condition
and not overlapping with any other underdense sphere. The final
catalogues comprises 1676 voids for the full Millennium box and
495 voids for the total SDSS sample, but for dynamical analyses we
used only 288 of them (121 R–type and 167 S–type), which belong
to the inner region of the survey where the velocity field of Wang
et al. (2012) has a reliable reconstruction. The void radii are in the
range 8-26 h−1 Mpc, both in SDSS and the simulation.

2.3 Catalogues of superstructures

In previous works, we have defined the procedures to select super-
structures that will be virialized systems in the distant future (Lu-
parello et al. 2011). The criteria applied can be used to both obser-
vational and simulated galaxy catalogues. The method relies on the
computation of the luminosity density field, by convolving the spa-
tial distribution of galaxies (either observed or SAM) with a kernel
function weighted by galaxy luminosity. We adopted an Epanech-
nikov kernel of 8h−1 Mpc to sample the density field into a grid
composed by cubes of 1h−1 Mpc side. We then select the highest lu-
minosity density groups of cells to isolate the large structures that
will become virialized systems in the future (Dünner et al. 2006)
In our final catalogue we identified 150 FVSs comprising 11394
galaxies in the SDSS, out of which 105 FVSs are within the region
where we used the reconstructed velocity field data by Wang et al.
(2012). The simulation, on the other hand, has 790 FVSs due to its
larger volume, which is approximately 6 times the SDSS volume.

MNRAS 000, 1–10 (2016)



4 Lares et al.

Figure 4. Dependence of the dipole moment on FVS mass and void–FVS separation in the simulation data. We show 2D histograms of the dipole moment
estimator D (encoded in color) for the distribution of cos(θ) in bins of FVS mass and void–FVS distance. Positive values of cos(θ) correspond to positive
velocity components on the FVS–void direction (see text for its definition), which indicates that the void is moving away their closest FVS. We show in
the upper panel the full sample of void–FVS pairs, and in the bottom left and right panels, R– and S–type voids, respectively. Box plots correspond to the
distributions ofD for each sample. Contour levels are shown for the number of objects contributing to the signal in each bin, and correspond to 25, 50 and 75
per cent of the pairs.

3 ANALYSIS IN THE SIMULATION DATA

Here we present the main results obtained from the analysis of
voids and FVSs identified in the simulated galaxy catalogue. In
what follows, we develop a measurement for the correlation be-
tween extended regions corresponding to voids and FVSs and anal-
yse their associated dynamics.

3.1 Spatial distribution of voids relative to FVSs

The definition of voids and FVSs results in two types of structures
that are distributed in space occupying somewhat complementary
locations. In this context, it is worth asking if these structures are
related in a non trivial fashion (i.e., if their distributions are con-
sistent with a random distribution or if the locations of overdense
structures affect the locations of underdense structures). In Lares
et al. (2017), we show that the spatial locations of voids are corre-
lated with voids with the same environment (void–in–void or void–
in–cloud types) giving rise to void clumps. According to this study,
clumps of R–type voids show a dynamical behaviour consistent
with divergent flows, produced by a combination of mutually re-
ceding and expanding voids. On the other hand, clumps of S–type
voids exhibit large–scale flows which are predominantly infalling

towards the clump centre. The global density of these clumps is,
in most cases, positive. This implies that there must be overdense
structures inside clumps which compensate the void underdensi-
ties. In reference to these ideas, we show in Fig. 1 a visualization
of a FVS and its nearby voids for a subset in the simulation. We in-
cluded A Visualization of a group of void–FVS pairs, including all
the voids (represented as spheres) that have the FVS (in the center
of the Figure) as their closest one. Arrows are scaled representa-
tions of the void velocity vector, with dotted segments located in-
side or behind voids. Other FVSs and voids in the neighbourhood
are not shown for simplicity. In this context, we argue that large–
scale flows play a key role in the formation of the supercluster–void
network, and that superclusters might be responsible for the global
collapse.

Here we focus on the relation between the positions and dy-
namics of voids relative to FVSs. The most common used statistic
to quantify the relative distributions of two types of points is the
two–point cross–correlation function, defined as the excess proba-
bility of finding a pair of objects at a given separation compared to
that expected from a random distribution. However, neither voids
nor FVSs can be easily represented by a point location. Voids are

MNRAS 000, 1–10 (2016)



large–scale velocity flows 5

Figure 5. 2D histograms of the dipole moment estimatorD for the distribution of cos(θ), in bins of the ratios of masses and distances between the closest and
the second closest FVS to each void. This estimator is computed for the closest void–FVS pair. Box plots and contour levels are analogous to those of Fig. 4.

characterized by a centre and a radius or scale. Moreover, FVSs do
not have a simple shape and a centre can not be clearly defined.

We define a procedure to quantify the relative clustering of
voids and FVSs as follows: if the locations of voids and FVSs
are both random and independent, the probability for a randomly
placed sphere of to be in contact with both types of structures
should equal the product of the probability that the sphere touches
a void times the probability of touching a FVS. These measures
certainly depend on the size of the sphere, but if the distributions
of the two types of structures are completely uncorrelated, the two
probabilities are expected to be roughly the same. If, on the other
hand, they are different, it would indicate a systematic tendency
of either correlation (positive excess), or anticorrelation (negative
excess) with respect to FVSs.

The previously introduced probabilities can be estimated us-
ing classical definitions, where the probability of a randomly placed
sphere of being in contact with a void is approximated by the frac-
tion of random spheres within the simulation box that contain at
least a part of a void. The volume fraction occupied by the void is
not relevant here, since this fraction can be studied as a function of
the sphere radius. Then, if void ∩ FVS denotes the occurrence of a
sphere that is in contact with both a void and a FVS,

P(void ∩ FVS) '
Nvoid ∩ FVS

NT
, (1)

and similarly,

P(void) '
Nvoid

NT
, (2)

P(FVS) '
NFVS

NT
, (3)

where NV and NFVS are the number of spheres that touch a
void and a FVS, respectively. Also, notice that by definition,
P(void ∩ FVS) = P(void | FVS) P(FVS). Then, it is equivalent to
study P(void | FVS) as a function of P(void). In the upper panel of
Fig. 2 we show these measures estimated as the fraction of spheres
that touch simultaneously an FVS and a void, and the fraction of
spheres that touch a void irrespective of FVSs. The upper curve
correspond to S–type voids, and the lower curve to R–type voids,
as indicated in the legends. The circles radii are proportional to the
radius of the spheres, as indicated in the scale at the left. As it can
be seen, there is a clear tendency of S–type voids to be located
closer to FVSs than R–type voids. Indeed, if a random sphere con-
tains a FVS, the probability of containing also an S–type void is
higher than what should be expected for a random distribution of
voids (represented by the dot-dashed line). Conversely, the proba-
bility that a FVS and an R–type void are in contact with the same
random sphere is smaller in the full range of sphere radii, indicating
that R–type voids tend to avoid FVSs. As the sizes of the spheres
grow, the difference in probability with respect to the case of no
void clustering decreases since any random sphere is likely to con-

MNRAS 000, 1–10 (2016)
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Figure 6. Cumulative distributions of void–FVS distances (bottom and
right scales) for R/S–types and for different void radius intervals
(10.0 < Rv[h−1Mpc] < 12.5 with dotted lines, 12.5 < Rv[h−1Mpc] < 15.0
with thin solid lines, and 15.0 < Rv[h−1Mpc] < 17.5 with thick solid lines).
The histograms show the normalized distributions of void radii for R–types
(empty bars), and S–types (filled bars). It can be clearly seen that the dif-
ference in the FVS–void distance cumulative distributions is dominated by
void type and not by void size.

tain a FVS due to their large volume, and so the two probabilities
become equivalent. From a scale of ' 40h−1 Mpc, no significant
correlation signal can be detected. The probability excess can be
writen as:

P(void | FVS) = P(void) (1 + ξvoid−FVS(r)), (4)

for a given random sphere radius r.
In the bottom panel of this figure we show the void–FVS cor-

relation function ξvoid−FVS(r) for S–type voids (upper curve, dashed
line), R–type voids (bottom curve, solid line), and the combined
sample of voids including both types (dotted line). It follows the
definition of the correlation function given in Eq. 4. It is worth
noticing that FVSs represent a small fraction of the total simula-
tion box volume (nearly 4 per cent, see Luparello et al. (2011))
while voids comprise almost 20 per cent of the volume.

3.2 Dynamics of voids relative to FVSs

In the previous section we showed that there is a tight relation be-
tween the locations of voids of different types and the locations
of FVSs. Moreover, this geometrical property in the distribution of
the largest scale structures should also have a dynamical counter-
part. The arguments presented in Sec. 1 suggest that the large–scale
flows are closely related to the evolution of the largest scale struc-
tures, and consequently a dynamical connection between voids and
FVSs is expected. Although the choice of the spherical approxima-
tion of voids is suitable, FVSs can not be described with simple
geometrical objects, which implies that quantities such as relative

Figure 7. Upper panel: Mean projected velocity, V cos(θ), for SAM central
galaxies in void shells (solid lines:R–types, dashed lines: S–types) along
the direction to the closest FVS as a function of the cosine of the angle φ
between the position of the galaxy and the void centre–FVS direction. SAM
galaxies outside voids are shown with an horizontal dotted line. Bottom
panel: Velocity difference between galaxies in void shells of R/S types. The
curves show the R−S velocity difference of galaxies in void shells projected
onto the direction from the void centre to the FVS, as a function of cos (φ).
The angle φ gives the relative position of the galaxies with respect to the
FVS direction and is shown in the scheme of the upper panel. The thick solid
line gives the results for SDSS data, with uncertainties computed through
Jackknife resampling. The dotted line corresponds to the simulation. The
uncertainty region provides a 2–σ measure of cosmic variance associated
with the SDSS volume.

distance, position or velocity between those two types of structures
are not straightforward to compute.

Here, we adopt a simple approach that takes into account ba-
sic dynamical principles and allows to study the joint dynamical
behaviour of voids and FVSs. To analyse the dynamic of FVS–
void pairs, as the first step we identify the nearest FVS for each
void. Since the FVSs have complex shapes, we consider the core
region of each FVS, defined as the volume covered by the highest
density cells. As we mentioned in Sec. 2.3, in the identification of
these structures we have used a physically motivated threshold on
luminosity overdensity (Luparello et al. 2011), following the crite-
ria calibrated on simulations by Dünner et al. (2006). According to
this procedure, we chose a ratio of luminosity density, ρlum, relative
to the mean satisfying ρlum / ρlum > 5.5 to define the boundaries
of a FVS in a 3D grid–averaged smoothed density field estimation.
Thus, since the densest region of the FVSs roughly match the cen-
tral region, we define as the central, denser component of a FVS
all cells having ρlum / ρlum > 6.3 (corresponding to the median of
the luminosity density distribution of FVS cells). The distance be-
tween a void and a FVS is then defined as the distance between the
void centre and the closest cell of the densest core of the FVS. For
each of the closest void–FVS pair we compute their relative posi-
tion and velocity. To this aim, we define the velocity of the closest

MNRAS 000, 1–10 (2016)
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FVS cell as the average of the velocities of the galaxies inside a
sphere centred in the high density cell and with radius equal to the
distance between the void centre and this cell. The void velocity is
then taken relative to their corresponding closest high density cell.
The angle between these relative position and velocity vectors, θ,
allows to study the flow onto FVSs.

In order to characterize the void–FVS relative motions, we
consider the preference of relative void velocity vectors towards
the direction to FVSs. We quantify this coherence by means of a
dipole moment estimation, D, calculated as the average over all
void–FVS pairs of the values of cos(θ), weighted by the second
order Legendre polynomial P2(x) evaluated in x = cos(θ):

D =
1
N

N∑
i=1

cos(θ) P2
(

cos(θ)
)

(5)

It could be argued that S–type voids close to FVSs are likely
to show a stronger infall towards FVS than R-type voids since
these are located more distantly. To test this hypothesis, we have
performed a preliminary analysis by selecting two subsamples of
void–FVS pairs: one comprising only S–type voids close to a lu-
minous FVS and the other, only by R–type voids far from low
luminosity FVSs. The results for these subsamples, shown in the
histograms of Fig. 3, are consistent with a significant infall pattern
of S–types and a lack of coherence of R–types. In order to visu-
alize how the computed dipole values characterize the relative in-
fall/outflow patterns, in the inset on top of the figure we show model
distributions of cos(θ) with a purely dipole component. The scheme
in this figure is consistent with distributions of cos(φ) dominated by
negative values representing an infall pattern flowing towards FVS.
We explored the magnitude of the dipole moment as a function of
the relative distance between the void and the FVS, the mass of the
nearest FVS, the mass ratio between the first and second nearest
FVSs, and the distance ratio between the first and second nearest
FVSs.

In the upper panel of Fig. 4 we show the dipole moment D
of the cos(θ) distributions in bins of FVS mass M1 and void–FVS
distance d1. As it is shown in this figure, the higher negative values
of the dipole (that indicates an infall signal for the pairs) occurs
mainly when the voids are located close to a FVS. This statisti-
cal excess is significant even at distances as large as 50h−1 Mpc.
However, it is important to note that besides the low number of ob-
jects, the higher values ofD correspond to the most massive FVSs.
In grey we show the level curves of the number of pairs FVS–void
which correspond to the 25, 50 and 75 per cent of the sample. White
bins, with a central dot, do not contain any pair. For the rest of the
matrix, we applied a smoothing kernel using a top–hat window of
2 bins each side (ignoring empty bins). The color scale indicates
the values of the D statistic defined in Eq. (5). The limits of this
scale are the same as the color scale in Fig. 3, that gives a picture
of the degree of anisotropy that correspond to the different values
of the D statistic. In left and right lower panels of Fig. 4 we show
the dipole moment for R–type and S–type voids, respectively. Box
plots correspond to the distributions of D for each sample. There
is a stronger infall signal for S–type voids, which is noticeable up
to nearly 25h−1 Mpc of void–FVS separation. Also, in agreement
with the results of the previous section, it can be noticed that S–
type voids tend to be located closer to superstructures than R–type
voids.

However, these results are obtained taking into account only
the nearest FVS to each void. The possible presence of other
structures at similar distances lead us to take into account the in-
fluence of at least the second nearest structure. To this aim, we

compute the relative distance between the void and their nearest
FVS (d1) and the void and their second nearest FVS (d2), and
the ratio of the corresponding FVSs distances and masses. Fol-
lowing the same scheme of Fig. 4, in Fig. 5 we show the dipole
moment as a function of the relative distances and masses. The
data shown in these figures are not exactly the same due to dif-
ferent mass and distance limits, which produce slightly diferent
box plots. Here, we can see that if the nearest FVS is remark-
ably closer to the void there is a clear infall signal, and this in-
tensifies if the nearest FVS is much more massive than the second
one. In this figure we distinguish R– and S–types showing S–type
voids preferentially located closer to their nearest superstructure.
In Fig. 6 we show the cumulative distributions of void–FVS dis-
tances (bottom and right scales) for R/S–types and for differ-
ent void radius intervals (10.0 < Rv/(Mpc h−1) < 12.5 with dot-
ted lines, 12.5 < Rv/(Mpc h−1) < 15.0 with thin solid lines, and
15.0 < Rv/(Mpc h−1) < 17.5 with thick solid lines). The histograms
show the distributions of void radii for the two void types (upper
scale, with arbitrary normalization), with filled bars for S–types
and empty bars for R–types. The shift in the cumulative distribu-
tions are larger considering void type, indicating that it is not dom-
inated by void size segregation. Also, in S–type voids we can see
that the infall signal grows when the mass of their nearest FVS (M1)
is greater than the mass of the second one (M2).

3.3 Galaxies in void shells

In order to study the influence of the large–scale flows on galaxies
we analyse the velocity field related to the spatial configuration of
the systems. To this aim we use SAM central galaxies and identify
their nearest FVS to calculate their relative projected velocity. Our
sample comprises 79403 galaxies, out of which 1996 are located in
R–void shells and 3364 in S–void shells. We also distinguish be-
tween galaxies located in void shells or elsewhere and we restrict
to galaxy–FVS distances in the range 10 − 40h−1 Mpc. In the up-
per panel of Fig. 7 we show the mean projected velocity, V cos(θ),
of galaxies in void shells as a function of their relative angle, φ,
with respect to the direction that connects the void centre and the
nearest FVS, as outlined in the scheme. The location of a galaxy in
the void shell with respect to the FVS direction is given by cos(φ).
Galaxies in the cap facing the FVS have cos(φ) > 0, and galaxies
opposite to the FVS, cos(φ) < 0, as indicated in the figure axis.
We use a sign convention where negative values of V cos(θ) corre-
spond to galaxies that are moving towards the FVS. Negative val-
ues of cos(φ) correspond to a galaxy–void–FVS configuration (as
in scheme), while positive values to void–galaxy–FVS. It should be
noticed that we are using the densest cells in the FVS definition, so
that the cell in the scheme represents the closest cell in the subset
ρlum / ρlum > 6.3. It can be appreciated in this figure that galaxies
in R–type void shells may overcome the infall of the void onto the
FVS when the galaxies are located in the direction opposite to the
superstructure. When galaxies are facing directly to the superstruc-
ture, they exhibit the same infall pattern, irrespective of residing in
R– or S–type void shells. We notice that this infall is stronger than
that of galaxies elsewhere at the same galaxy–FVS distance due to
void dynamics.

4 OBSERVATIONAL RESULTS

In this section we analyse spatial correlations and dynamics of
voids and FVSs for data in the SDSS catalogue. As in Fig. 2, we
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Figure 8. Spatial distribution of voids with respect to FVSs, in the
SDSS data. Upper panel: Conditional probability of finding a randomly
placed sphere containing void and FVS volume fractions simultaneously,
P(void | FVS) as a function of the probability that the same sphere contains
a fraction of void volume P(void). The shaded regions indicate Jackknife
resampling uncertainties. The grey curves correspond to random regions
within the simulation with the same volume than SDSS sample. The bot-
tom panel show the corresponding void–FVS correlations, in a similar way
to Fig. 2.

show in the upper panel of Fig. 8 the conditional probability of find-
ing a randomly placed sphere that jointly contain parts of FVSs and
voids of S– (upper curves) or R–types (lower curves), as a function
of the probability that a sphere of the same size contacts at least
part of voids. We remark the good agreement between observations
and the simulation (Fig. 2), in spite of the fact that the observational
results correspond to redshift space measurements, due to the large
distances involved. Since the volume of the SDSS data is much
smaller than the volume of the simulation, we computed the quan-
tities previously defined in Eqs. 1 to 4, in regions of the simulation
with the same SDSS volume. We show with grey curves the corre-
sponding relations for eight independent regions in the simulation
box. The spread of these curves as a function of P(void) allows a
judgement of the cosmic variance that affects the calculation of the
probabilities. The grey shaded regions around black curves are the
Jackknife uncertainties for the data. In the bottom panel of this fig-
ure we show the corresponding void–FVS correlation function for
SDSS data. As it can be seen, the results obtained for SDSS data are
consistent with those of the simulation. We find that the same gen-
eral trends obtained in the full simulation box (Fig. 2) are suitably
reproduced for SDSS data.

In Fig. 9 we show the histograms of cos(θ) in four subsam-
ples to show the effects of mass and distance to the closest FVSs.
For reference, we show the corresponding values of the dipole mo-
ment D which should be considered in the context of Fig. 5, that
gives the same analysis in the simulation taking advantage of the
larger statistics. In panel (a), we show voids located at a distance
to the closest FVS, smaller than 60 per cent of the distance to the

second closest FVS satisfying a total luminosity ratio of at least
0.6. These restrictions take into account the results shown in Fig. 5
for the simulation box, and corresponds to the bottom–right cor-
ner, where the dipole moment signal has the larger amplitude. In
this case there is a clear prevalence of negative values of cos(θ),
which is consistent with a negative value of the dipole moment. In
panel (b) we show the histogram of cos(θ) for voids closer than
20h−1 Mpc to FVSs that have a total luminosity of at least 1013 L�.
Similarly to the previous subsample, this region is selected from the
upper panel of Fig. 4 corresponding to the bottom–right corner of
the plot. We also considered two additional restrictions correspond-
ing to voids closer than 20h−1 Mpc to FVSs and a total luminosity
up to 1013 L� (in panel (c) of Fig. 9), and to voids associated with
luminous FVSs (L > 1013 L�) separated by a distance greater than
30h−1 Mpc (panel (d)). This limiting mass was chosen so that the
signal to noise ratio is high, and taking into account the results in
the simulation (Fig. 4) that indicate that more massive FVSs have
a more noticeable dipole moment. We argue that the infall patterns
observed in the simulation box are also reproduced in the SDSS
data, despite its much smaller volume and the linearized velocity
field approximation.

In the bottom panel of the Fig. 7 we show the velocity pat-
tern for the infall of galaxy groups in void shells onto FVSs. Our
sample comprise 189 and 293 groups in R– and S–type void shells,
respectively, in the 10 − 40h−1 Mpc galaxy–FVS distance range.
The curves show the projected R-S velocity difference of groups in
void shells onto the direction from the void centre to the FVS as a
function of the location of the group. The angle φ between the rel-
ative position of the group and the FVS direction is as indicated in
the scheme of the Fig. 7. The dotted line is the resulting difference
for the simulation. The solid line corresponds to SDSS data, with
error bar indicating Jackknife resampling uncertainties. The region
around the curve of the simulation gives an estimation of cosmic
variance in order to compare to observations. It is computed from
many randomly placed regions within the simulation with the same
volume than SDSS data, and corresponds to a 2-σ uncertainty.

5 DISCUSSION

In this work we have explored the void–superstructure spatial
cross–correlations and their influence on the large–scale velocity
flows. To this end, we have studied the velocity field associated
with galaxies in void shells to deepen our understanding of the
supercluster–void network evolution.

Our void and superstructure catalogues are defined accord-
ing to Ruiz et al. (2015) and Luparello et al. (2011), respectively.
Therefore, voids correspond to spherical regions with integrated to-
tal density of 10 percent the mean value up the void radius, and
superstructures are derived from a smoothed luminosity field that
isolates the highest density regions. These two definitions rely on
physical grounds, namely the void sample has a constant integrated
tracer density within void radii, and superstructures correspond to
future virialized systems in the acelerating Λ cold dark matter sce-
nario.

In order to study the spatial correlations between voids and
superstructures, we defined a modified version of the correlation
which is usually applied to point data. This allows to measure the
tendency of voids to be located at a given distance from a super-
structure and detect if they are preferentially located near FVSs
or avoiding them. We find that while voids–in–clouds (S–types)
are preferentially located near superstructures, voids–in–voids (R–
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Figure 9. Histograms of the cos(θ) for different samples of voids in SDSS. (a) Voids that are at a distance to the closest FVS smaller than 60 per cent of the
distance to the second closest FVS, and also satisfying the ratio of the total luminosities of the two closest FVS > 0.6, (b) Voids closer than 20 h−1 Mpc to
FVSs having a total luminosity of at least 1013 L�, (c) Voids closer than 20 h−1 Mpc to FVSs having a total luminosity up to 1013 L�, and (d) Voids near FVSs
with L < 1013 L� separated by a distance greater than 30 h−1 Mpc. We show the values of the dipole moments corresponding to each panel, with bootstrap
resampling error estimates.

types) are likely to avoid them. This is somewhat related to the
selection of voids according to their environment, but we find that
it has also dynamical implications when considered in the context
of the large–scale structure, manifested on the infall of voids which
are close to FVS independently of void type.

We also explored galaxies in void shells and how the pres-
ence of a nearby superstructure affects its dynamics. Galaxies in
S– and R–type void shells within 40 h−1 Mpc infall onto super-
structures except for galaxies opposite to superstructures in R–type
void shells. Moreover, we find a stronger infall for galaxies resid-
ing in void shells facing the closest superstructure than galaxies at
the same relative distance elsewhere. We have analysed the simi-
larity of the simulation results and those inferred from the SDSS
galaxy catalogue. In spite of the SDDS smaller observational vol-
ume and linear velocity approach, and the fact that the Millenium
simulation cosmological parameters differ from more recent obser-
vational estimates (Planck Collaboration et al. 2016), the general
trend agreement is encouraging.

Large–scale flows may be analysed into different contexts.
(see for instance Shandarin 2011; Shandarin et al. 2012; Cautun
et al. 2014, and references therein). In our study, galaxy motions in
void shells can be thought as a combination of shell expansion (Paz
et al. 2013), void bulk motion (Lambas et al. 2016) and the infall
onto superstructures (this work). The magnitude of these effects are
comparable and need to be taken into account in simple models for
galaxy motions. Our findings go along with the scenario proposed
by Tully et al. (2008) and Tully et al. (2014) where the presence of
underdense regions contribute significantly to the velocity flow of
galaxies in the local universe.
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