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3 Facultad de Ciencias Astronómicas y Geofı́sicas, Universidad Nacional de La Plata,
Paseo del Bosque, cp 1900 La Plata, Argentina
4 Departamento de Fı́sica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria-Pab. 1,
1428 Buenos Aires, Argentina

E-mail: nidal@venus.fisica.unlp.edu.ar, slandau@df.uba.ar and mmosquera@fcaglp.unlp.edu.ar

Received 7 July 2006
Published 4 December 2006
Online at stacks.iop.org/JPhysG/34/163

Abstract
We use the semi-analytic method of Esmailzadeh et al (1991 Astrophys. J. 378
504–18) to calculate the abundances of helium and deuterium produced during
Big Bang nucleosynthesis assuming the fine structure constant and the Higgs
vacuum expectation value may vary in time. We analyse the dependence on the
fundamental constants of the nucleon mass, nuclear binding energies and cross
sections involved in the calculation of the abundances. Unlike previous works,
we do not assume the chiral limit of QCD. Rather, we take into account the
quark masses and consider the one-pion exchange potential, within perturbation
theory, for the proton–neutron scattering. However, we do not consider the time
variation of the strong interactions scale but attribute the changes in the quark
masses to the temporal variation of the Higgs vacuum expectation value. Using
the observational data of the helium and deuterium, we put constraints on the
variation of the fundamental constants between the time of nucleosynthesis and
the present time.

1. Introduction

Big Bang nucleosynthesis (BBN) offers the deepest reliable probe of the early universe.
Predictions of the abundances of the light elements D, 3He, 4He and 7Li synthesized at the
end of the ‘first three minutes’ are in good overall agreement with the primordial abundances
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inferred from observational data, which validates the standard Big Bang nucleosynthesis
(SBBN). BBN also provides powerful constraints on possible deviations from the standard
cosmology and on new theories on physics beyond the standard model (SM) (Sarkar 1996).
Among these theories, there are those in which some of the dimensionless ratios of fundamental
constants do vary in time such as string-derived field theories (Wu and Wang 1986, Maeda
1988, Barr and Mohapatra 1988, Damour and Polyakov 1994, Damour et al 2002a, 2002b),
related brane-world theories (Youm 2001a, 2001b , Palma et al 2003, Brax et al 2003) and
(related or not) Kaluza–Klein theories (Kaluza 1921, Klein 1926, Weinberg 1983, Gleiser
and Taylor 1985, Overduin and Wesson 1997). On the other hand, recent astronomical data
(Webb et al 1999, 2001, Murphy et al 2001a, 2001b, 2003) suggest a possible variation of
the fine structure constant α = e2/h̄c at the 10−5 level over a time-scale of 10 billion years.
However, other recent independent analysis of similar data (Martı́nez Fiorenzano et al 2003,
Quast et al 2004, Bahcall et al 2004, Srianand et al 2004, Grupe et al 2005, Chand et al 2006)
found no variation. On the other hand, measurements of molecular hydrogen (Ivanchik et al
2002, 2003, 2005) reported a variation of the proton to electron mass µ = mp

me
. This fact

motivated more general discussions of possible variations of other constants. Langacker et al
(2002) have studied the implication of gauge unification for the time variation of α while
Olive et al (2002) explored a super-symmetric version of the dynamical Bekenstein model
(Bekenstein 1982) in order to produce a large change in α in the redshift range z = 0.5–3.5
and still be consistent with the constraints on �α/α from the results of high precision limits
on the violation of equivalence principle by a fifth force.

On the other hand, there are many non-SBBN models which introduce new free
parameters in addition to the baryon density parameter, or equivalently the baryon asymmetry
ηB ≡ nB−nB̄

nγ
= 2.74 × 10−8�Bh2. Most known of these models are those which assume

either a non-standard contribution to the total density, or a lepton asymmetry. The first

possibility affects the expansion rate of the universe S ≡ H ′
H

=
√

ρ ′
ρ

and can be restated
in terms of ‘equivalent’ number of extra neutrinos �Nν = Nν − 3. Simple analytic fits to
BBN and the cosmic microwave background radiation (CMBR) data provide the following
bound: 0.85 < S < 1.15 (Barger et al 2003a, 2003b, Steigman 2005, 2006). As regards
the lepton asymmetry, observational data do not imply that should be connected to the ‘tiny’
baryon asymmetry ηB , and it could be large enough to perturbe SBBN predictions . Moreover,
a small asymmetry between electron type neutrinos and antineutrinos can have a significant
impact on BBN since the νe affect the interconversion of neutrons to protons changing the
equilibrium neutron-to-proton ratio from (n/p)0

eq = e− �m
T to (n/p)eq = (n/p)0

eqe
−ξe . In

consequence, the 4He abundance changes. In contrast the D abundance is insensitive to
ξe �= 0. Consistent with the BBN and CMBR data, values of ξe in the range −0.1 < ξe < 0.3
are permitted (Barger et al 2003a, Steigman 2005, 2006). In our analysis, however, we shall
not consider these non-SBBN scenarios, but attribute any non-SBBN issue to time variation
of fundamental constants.

The density of baryonic matter �Bh2 can be estimated using the WMAP data from the
CMBR (Spergel et al 2003, 2006). From the observed WMAP baryon density, the predicted
abundances are highly consistent with the observed D but not with 4He and 7Li. However,
any change in the value of the fundamental constants would work its way into the value of
the abundances of the various light elements and the question we address is whether or not
existing observations of the primordial abundances suggest any change in the values of the
fundamental constants at the time of BBN.

BBN is sensitive to a number of fundamental dimensionless parameters including the
fine structure constant α, 	QCD/MPlank and mq/	QCD where mq is the quark mass and 	QCD
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is the strong scale determined by the position of the pole in the perturbative QCD running
coupling constant. Several authors have studied the dependences of the BBN parameters on
the fundamental constants. The dependence of the primordial abundances on the fine structure
constant has been evaluated by Bergström et al (1999) and improved by Nollett and Lopez
(2002). Yoo and Scherrer (2003) analyse the effects of the time variation of the Higgs vacuum
expectation value 〈v〉 on BBN and the cosmic microwave background radiation (CMBR).
On the other hand, Müller et al (2004) calculate the abundances as a function of the Planck
mass MP , α, 〈v〉, electron mass me, nucleon decay time, deuterium binding energy (εD) and
neutron–proton mass difference (�m = mn − mp). Moreover, they study the dependence
of the last three quantities as functions of the fundamental couplings and masses. Kneller
and McLaughlin (2003) study the dependence of the primordial abundances on εD and �m.
These papers (Yoo and Scherrer 2003, Müller et al 2004, Kneller and McLaughlin 2003) use
the results of chiral perturbation theory (Beane and Savage 2003) to address the dependence
of the deuterium binding energy with the Higgs vacuum expectations value and 	QCD.
However, the dependence of the deuterium binding energy εD on 〈v〉 was estimated from
an approximated linear dependence of εD on the pion mass mπ , while the exact limits on the
relative change of 〈v〉 would depend on the details of such dependence. On the other hand,
Campbell and Olive (1995) and Ichikawa and Kawasaki (2002) study the effects of variation of
fundamental constants on BBN in the context of a dilaton superstring model. Finally, limits on
cosmological variations of α, 	QCD and mq from optical quasar absorption spectra, laboratory
atomic clocks and from BBN have been established by Flambaum and Shuryak (2002) and
Flambaum et al (2004). For computing the deuterium binding energy (εD ≈ 2.225 MeV) they
apply quantum mechanics perturbation theory. This factor is very significant in influencing
the reaction rate of p + n → d + γ which is the first and most crucial step in BBN.

The BBN abundances can be computed using numerical (Wagoner 1973, Kawano 1992)
and analytical (Esmailzadeh et al 1991, Mukhanov 2003) methods. In a previous work
(Landau et al 2006), we used the semi-analytic method of Esmailzadeh et al (1991) to
calculate the abundances of the light elements produced during BBN assuming that the gauge
coupling constants may vary in time. We considered the chiral limit of QCD when analysing
the nucleon masses, binding energies and the cross sections. Deviations between standard
cosmology calculations and observational data could be interpreted as resulting from variations
in GF the Fermi constant, α the fine structure constant and 	QCD the strong interactions scale.
The semi-analytical method allows us to obtain semi-analytic dependences of the primordial
abundances on the fundamental constants, which otherwise must be computed using numerical
codes.

On the other hand, in the standard model, a variation of the Fermi constant implies a
variation of the vacuum expectation value (vev) of the Higgs field (Dixit and Sher 1988):

GF = αweak(MW)√
2M2

W

= 1√
2〈v〉2

. (1)

Here MW is the mass of the W -boson, and 〈v〉 ≈ 250 GeV is the vev of the Higgs field.
Within the QCD chiral limit, the quark masses, which are also proportional to the Higgs vev
through the relation mq = YYukawa〈v〉, are neglected. Therefore, the logical and consistent
step to follow is to go beyond the chiral limit and take the variation of 〈v〉 as affecting the
Fermi constant as well as the quark masses. We analyse the nucleon masses, the nuclear
binding energies and the cross sections dependence within quantum mechanics perturbation
theory. The objective of this paper is to study such variations as model independent as
possible. Therefore, we consider the one-pion exchange potential as the perturbation on the
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p-n scattering responsible for the formation of the deuterium. This perturbation potential
varies in time if the pion mass changes in time which leads to a time variation of the deuterium
binding energy. The pion mass also depends on the Higgs vev through the Gell–Mann–Oakes–
Renner relation: m2

π = mq |〈q̄q〉|
f 2

π
	 mq	QCD, where 〈q̄q〉 is the quark condensate and fπ is the

pion decay constant. In order to determine the dependence of the deuterium binding energy
on the fundamental constants, we use the square well model to approximate the attractive
strong interaction potential of the deuterium and fit current scattering data to get estimates
for the depth and width of the well. On the other hand, we will not discuss the effect of
	QCD variation on the QCD-determined quantities such as the quark condensate or the width
and depth of the square well. The reason for this is that we lack a complete theory for these
quantities, and, especially, because of the absence of p-n scattering data in the far past. For
the same reason, we will not consider changes in the Yukawa couplings either. On the other
hand, the effect of 	QCD variation on the abundances of the light elements was analysed in
a previous work (Landau et al 2006). Thus, we will limit ourselves in this paper to studying
the dependence on α and 〈v〉 for the physical quantities, such as binding energies, nucleon
masses and cross sections involved in the BBN calculations. Our treatment of the deuterium
binding energy is similar to the one performed by of Flambaum and Shuryak (2002). However,
there are some technical differences in the wavefunction normalization which we describe in
section 4. Furthermore, we go one step further in calculating the effects of such variations
in the fundamental constants on the primordial abundances of D and 4He. This is one of
the advantages of using the semi-analytical method and it also allows us to compare with
observational data in order to put bounds on the variation of α and 〈v〉.

On the other hand, the concordance between the WMAP estimates and SBBN has been
investigated by many authors (Cyburt et al 2003, Romano et al 2003, Cuoco et al 2004,
Cyburt 2004, Coc et al 2004a, 2004b). From the WMAP baryon density, the predicted
abundances are highly consistent with the observed D but not with 4He and 7Li. They are
produced more than observed. Such discrepancy is usually ascribed to non-reported systematic
errors in the observations of 4He and 7Li. Indeed, more realistic determinations of the 4He
uncertainty implies a baryon density in line with the WMAP estimate (Cyburt 2004, Olive
and Skillman 2004). On the other hand, Richard et al (2005) have pointed out that a better
understanding of turbulent transport in the radiative zones of the stars is needed for a better
determination of the 7Li abundance. In our previous work, we obtained results consistent
with variation of fundamental constants when considering all data. However, discarding the
7Li data we obtained no variation. Therefore, we suspect that the possible non-reported
systematic uncertainties are ‘hidden’ within a setup involving variation of the fundamental
constants. Thus, until better estimations of the systematic errors of 7Li are reported, we will
only consider the D and 4He data.

Even though the WMAP estimate of the baryon density is the most accurate one, it is
still affected by degeneracies with other cosmological parameters (Spergel et al 2003, 2006).
On the other hand, this quantity can be also determined combining data from galaxy surveys
(SDSS, 2dF) and x-ray satellites (Chandra, XMM-Newton, ROSAT, ASCA) (Landau et al
2006). In this work, we consider a weighted mean between the WMAP estimate and Landau
et al (2006) estimate for �bh

2, and, furthermore, we shall compute the dependence of binding
energies, cross sections and abundances on this parameter. Finally, we shall use observational
data from D and 4He to estimate the variations in time of α and 〈v〉 and a possible deviation of
�bh

2 from its considered value. We also compare our results with other non-SBBN models,
where a non-standard expansion rate and an electron-neutrino asymmetry were considered.
Finally, we would like to emphasize that the approach in this work is phenomenological and
the results we get are model independent.
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Table 1. Stages and equations. n refers to neutron, p to proton, d to deuterium, T to tritium, 3 to
3He and α to 4He.

Stage Equations Final temperature

Until the weak interaction freeze-out
Until the production of 4He becomes efficient Ẏn = −2Ẏα − Yn[n] 2Ẏα ∼ Yn[n]

Ẏd = Ẏ3 = ẎT = 0
Until the production of deuterium dominates Ẏn = −2Ẏα Yn = Yd

rate of change of neutrons Ẏd = Ẏ3 = ẎT = 0
Deuterium final abundance Ẏd = −2Ẏα T9 → 0

Ẏn = Ẏ3 = ẎT = 0

The paper is organized as follows. In section 2 we present the notations used and
summarize the steps which one follows in the semi-analytic approach to calculate the
abundances. In section 3 we calculate the dependence of the abundances on α, 〈v〉,�bh

2 and
the deuterium binding energy εD . In section 4, we express the dependence of the deuterium
binding energy on the Higgs vev within the square well model. Results of comparing theoretical
prediction with observational values are presented in section 5, where we also compare with
other non-standard BBN models results. Conclusions are presented in section 6.

2. Preliminaries

The method of Esmailzadeh et al (1991) consists of calculating the different abundances
between fixed points or stages. One solves the equations for the light elements only for one
element in each stage. For the other elements (say, the ith), it is necessary to solve the quasi-
static equilibrium (QSE) equation (Ẏi ≈ 0), where Yi is the abundance of the ith element
relatively to baryons, considering only the most important rates of production and destruction.
On the other hand, we should also calculate the final temperature of each stage. We show
in table 1 the different stages and their corresponding equations, to which is added also the
conservation of the neutron number (further details are given in Esmailzadeh et al (1991) and
Landau et al (2006)).

Since we are considering changes in the Higgs vev (〈v〉) and the fine structure constant
(α), we need to find expressions for the nucleon masses and binding energies in terms of these
quantities. For the P-N mass splitting we have

Q = �m = mn − mp = �αm + �ρ−wm, (2)

where �αm is the contribution of the electromagnetic energy, and thus δ�αm
�αm

= δα
α

. On the

other hand, �ρ−wm is due to ρ-w mesons mixing and known to be proportional to m2
s

mu+md

(Christiansen et al 1991). Therefore, δ�ρ−wm
�ρ−wm

= δmq

mq = δ〈v〉
〈v〉 . Thus, we get

δQ

Q
= −0.587

δα

α
+ 1.587

δ〈v〉
〈v〉 . (3)

We need also to know the dependence of the variation of the nuclear mass of an element A
ZX

in terms of the changes in 〈v〉 and α. This can be estimated using M(X) = Zmp + Nmn − εX

where εX is the binding energy for the element X, and we have

δεx

εx

= εC

εx

δα

α
, (4)
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where εC = Z
4πε0

e2

R
is the electromagnetic contribution. The radius of the nucleus (R ∼

1.2A
1
3 fm) is considered as a strong interaction effect and, thus, taken to be constant in our

analysis. The change in the neutron decay rate in terms of the changes in α and 〈v〉 can be
expressed as follows (Ichikawa and Kawasaki 2002, Landau et al 2006):

δτ

τ
= −3.838

δα

α
− 4.793

δ〈v〉
〈v〉 , (5)

where we have used δGF

GF
= −2 δ〈v〉

〈v〉 . For the thermonuclear reaction rates dependence on α,
we take the phenomenological expressions of tables 4 and 5 in Landau et al (2006).

Since BBN is very sensitive to εD , we should go further from equation (4) to evaluate the
changes in εD in terms of δ〈v〉. We will give our expressions for the different stages in terms
of δ〈v〉

〈v〉 , δεD

εD
, δα

α
and δ�Bh2

�Bh2 . In section 4 we find an estimate for δεD

εD
in terms of δ〈v〉

〈v〉 , and thus

we can give then the final expressions in terms of δ〈v〉
〈v〉 , δα

α
and δ�Bh2

�Bh2 .

3. Abundances and their dependence on α and 〈v〉 in the different stages

The ratio X of the number of neutrons to the total number of baryons in the first stage until the
freeze-out of weak interactions ( T > 9.1×109 K) can be expressed as follows (Bernstein et al
1989):

X(y = ∞) =
∫ ∞

0
dy ′ey ′ 1

1 + ey
(y ′)2e−K(y ′) = 0.151, (6)

where K(y) = b
[

4
y3 + 3

y2 + 1
y

+
(

4
y3 + 1

y2

)
e−y

]
. Only b = 255 Mpl

�m2τ

√
45

43π3 depends on the
fundamental constants through τ and �m, so we get

δX(y = ∞)

X(y = ∞)
= −0.52

δb

b
. (7)

Using equations (3) and (5) we obtain
δX(y = ∞)

X(y = ∞)
= 1.385

δα

α
− 0.842

δ〈v〉
〈v〉 . (8)

In the second stage, after weak interactions freeze out, neutrons decay freely until the rate
of production of 4He becomes efficient (9.1 × 109 K > T > 0.93 × 109 K). Thus we have

Yn = X(y = ∞)e−t/τ = 0.151e−0.2/T 2
9 , (9)

where T9 is the temperature evaluated in units of 109 K.
The abundance of deuterium follows its equilibrium value and we assume the reactions

[np dγ ] and [dγ np] dominate for its production and destruction. Taking �Bh2 = 0.0223 we
can calculate the final temperature of this stage by setting Ẏn = 0 and thus 2Ẏn = −Yn[n].
We find T

f

9 = 0.93 and get the abundances Yp = 0.76 and Yn = 0.12. In order to calculate
the dependence of the final temperature on the fundamental constants, we derive the equation
2Ẏn = −Yn[n] with respect to the fundamental constants to get

δT9

T9
= 0.065

δ�Bh2

�Bh2
+ 0.055

δα

α
− 0.119

δ〈v〉
〈v〉 + 1.195

δεD

εD

,

and thus we get the relative variations of the nucleons abundances for this stage as follows:

δYn

Yn

= 0.030
δ�Bh2

�Bh2
+ 2.159

δα

α
− 2.005

δ〈v〉
〈v〉 + 0.553

δεD

εD

δYp

Yp

= −0.009
δ�Bh2

�Bh2
− 0.682

δα

α
+ 0.634

δ〈v〉
〈v〉 − 0.174

δεD

εD

.
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In order to compute the final abundance of helium, we notice that once 4He production
becomes efficient (i.e., 2Ẏα = Yn[n]), neutrons combine to form α-particles, and the production
of the latter is dominated by [dT nα] and [pT γα]. One gets for the temperature of the 4He
freeze-out the following equation:

2Yn

(
Yp

[np dγ ]

Yγ [dγ np]

)2

[ddpT ] = 1

τ
, (10)

where Yp = 0.76, Yn = 0.151e−0.2/T 2
9 and τ is the neutron decay constant. Numerically

we find T α
9 = 0.915 which is lower than the final temperature of the previous stage and

larger than the final temperature of the next one. For the final helium abundance we find
Y

f
α = 2Yn = 0.238. As before, deriving equation (10) with respect to εD, 〈v〉 and α we find

δT α
9

T α
9

= 0.061
δ�Bh2

�Bh2
+ 0.049

δα

α
− 0.113

δ〈v〉
〈v〉 + 1.149

δεD

εD

.

Since Y
f
α = 2Yn we get the relative variation of the helium abundance as

δY
f
α

Y
f
α

= 0.029
δ�Bh2

�Bh2
+ 2.182

δα

α
− 2.042

δ〈v〉
〈v〉 + 0.549

δεD

εD

.

In the following ‘neutron cooking’ stage, corresponding to 0.93 × 109 K > T >

0.766 × 109 K, the neutron abundance can be expressed as follows:

Yn =
(

1

Y 0
n

+ 2
∫ t

tinitial

(
Yp

[np dγ ]

Yγ [dγ np]

)2

[ddpT ] dt

)−1

, (11)

where the initial condition is given by the final values of the previous stage: Y 0
n = 0.12 at

T 0
9 = 0.93.

Putting Yn = Yd as the condition which determines the final temperature of this stage, we
find [np dγ ]

Yγ [dγ np] = 1. With Yp freezed at 0.76, we get numerically

T
f

9 = 0.766 (12)

Yn = 6.4 × 10−4 = Yd. (13)

Again, the condition (Yn = Yd) allows the calculation of the relative change of the final
temperature:

δT
f

9

T
f

9

= 0.031
δ�Bh2

�Bh2
− 0.021

δα

α
+ 0.020

δ〈v〉
〈v〉 + 1.041

δεD

εD

and we get numerically

δYd

Yd

= δYn

Yn

= −1.095
δ�Bh2

�Bh2
+ 1.865

δα

α
− 0.075

δ〈v〉
〈v〉 − 2.275

δεD

εD

.

In the last stage (T < 0.766×109 K), we note that the dominant term in the time derivative
of Yd is the production of tritium, i.e. YdYd [ddpT ]. We find

Yd =
(

1

Y 0
d

+ 2
∫ t

tinitial

[ddpT ] dt

)−1

(14)

with the initial value Y 0
d = 6.4 × 10−4 at T 0

9 = 0.766.
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Table 2. Final abundances and their relative variations in terms of the relative variations of the

fundamental constants,
δY

f
i

Y
f
i

= A
�Bh2

�Bh2 + B δα
α

+ C
δ〈v〉
〈v〉 + D

δεD
εD

.

Y
f

i A B C D Abundance

D −1.072 2.318 −0.049 −2.469 2.41 × 10−5

4He 0.029 2.182 −2.042 0.549 0.238

We can obtain the final abundance of deuterium by setting the temperature equal to zero
and we find the abundance numerically equal to Y

f

d = 2.41×10−5. Again, we can numerically
evaluate the relative change of Y

f

d :

δY
f

d

Y
f

d

= −1.072
δ�Bh2

�Bh2
+ 2.318

δα

α
− 0.049

δ〈v〉
〈v〉 − 2.469

δεD

εD

.

We summarize the results that we obtained in table 2.

4. The dependence of deuterium binding energy εD on the Higgs vev 〈v〉
As we said before, the deuterium binding energy εD is the most significant factor that
can influence the BBN reactions rates, and its variation was discussed in Flambaum and
Shuryak (2002, 2003), Dmitriev and Flambaum (2003) and Dmitriev et al (2004). Indeed,
the equilibrium concentration of deuterons and the inverse reaction rate depend exponentially
on it. Moreover, the deuterium is a shallow bound level (εD ≈ 2.225 MeV). Therefore the
relative variation of the deuterium binding energy εD is much larger than the relative variation
of the strong interaction potential which we neglect in our work. In order to give an estimate
for the relative variation of εD , we should compute, within perturbation theory, the correction
to εD due to the perturbation which might change in time. Thus we write εD = ε0

D + �E,
where ε0

D is the unperturbed binding energy and we consider it a QCD-determined quantity
which does not change in time. As to �E, we know (Weinberg 1990, 1991) that the one-
pion exchange potential represents the first approximation to the perturbation on the strong
interaction potential, and it has the form:

V Y = f 2

4π

e−mπ r

r
(15)

where f 2

4π
∼ 0.08,mπ ∼ 140 MeV is the pion mass. We simplify the strong interaction

potential by a square well model with width a and depth V0. These two parameters can be
determined by fitting the square well ‘theoretical’ expressions involving these two parameters
to the p-n scattering data. According to the shape-independent effective range theory (Bethe
1949, Bethe and Longmire 1950) all the binding and low energy scattering properties of the
potential are determined by just two parameters which can be determined experimentally: the
scattering length at = 5.50 × 10−13 cm and the effective range rt = 1.72 × 10−13 cm (Schiff
1968). The corresponding values for the square well are the depth V0 = 35.5 MeV and the
width a = 2.03 × 10−13 cm = 0.0103 MeV−1. We consider the width and the depth as
QCD-determined parameters and assume they do not change in time.

Now, we have in the square well model

�E = f 2A2

4πξ 2

∫ ξa

0

sin2 x

x
e− mπ

ξ
x dx +

f 2B2

4πβ2

∫ ∞

ξa

e−( mπ
ξ

+ 2β

ξ
)x

x
dx, (16)
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where

ξ =
√

mN(V0 − εD) = 176.76 MeV (17)

β = √
mNεD = 45.71 MeV (18)

A =
√√√√ ξ 2

a
2 − sin(2ξa)

4ξ
+ sin2(ξa)

2β

= 1393 MeV3/2 (19)

B = −β

ξ
sin(ξa)eβaA = −559 MeV3/2 (20)

and mN is the reduced mass of the two-nucleon system.
Whence,

�E = 0.203 MeV. (21)

On the other hand, the change due to the variation of the nucleon mass in the Yukawa
potential V Y is negligible compared with the change due to the variation of mπ . Since
δmπ

mπ
= 1

2
δ〈v〉
〈v〉 as mentioned before, we get, evaluating numerically the integrals, the following:

δ�E

�E
= −0.896

δmπ

mπ

= −0.448
δ〈v〉
〈v〉 , (22)

and so
δεD

εD

= −0.041
δ〈v〉
〈v〉 . (23)

These values are one order of magnitude lower than those obtained by Flambaum and Shuryak
(2002). The difference arises from the fact that these authors did not consider the continuity
of the wavefunction and its derivative on the boundary of the square well. This results in
differences between the normalization factor of the wavefunctions which propagate into the
binding energy first order perturbation. Moreover, the values of a and V0 they consider are
different from this work.

Hence, the final expressions for the relative variations of the helium and deuterium
abundances are

δY
f

d

Y
f

d

= −1.072
δ�Bh2

�Bh2
+ 2.318

δα

α
+ 0.052

δ〈v〉
〈v〉 (24)

δY
f
α

Y
f
α

= 0.029
δ�Bh2

�Bh2
+ 2.182

δα

α
− 2.044

δ〈v〉
〈v〉 . (25)

These results are summarized in table 3

5. Results

We can now compare the theoretical predictions of the abundances of 4He and D obtained
in the last section with the observational data. The equations (24), (25) are of the form
(i = 1(D), 2(4He)):

δY
f

i

Y
f

i

= Ai

δ�Bh2

�Bh2
+ Bi

δα

α
+ Ci

δ〈v〉
〈v〉 (26)
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Table 3. Abundances and their dependence on fundamental constants,
δY

f
i

Y
f
i

= A δα
α

+ B
δ〈v〉
〈v〉 +

C
δ�Bh2

�Bh2 .

Y
f

i Abundance A B C

2H 2.41 × 10−5 2.318 0.052 −1.072
4He 0.238 2.182 −2.044 0.029

Table 4. Theoretical abundances in the standard model with the WMAP estimate �Bh2 = 0.0223.

Nucleus Y SBBN
i ± δY SBBN

i

2H (2.51 ± 0.37) × 10−5

4He 0.2483 ± 0.0021

Table 5. Observational abundances.

Nucleus Y obs
i ± δY obs

i Reference

D (1.65 ± 0.35) × 10−5 (Pettini and Bowen 2001)
D (2.54 ± 0.23) × 10−5 (O’Meara et al 2001)
D

(
2.42+0.35

−0.25

) × 10−5 (Kirkman et al 2003)

D (3.25 ± 0.3) × 10−5 (Burles and Tytler 1998a)
D

(
3.98+0.59

−0.67

) × 10−5 (Burles and Tytler 1998b)

D
(
1.6+0.25

−0.30

) × 10−5 (Crighton et al 2004)
4He 0.244 ± 0.002 (Izotov and Thuan 1998)
4He 0.243 ± 0.003 (Izotov et al 1997)
4He 0.2345 ± 0.0026 (Peimbert et al 2000)
4He 0.232 ± 0.003 (Olive and Steigman 1995)

and we take the assumption that the difference δY
f

i

Y
f

i

is due to a change in the considered

fundamental constants: δYi

Yi
= Y obs

i −Y SBBN
i

Y SBBN
i

, where Y SBBN
i and Y obs

i are the theoretical and

observed abundances, respectively. In table 4, the theoretical abundances Y SBBN
i are given for

�Bh2 = 0.0223 with their errors resulting from the uncertainty in the values of the parameters
involved. In table 5, the observational data of helium and deuterium are stated with their
measured errors.

As regards the consistency of the D and 4He data, we follow the treatment of (Landau
et al 2006) and increase the observational error by a factor �. The values of � are 2.4 for D
and 2.33 for 4He.

The results of solving the system of equations (26) with the given data are shown in table 6.
These results are consistent within 1 − σ with no variation of the fundamental constants. On
the other hand, the results considering variation of one fundamental constant only are shown
in table 7. These results are consistent within 3 − σ with no variation of the fundamental
constants.

In order to check the goodness of our fit, we performed a Kolmogorov–Smirnov (KS)
test (see figure 1). When considering variation in �Bh2, α and 〈v〉 altogether, we have a
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Figure 1. The full line shows the theoretical probability of the residuals, while the dotted line
shows the empirical probability. Deviations of �Bh2, α and 〈v〉 with respect to their mean values
are considered.

Table 6. Results of the analysis using the square well model considering joint variation of all
constants.

Relative variation Value σ

δ�Bh2

�Bh2 −0.011 0.054

δα
α

−0.032 0.072
δ〈v〉
〈v〉 − 0.011 0.078

Table 7. Results of the analysis using the square well model considering variation of each constant
only.

Relative variation Value σ

δ�Bh2

�Bh2 −0.013 0.056

δα
α

−0.015 0.006
δ〈v〉
〈v〉 0.017 0.007

probability of 79% to obtain a worse fit. However, we consider the results of the KS test only
indicative, since even though the considered data are independent the residuals are not.

Finally, it is interesting to compare our results with other non-standard BBN models. In
particular, a non-standard expansion rate and an electron-neutrino asymmetry were considered
by several authors (Barger et al 2003a, Steigman 2005, 2006). While D is more sensitive to
the baryon density (�bh

2), the effect of a non-zero νe asymmetry is more strong for 4He than
for the other relic nuclides. This is similar to the effect of 〈v〉 as follows from equations (24)
and (25), whereas both D and 4He are sensible to changes in α. In the papers cited above,
the authors considered the following cases: (i) adding only one free parameter (either �Nν

or ξe) and (ii) adding two free parameters (�Nν and ξe) besides the baryon density. They
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consider the WMAP data from the CMBR together with 4He and D abundances. In the first
case, the results are consistent within 1 − σ with ξe �= 0 and �Nν �= 0. In the second case,
the results are consistent within 1 − σ with ξe = 0 and �Nν = 0. These results are similar
to ours in that considering only one free parameter besides the baryon density is consistent
with non-standard physics within 1−σ whereas considering two free parameters is consistent
within 1 − σ with the SBBN model. However, it is important to remind that most of the
theories where the fundamental constants may vary in cosmological time scales, predict joint
variation of constants.

6. Conclusions

In this work, we assumed that the discrepancy between SBBN estimation for 4He and D and
their observational data is due to a change in time for the fundamental constants: the Higgs vev
〈v〉, the fine structure constant α. We analysed the dependence of the 4He and D abundances on
these fundamental constants within perturbation theory and on deviations with respect to the
mean value of the baryonic density. Furthermore, we compared them with the observational
data. We find that varying fundamental constants may not solve, in our case, the discrepancy
between the theoretical SBBN and the observed data considered in this work. We hope this
work stimulates further research in this interesting subject.
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