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Resonant inelastic X-ray scattering, also named X-ray resonant Raman scattering, was recently used to discriminate local chemical
environments. By means of this novel technique, the speciation of samples could be attained in a variety of samples and
experimental conditions. Until now, this discrimination methodology had been applied only to pure compounds, being the
speciation possible by two different mathematical treatments. Nevertheless, the effectiveness/sensitivity of this technique has
not been tested yet in samples containing mixtures of oxides of the same element. In this work, the first results of quantitative
speciation of mixtures of manganese compounds, using resonant inelastic X-ray scattering/X-ray resonant Raman scattering
spectroscopy, are presented. The results show that it is possible to discriminate and quantify oxide mixtures of the same element
in slightly different proportions, allowing a quantitative speciation of compoundmixtures in a variety of experimental conditions,
presenting also several advantages over conventional spectroscopic techniques. Copyright © 2017 John Wiley & Sons, Ltd.

Introduction

In material science, the study of alloys is very important because
they have properties that can differ in great manner from those
of their composing elements. Alloying elements are added to base
metals to enhance some particular properties as hardness, strength,
corrosion resistance, electrical and magnetic properties, etc. Such
enhancement properties make them more useful and tunable for
particular demands. While some alloys are found in nature, such
as electrum (a mix of silver and gold) or meteoric iron–nickel,
humans have been creating alloys for their own use for more than
4500 years. An early example of a fabricated alloy is bronze, which is
made from copper and tin, being harder and stronger than those
pure elements. Another very common example is steel, harder
and tougher than pure iron. Because of their properties, metal
alloys can be successfully adapted to specific uses where a pure
metal would be either unsuitable or extremely expensive.

A relevant element in alloys is manganese. This element is
present in several metal mixtures, and because of its particular
characteristics, manganese has no satisfactory substitute in its
major applications in metallurgy.[1] Manganese is, for example,
essential for iron and steel production by virtue of its sulfur-fixing,
deoxidizing, and alloying properties. Small amounts of manganese
improve the workability of steel at high temperatures by forming a
high-melting sulfide and preventing the formation of a liquid iron
sulfide at the grain boundaries. Steel with 1.5% Mn and 0.25% C
is a cheaper steel, used for car axles and crankshafts. Steel with
1.5% of Mn and 0.35% of C is used in automobiles and general
engineering in situations where the expense of Ni–Cr steel is not
justified. If the manganese content reaches 4%, the embrittlement
of the steel becomes a dominant feature. The embrittlement
decreases at higher manganese concentrations and reaches an
acceptable level at 8%. Steel containing 8 to 15% of manganese
has a high tensile strength of up to 863 MPa.[2,3] Hadfield steel is
the classic manganese alloy steel with more than 12% of Mn; it is
used in situations where toughness combined with extreme
abrasion resistance is required, as rock crushing machinery,
dredging equipment, and track work points and crossings. Hadfield
steel was used as for the British military for helmets and later by the

US army.[4] In addition, silico-manganese (heating oxides MnO2

SiO2, and Fe2O3 with carbon) has applications as deoxidizer and
an alloying element in steel as well; aluminum with roughly 1.5%
manganese has increased resistance to corrosion through grains
that absorb impurities that would lead to galvanic corrosion,
between so many cases and examples. Clearly, the oxidation state
of manganese compounds is also important in many fields of
science and industry, like agronomy and medicine.[5,6]

It is evident that small variations on the amount of Mn, or in its
oxidation state, can produce notable changes on the features of
the related alloy compound. That is why a precise characterization
of its concentration and chemical state is mandatory for a proper
quantification process. Due to its vast use in many fields of the
industry, a reliable Mn characterization procedure is of the highest
importance.

Resonant inelastic X-ray scattering, also known as resonant
Raman scattering (RIXS/RRS), is the basis of a novel and promising
X-ray spectrometric technique for the determination of the atomic
environment. This methodology is fundamented on an inner shell
atomic process involving an incident photon, bound electrons,
and a scattered photon. This RIXS/RRS process was observed for
the first time by Sparks[7] in 1974 and explained later by Bannet
and Freund[8] in 1975. First studies on the K-level cross sections
for some transitions elements by using both conventional X-ray
sources and synchrotron radiation were published during the
seventies and eightees.[7,9–14] Systematicmeasurements of the total
cross section as a function of the incident energy were reported by
Sánchez et al. in 2006[15] for puremetals and by Valentinuzzi et al. in
2008 for oxides.[16] The first report of determining atomic
environments by the inspection of the fine structure of the
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RIXS/RRS spectra by using a low resolution system is from 2011 by
Leani et al.,[17] and the influence of RIXS/RRS on the quantification
of XRF analyses was theoretically calculated by Sánchez et al.[18]

in 2012.
The RIXS/RRS can be observed by using high-energy resolution

systems for detecting the scattered photon, which provided a
detailed information about the decay process. However, high-
energy resolution spectrometers for a wide range of energies are
not available and, usually, the measuring time turns unhandled.
Most interesting and useful results can be obtained by using low-
energy resolution systems. In this configuration, RIXS/RRS
experiments are completely equivalent to X-ray fluorescence
experiments, including all the different variations of XRF, i.e. total
reflection, spatially resolved analysis, and surface analysis by
grazing incidence excitation.
In 2013, Leani et al.[19] successfully performed a qualitative

microanalysis of calcium local structure in tooth layers by means
of micro-RIXS/RRS combining for the first time RIXS/RRS and
spatially resolved spectroscopy. A depth profiling nanoanalysis of
chemical environments using resonant Raman spectroscopy was
carried out by Leani et al.[20] in 2013 and represented the first
experiment of RIXS/RRS at grazing incidence conditions. In addition,
total reflection geometry was employed to determine arsenic
speciation by RIXS/RRS in 2013.[21]

Until now, this discrimination methodology had been applied
only to pure oxides, achieving the speciation by specific
mathematical treatments. Nevertheless, the effectiveness of this
technique was not tested in samples containing mixtures of oxides
of the same element or alloys.
In this work, first results regarding quantitative speciation of

manganese compound mixtures by RIXS/RRS spectroscopy are
presented. Calibration curveswere established, and testing samples
were calculated with significant success. The results are discussed,
and the sensitivity of the technique is evaluated.

Experimental

The measurements were carried out at the Brazilian Synchrotron
Light Source (Campinas) in the D09B-XRF beamline.[22] This
beamline is equipped with a double-crystal channel-cut
monochromator with energy resolutions of 3 eV and 10 keV using
an Si(111) crystal. The measurements for this work were carried
out in a typical reflection geometry (45°–45°) in the orbit’s plane
so as tominimize Compton and Rayleigh scattering contribution.[23]

A monochromatic beam was used, setting the incident energy at
6450 eV, i.e. beneath the K absorption edge of manganese. The
incident beam flux was of approximately 108 ph/s. Outgoing
photons were detected with an energy dispersive ultra low-energy
germanium solid-state detector with a beryllium window of 8 m
and an energy resolution of 140 eV for the Mn–K line.
The samples under analysis were divided into two groups. The

first group (group A) consisted of four pellets with Mn2O3 and
MnO2 mixed in different proportions: (1) 100% of Mn2O3; (2) 80%
Mn2O3 and 20% MnO2; (3) 60% Mn2O3 and 40% MnO2; (4) 20%
Mn2O3 and 80% MnO2; and (5) 100% MnO2. The second group
(group B) consisted of four mixtures of Mn2O3 and MnO also with
different amounts of each oxide: (1) 100% of Mn2O3; (2) 75% of
Mn2O3 and 25% of MnO; (3) 25% of Mn2O3 and 75% of MnO; and
(4) 100% of MnO. Every sample mentioned in the preceding texts
had 0.05 g of boron nitrate and weighed a total of 0.2 g of
manganese compounds.

In addition, two more samples were measured in order to check
the calibration curve for quantification (validation samples). For
group A, the sample consisted of 40% Mn2O3 and 60% MnO2, and
for group B, the sample consisted of 50% Mn2O3 and 50% MnO.

Four spectra were measured for each of the samples of the first
group and three spectra for each sample of the second group. In
both groups, every spectrum’s acquisition live time was of 500 s.
An RIXS/RRS spectrum is shown in Fig. 1 [region of interest (ROI)
also plotted].

Data analysis and results

The spectrum analysis was approached by two independent
mathematical methods: fine structure deconvolution technique[17]

and principal component analysis (PCA) technique.[24] These
spectral analyses were performed to each group of spectra (A and
B) independently.

For the fine structure deconvolution, spectra were treated with
specific analysis programs (OriginLab[25] and TableCurve[26]). The
data fitting of the low-energy side of the RRS peaks was achieved
by means of a Lorentzian decay.[17] After the fitting, a fast Fourier
transform smoothing procedure was applied to the residuals,
taking into account a Gaussian instrumental function with a σ of
67 eV.

Figure 2 shows the low-energy side residuals between the RRS
peak and the Lorentzian fitting (starting just in the peak maximum
amplitude) for group A samples (mixtures of Mn2O3 and MnO2

compounds) and Fig. 3 for group B samples (composited by
Mn2O3 and MnO oxides).

As it can be seen from Figs. 2 and 3, the oscillation pattern
present in the RRS residuals of the mixtures seems to be a
convolution between the oscillation patterns of the pure
constitutive compounds. In order to evaluate and quantify this
oscillation pattern mixture, a PCA mathematical procedure was
performed to each set of raw data. In this way, the use of the
fine-structure method result is avoided in order to study only the
nonconvoluted spectral behavior.

Principal component analysis is a multivariate technique that
allows the study of the variance–covariance structure of a data set
from a mathematical point of view. It successfully disassembles
the total variance into smaller components, the principal
components, allowing to search through the data set by parts,
prioritizing those parts that explain the largest amount of the total
variance. It is increasingly used in X-ray spectrometry because of its
simplicity and the amount of information that can be understood
through it.[27–29]

To perform the PCA in each group of spectra, the RRS tail ROI was
separated from each spectrum. This ROI corresponds to 16 energy
channels (in both groups of spectra), ranging between 5645 and
5850 eV (Fig. 1). This selection depends mainly on two factors: the
number of spectra that we have as input for the PCA (normally
called n in multivariate literature) and the presence of any potential
peak from strait elements that may interfere with the RRS
oscillations (this interference should be excluded from the analysis).
Because PCA is a multivariate method that acts upon the
covariance matrix, which has dimensions p×p (where p is the
number of variables), it is normally recommended and convenient
to have n> p. So, as to be able to use a larger set of input variables
(in our case the energy channels of the RRS ROI), it is necessary for n
to be large. A normalization of each spectrum was required as to
eliminate any undesired variability in between spectra, like any
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variability corresponding to the measuring time, the amount of
element of interest in the irradiation volume or any small variation
of the flux. This normalization was performed by dividing each
spectrum by the amplitude, i.e. the counts on the channel of
maximum intensity, of its RRS peak. PCA was performed with
InfoStat[30] and cross-checked with a Python subroutine from
matplotlib.[31] It is noticed that the spectral shape does not
significantly change after some time of acquisition, being
convenient then, from a statistic point of view, to have more
measurements of shorter acquisition time than only one long
measurement.

After PCA was performed, all spectra were projected only onto
the first principal component (PC1) because, in both cases, it
explained more than half of the total variability of the data set
(86% for group A and 56% for group B) and it was sufficient for
the discrimination. This means that the variability in the spectra
regarding the chemical state was contemplated by this PC and only
by this one because PCs are orthogonal. It is worthmentioning that,
in both cases, only the first five principal components had nonzero
values, and that in both cases, PC1 was by far the most significant
one. The projections of all spectra onto this principal component
were classified by their corresponding mixture sample. The mean

Figure 1. Example of a measured RIXS/RRS spectrum (elastic peak also visible) and inset, the selected ROI for the PCA procedure.

Figure 2. RIXS/RRS low-energy residuals for the samples containing
mixtures of Mn2O3 and MnO2 (group A).

Figure 3. RIXS/RRS low-energy residuals for the samples containing
mixtures of Mn2O3 and MnO (group B).
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value of the PC1 projections of spectra belonging to the same
sample was calculated. We refer to these sample means as the
sample centroids. In this way, we obtained a weight in the PC1 that
corresponds to the centroid of spectra belonging to a specific
mixture sample. This value of the sample centroid becomes more
representative of the population mean if the amount of spectra of
the same sample increases. A list of these centroids for the different
mixture compounds and their corresponding standard error is
given in Table 1. Afterward, these centroids were used to perform
a calibration curve (by least squares fitting) with the aim of
quantifying the amount of mixture of any unknown sample.
Figures 4 and 5 show the calibration curves of PC1 versus the
concentration of Mn2O3 corresponding to groups A and B,
respectively. The figures also show the validation samples (empty
circle) and the errors of every point (defined as the standard error
of each sample distribution in PC1).
Table 2 shows the concentration of the validation samples and

the estimated values obtained from the corresponding calibration
curves. The errors of the estimated concentrations were calculated
by propagation by using partial derivatives.
The results show that different compound mixtures, in this case

of manganese, can be successfully discriminated and characterized
by using this RIXS/RRS technique. The applied methodology is the
typical one for a calibration method, using standards with
graduated mixture concentrations. In principle, at least two
standards are necessary to calibrate the system and calculate the
quantification line. Nevertheless, it is expected that amore accurate
calibration curve will be obtained taking into account as many
standards as possible.
The mathematical procedure for the calculation of

concentrations of any unknown sample is fairly straightforward,
based on PCA and on a simple linear fitting.
Regarding the validation samples, the results are quite precise,

showing values very close to the actual concentrations (36%
instead 40% for sample group A and 49% instead 50% for group
B). The propagated errors of the calculated concentrations are
relatively high, depending strongly on the standard deviation of
the PC1 sample distributions. This indicates that in order to improve
the sensitivity of the methodology and reduce the concentration
uncertainties, more measurements of shorter acquisition time of
the standards are desired.

Conclusions

The application of the novel RIXS/RRS tool in combination with PCA
for data analysis shows the capability to discriminate and
characterize oxide mixtures of the same element with high
sensitivity.

Table 1. Weight in PC1 of the calculated centroids for the different
mixture compounds and their corresponding standard deviations for
samples of groups A and B

Group Mn2O3 [%] Weight in PC1 SD

A 0 6.08 0.58

A 20 1.69 1.28

A 60 �1.48 1.46

A 80 �1.86 0.41

A 100 �4.43 0.76

Validation sample A 40 1.5 0.9

B 0 3.56 2.99

B 25 1.06 0.75

B 75 �2.44 0.16

B 100 �3.85 0.9

Validation sample B 50 �0.37 1.64

Figure 4. Calibration curve of PC1 centroids versus concentration of Mn2O3

corresponding to group A. The figure shows themeasured calibration points
(black squares) and the testing sample (empty circle). Errors of every point
are defined as the standard deviation of each PC1 sample distribution.

Figure 5. Calibration curve of PC1 centroids versus concentration of Mn2O3

corresponding to group B. The figure shows themeasured calibration points
(black squares) and the testing sample (empty circle). Errors of every point
are defined as the standard deviation of each PC1 sample distribution.

Table 2. Concentrations of the validation samples, for groups A and B,
and the calculated values obtained from the calibration curves. Errors
were calculated by propagation by using partial derivatives.

MMn2O3 Concentration [%] Estimation [%]

Group A 40 36 ± 13

Group B 50 49 ± 22
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Mixtures of manganese oxides were successfully discriminated
by the RIXS/RRS technique. The results exposed in this survey
can be extended to other oxides for application in many field
of science, as geology, chemistry, physics, etc, and mainly to
material science and industry, were a precise quantification of
different compounds of the same elements in slightly different
proportions is needed.

The whole methodology is fast, simple, and reliable. It presents
several advantages compared with other spectroscopic techniques,
as fast acquisition, low self-absorption, and the avoidance of any
energy scan during the measurements, being even possible then
to perform this kind of analysis in a local laboratory by using an
X-ray tube with proper anode or secondary target.
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