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Abstract

We analyze the effects that general environments, namely ohmic and non-ohmic, at zero and high temperature induce over a quantum Brownian
particle. We state that the evolution of the system can be summarized in terms of two main environmental induced physical phenomena: decoher-
ence and energy activation. In this Letter we show that the latter is a post-decoherence phenomenon. As the energy is an observable, the excitation
process is a direct indication of the system-environment entanglement particularly useful at zero temperature.
© 2007 Elsevier B.V. All rights reserved.

PACS: 03.65.Bz; 03.70.+k; 05.40.+j

1. Introduction

The open quantum system approach to the dynamic of a
particle coupled to a reservoir provides a number of very inter-
esting results. Some are the appearance of noise and dissipation,
decoherence (for a complete overview see Ref. [1] and refer-
ences therein), entanglement, and energy exitation [2]. Thus,
a necessary but not suffice condition for decoherence is the
entanglement between the main system and the bath. As long
as the composed system is governed by a reversible time evo-
lution, entanglement alone cannot generate decoherence. The
non-unitary evolution that follows the tracing out of the envi-
ronmental degrees of freedom provides the essential source of
decoherence and dissipation. The entanglement assures that the
system measures or saves the state of the environment or alter-
natively, there is information about the system state stored in
the environment. In this framework, we stress that the system-
environment interaction is more than just a matter of renormal-
ization.

* Corresponding author.
E-mail addresses: lombardo@df.uba.ar (F.C. Lombardo), paula@df.uba.ar

(P.I. Villar).

There are simple examples in which decoherence is gener-
ated by a reservoir even at zero temperature [3]. In general, a
small system coupled to an environment fluctuates even in the
zero-T limit. These fluctuations can take place without gener-
ating an energy trace in the bath. The fluctuations in energy of
the small system are a peculiar fact of the entanglement with
the quantum environment [4].

In Ref. [5] we have studied the evolution of a simple time-
independent bistable system, by following the quantum evolu-
tion of a particle initially localized at one of the minima of a
double-well potential, when coupled to an external environment
at both zero and high temperature. The zero temperature case
shows subtly different and, in some ways, unexpected proper-
ties. Tunneling is undoubtedly quickly suppressed, as can be
seen by inspecting either the probability of the particle to re-
main on the original well or the evolution of its Wigner func-
tion. In both cases we observed typical classical features since
very early times. At zero temperature, the quantum fluctuations
of the environmental oscillators, absent in a purely classical
evolution, lead to non-zero diffusive terms. Their effect is felt
primarily through the anomalous diffusion coefficient f (t) that
can have a large magnitude. We have conjectured that these
non-trivial diffusion effects induced by the quantum environ-
ment are large enough to excite the particle over the potential
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barrier. This is to be contrasted with the case where the environ-
ment is classical forbidding any kind of activation phenomenon.
Though the late time evolution in the presence of a quantum
vacuum is in nature very different from high-T thermal acti-
vation, we suggested that it could still be interpreted in terms
of a purely classical setting, if the environment oscillators are
described by a particular non-thermal statistical state [5].

The importance of general environments at zero temperature
lies in its leeway to model various physical situations. The envi-
ronments we shall study hereafter are known as supraohmic or
subohmic depending on the form of the spectral density in the
low frequency part of the spectrum. The ohmic environment is
the most studied case in the literature and produces a dissipative
force that in the limit of the frequency cutoff Λ → 0 is propor-
tional to the velocity. The supraohmic case, on the one hand,
is generally used to model the interaction between defects and
phonons in metals [6] and also to mimic the interaction between
a charge and its own electromagnetic field (see for example [7]).
In particular, the use of the supraohmic case will allow us to
establish a close relation with the decoherence process in quan-
tum field theory [8]. On the other hand, the quantum behaviour
of “free” electrons in mesoscopic systems is affected by their
interaction with the environment, which, for example in such
cases, consist of other electrons, phonons, photons or scatter-
ers. Which environment dominates the destruction of the inter-
ference phenomena generally depends on the temperature. For
instance, the temperature dependence of the weak-localization
correction to the conductivity reveals in metals that electron–
electron interactions dominate over the phonon contribution to
decoherence at the low temperature regime.

In [3] we analyzed the effect of quantum fluctuations of an
ohmic environment as a source of decoherence. Therein, we
presented the analytical expressions of the diffusion coefficients
at zero temperature for different physical situations and showed
that decoherence at zero temperature does occur contrary to
what is most commonly believed. However, the suppression
of the interferences is not as fast as it is at high temperature
limit. In the latter case, it is expected to happen at times of
O(1/2Mγ0kBT L2

0) while we have shown that at zero tempera-
ture it is smaller than O(1/γ0) [3].

In this Letter, we follow the investigation initiated in [5],
in order to thoroughly analyze the effects that general non-
ohmic environments (in Ref. [5] only the ohmic case was con-
sidered) at all temperatures induce over a quantum particle
in a harmonic oscillator potential (Quantum Brownian Motion
[QBM] model). We are interested in analyzing the energy ex-
citation process for ohmic and non-ohmic environments at zero
and high temperature. A system entangled with environmental
states has a number of properties which distinguishes it from
systems for which the ground state factorizes. In order to un-
derstand the physics underlying the entanglement process, it is
important to consider the evolution of the energy of the main
system. The energy is always an observable, and at zero tem-
perature, fluctuations in the energy of the main system are a
direct indication of the system-environment entanglement. If
the system is isolated, it is in the lowest energy state. Quan-
tum fluctuations are determined only by the diagonal elements

of the density matrix. Therefore, it is not obvious that one can
make any statement on entanglement. In general, additional in-
formation about the non-diagonal elements is needed. If we find
the main system in an excited state, one can conclude that it is
entangled [4]. Hence, in this Letter we shall analyze the evo-
lution of the mean energy of a quantum system, coupled to an
environment at zero and high temperature, and show that the
system is energetically activated due to the coupling with the
bath. In the zero-temperature case, we shall show that there is a
quantum effect, analogous to the thermal activation process, by
which diffusion produces an increase of the energy as a function
of time; i.e., a noise induced activation. We shall pay attention
to these effects in general environments. The isolated harmonic
oscillator (in its ground state) obeys two important properties:
minimum uncertainty and equipartition of energy between aver-
age kinetic and potential energies. When we study the dynamics
of quantum open systems, the effect of the environment on the
system is manifested through violations of these properties. As
the energy of the subsystem is an observable, it illustrates the
distinction between separable and entangled states. We shall
show that the main system can be found in higher energy states,
no matter how weakly coupled to an environment at zero tem-
perature it might be.

Our main scope is to show the existence of “noise induced
activation” phenomenon at zero temperature, and confirm it
is a post-decoherence process. Its analogous in the high tem-
perature limit is the “thermal activation” process. Even though
this phenomenon is worldwide accepted, it has not been stud-
ied for non-ohmic environments nor has it been shown to be
a post-decoherence process. Thus, we shall analyze two differ-
ent thermal regimes and study whether a system coupled to an
environment at arbitrary temperature, apart from suffering the
destruction of its interferences and dissipation, can benefit in
some way. We shall confirm the existence of “thermal activa-
tion” for non-ohmic “decoherent” environments. In the case of
zero temperature, we are interested in answering if the system
can increase its own energy by interacting with the environment
in the same way that at high temperature it is “activated” by the
presence of it. This process has been shown to exist in the case
of a quantum particle localized in one minimum of a double-
potential well in Ref. [5].

2. The model

Let us consider a quantum particle (characterized by its
mass M and its bare frequency Ω) bi-linearly coupled to an
environment composed of an infinite set of harmonic oscilla-
tors (of mass mn and frequency ωm) (for a general presentation
of the model see, for example [9–11] and references therein).

The dynamics of the quantum Brownian particle can be ob-
tained by tracing over the degrees of freedom of the environ-
ment and obtaining a master equation for the reduced density
matrix of the system, ρr(t). We shall assume that the initial
states of the system and environment are uncorrelated, with the
latter being in thermal equilibrium at temperature T (strictly
zero temperature also allowed) for t = 0 (i.e., when the inter-
action between system and environment is switched on). At
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the initial time, the state is a product of a given state of the
system and a thermal state for the environment. Only when
the interaction is turned on the system is allowed to evolve.
The initial condition is not an equilibrium state of the com-
plete action [5]. Under these assumptions, and using that the
system-environment coupling is small, the reduced density ma-
trix satisfies the following master equation (we set h̄ = 1)

i
∂

∂t
ρr(x, x′, t) =

[
− 1

2M2

(
∂2

∂x2
− ∂2

∂x′2

)]
ρr(x, x′, t)

+ 1

2
MΩ2(x2 − x′2)ρr(x, x′, t)

+ 1

2
MδΩ2(t)

(
x2 − x′2)ρr(x, x′, t)

− iγ (t)(x − x′)
(

∂

∂x
− ∂

∂x′

)
ρr(x, x′, t)

− iMD(t)(x − x′)2ρr(x, x′, t)

(1)− f (t)(x − x′)
(

∂

∂x
+ ∂

∂x′

)
ρr(x, x′, t).

In this expression, δΩ2(t) is the shift in the system frequency,
which produces the renormalized one Ω̃2 = Ω2 + δΩ2, γ (t)

is the dissipation coefficient, and D(t) and f (t) are the nor-
mal and anomalous diffusion coefficients respectively, which
produce the decoherence effects. These coefficients have all
been defined in [3,12]. The diffusion coefficients are deduced
from the noise kernel, source of stochastic forces in the associ-
ated Langevin equation, whereas δΩ2(t) and γ (t) are related to
the dissipation kernel. The dissipation η(t) and noise ν(t) ker-
nels are respectively defined as η(t) = ∫ ∞

0 dω I (ω) sinωt and

ν(t) = ∫ ∞
0 dω I (ω) coth βω

2 cosωt . I (w) is the spectral density
of the environment defined as I (ω) = (2/π)Mγ0ω(ω/Λ)n−1

e−ω2/Λ2
and Λ is the physical high-frequency cutoff, which

represents the highest frequency present in the environment,
and β = 1/T its inverse temperature (with Boltzmann con-
stant set to unity, kB = 1). We shall consider the quantum sys-
tem coupled to a general environment, namely ohmic (n = 1),
supraohmic (n = 3), and subohmic (n = 1/2).

We numerically solve Eq. (1) considering its coefficients up
to second order in the system-environment coupling, this fact
has been taken into account in all the simulations we shall
present. We will work in the under-damped case, which en-
sures the validity of the perturbative solutions up to the times we
are interested in [12,13]. Hereafter, let us envisage the situation
in which γ0 � h̄, which is called the weak-interaction situa-
tion and sets the temporal domain for perturbative solutions.
All the results obtained below are for periods of the evolution
well within the regime for which this approximation is valid. It
is worth noting that Eq. (1) is valid at any temperature, and is
local in time, despite the fact that no Markovian approximation
was explicitly taken. In the following, we shall show how the
general master equation simplifies in different regimes, making
it more tractable for both analytical and numerical techniques.

In particular, in the high temperature limit, i.e., h̄ω � kBT ,
of an ohmic environment, the coefficients of the master equa-
tion (Eq. (1)) are constant, and therefore, the expression is fur-

ther simplified [5,12]. In such a case, the diffusion coefficient
can be approximated by D � 2γ0kBT M , where γ0 is the dissi-
pation coefficient [12]. In this limit, while γ0 is a constant and
D(t) ∝ T , the coefficient f ∝ T −1 can be neglected. There-
fore, the term proportional toD is the relevant one in the master
equation at high temperatures in order to evaluate, for example,
the decoherence time.

On the opposite thermal regime, i.e., strictly zero temper-
ature, the master equation is much more complicated because
the coefficients are not constant and depend explicitly upon the
time. In [3], we have computed those coefficients for a quantum
Brownian particle coupled to an ohmic environment at strictly
zero temperature.

3. Decoherence

The decoherence process in the limit of high temperature has
been extensively studied in the literature [1,12,14]. However,
no much has been said about general environments, namely
supraohmic and subohmic, particularly if the environment is
at stricly zero temperature. Therefore, as we have done in [3]
for an ohmic environment, in this Section we shall analyze
the decoherence process for non-ohmic environments since it
is necessary for the understanding of the excitation induced
phenomena. We shall study the dynamic evolution of an initial
superposition of two delocalized (separated a distance 2 L0 in
position) states when the system is coupled to an non-ohmic en-
vironment at zero temperature. We consider two wave packets
symmetrically located in phase space as in [3,14] and evaluate
the coeficient Aint, which results crucial to estimate the deco-
herence time tD

(2)Ȧint ≈ 4L2
0D(t) − 2f (t),

where D(t) and f (t) are the corresponding normal and anom-
alous diffusion coefficients, respectively for each environment
considered.

The dynamics of the evolution of a system coupled to
a supraohmic environment is quite peculiar for that every-
thing that happens in the system is during the initial jolt
timescale [12]. It is important to deepen the study of this kind
of environment since it can be very useful, for example, as a
toy model to understand the physics of interacting quantum
fields. In Ref. [15] we have made analytical estimations of the
decoherence time for this kind of environment in a simplified
spin-boson model. Notably, timescales obtained therein coin-
cide with the ones obtained numerically in the present Letter.

The analytical estimation of the fringe visibility factor Aint
can be obtained for different physical limits. For times such
that Ωt � 1 (short times) it can be proved that D(t)n=3 ∼
(2Mγ0)/(πΛ2)Ω4t and f (t)n=3 ∼ −(2γ0)/(π)Ωt . Using
these expressions and Eq. (2) we obtain Ȧint ∼ 4γ0Ωt(1 +
2L2

0MΩ3/Λ2). Thus, it is possible to get

(3)Aint ∼ 2
γ0

Ω

(
1 + 2L2

0M
Ω3

Λ2

)
Ω2t2,

which is smaller than unity (particularly in the case Λ � Ω).
This means that the decoherence factor Γ (t) = exp(−Aint) [16]
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(a) (b)

Fig. 1. (a) Decaying factor Γ (t) for a supraohmic environment (n = 3) at zero temperature. The parameters are measured in units of the bare frequency Ω .
We consider the cases Λ = 2000 (Λ = 200 when noted), Ω = 0.1, L0 = 2 for different values of γ0 of the environment. In the inset, we have plotted the time
evolution of the linear entropy Sl(t) for different values of the cutoff Λ and γ0 = 0.5. There is no total decoherence for the underdamped supraohmic environment.
(b) A comparison between different decoherence rates for ohmic and supraohmic environments at zero and high temperature is shown in the main plot. Decoherence
is as fast in the ohmic case as in the supraohmic for the high temperature limit, while for those times there is no decoherence at zero-T . In the inset, the zero-T
behaviour of both environments for longer times. There is not decoherence for the supraohmic environment, while the ohmic takes longer but in the end, it succeeds
in destroying the interferences of the main system. Parameters used: Λ = 2000, γ0 = 0.1, L0 = 1 and are measured in units of Ω .

is not a decaying function with time and decoherence shall not
be effective in this case.

On the other side, if we ask Λt � 1 and Ωt � 1, it can
be checked that Eq. (2) reads Ȧint → 0, since both diffusion
coefficients approach to zero so rapidly (it can be shown that
D(t)n=3 ∼ 2Mγ0Λ cos(Λt)/Λt , and f (t)n=3 ∼ γ0). Thus, the
fringe visibility Aint is a constant and can be approximated by
Aint ≈ 2ML2

0γ0 (the value for larger times in order to assure
continuity of the coefficient). It is easily deduced that decoher-
ence never occurs for this case, except for unrealistic values of
the coupling constant (values outside the perturbative treatment.
For more general solutions at larger times see [17]). The deco-
herence factor shall be a constant value as Γ ∼ e−2ML2

0γ0 for all
times. Since we are considering the underdamped case (small
γ0), the exponent shall not be of order one and Γ (t) shall not be
much smaller than unity. Decoherence shall be only effective as
long as ML2

0 � 1/γ0, i.e., large macroscopic trajectories. This
result is to be contrasted to the one obtained in the high tem-
perature limit, where decoherence occurs in a time estimated as
t
n=3,HT
D ∼ (ΛMkBT L2

0γ0)
−1/2 very similar to what occurs in

the ohmic environment at the same temperature [15].
In Fig. 1(a), we show the behaviour of the decoherence fac-

tor Γ (t) for two different values of the coupling constant in
the case the supraohmic environment is at zero temperature. As
expected, the stronger the coupling with the environment the
sooner Γ (t) decreases. However, as can be seen in Fig. 1(a) it
never reaches zero. This is so because the stronger the environ-
ment, the bigger the initial jolt and the more efficient the sup-
pression of the interferences results (the diffusion coefficient
is proportional to γ0). For example, in the case of γ0 = 0.01
in Fig. 1(a), we see that Γ (t) ≈ 0.9 after the initial transient
and remains steady for all times. Then, interferences are not
completely destroyed, just slightly attenuated. Decoherence is
definitely not effective at zero-T in the supraohmic case for the

set of parameters chosen. Yet more, it is possible to see that the
linear entropy has an initial jolt for all values of the frequency
cutoff and reaches an asymptotic limit (sooner for smaller val-
ues of the frequency cutoff Λ). However, we can also observe
that the linear entropy does not significantly increase (reaches
an upper limit but far from the maximum possible value for a
mixed state) unlike in the ohmic case.

It is important to stress that in the examples shown in the
plots, we have used parameters such that decoherence is es-
sentially absent. We have omitted to show examples of macro-
scopic trajectories (very large L0) since they are not of much
interest from the microscopic point of view. Quantum interfer-
ence between macroscopically distinguishable trajectories are
easily destroyed even for the supraohmic environment at zero
temperature.

The non-dissipative character of the supraohmic environ-
ment is a consequence of the weakness of the spectral density in
the infrared sector, and the dependence with Λ is due to the fact
that it is more sensible to the ultraviolet cutoff of the frequency
spectrum. The supraohmic QBM model can be viewed as a toy
model for a quantum field theory (QFT) scenario. In Ref. [8] has
been shown the conditions under which there is decoherence at
T = 0 for a non-linear interacting field. The supraohmic case is
weakly diffusive due to the fact f (t) goes to zero after the ini-
tial transient. In this case, decoherence, depends strongly on the
coupling constant between system and bath in order to gener-
ate remarkable effects. In QFT, diffusive effects come from the
particle creation in the environment due to the interaction with
the system. When there is a frequency threshold in the environ-
ment, only those modes in the system with frequency near the
threshold are able to create particles and decohere. This is why
the diffusion coefficient is different from zero only for partic-
ular values of the parameters. This result is similar to what we
have shown so far for the supraohmic environment. In the QBM
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(a) (b)

Fig. 2. Γ (t) for the case of a system coupled to a subohmic environment (n = 1/2) at zero temperature. Parameters are in units of the bare frequency Ω . We consider
the case Ω = 0.1, L0 = 2 for different values of γ0 and the frequency cutoff Λ. It is also shown the linear entropy Sl(t) for the indicated case. (b) A comparison
between different decoherence rates for ohmic and subohmic environments at zero and high temperature is shown in the main plot. Decoherence is as fast in the
ohmic case as in the subohmic for the high temperature limit, while for those times there is yet no decoherence at zero-T . In the inset, the zero-T behaviour of
both environments for longer times. The decoherence timescale is shorter for the subohmic case at strictly zero temperature. Parameters used: Λ = 200, γ0 = 0.01,
L0 = 0.1 and are measured in units of Ω .

model we are studying here, the relation between Ω , Λ, and γ0
is crucial in order to get diffusive effects. Particularly at T = 0,
when Ω � Λ the system is unable to excite the environment in
order it “create” particles [8].

In conclusion, whereas supraohmic high-T environments are
very efficient inducing decoherence on the main system under
certain conditions [12,15], at zero temperature there is a strong
condition over the dissipative constant γ0. As expected, bigger
γ0 implies a stronger coupling to the external environment and
therefore, shorter decoherence times.

Finally, in Fig. 1(b), we present a comparison between the
decoherence rates for ohmic and supraohmic environments at
zero and high temperature. Decoherence is as fast in the ohmic
case as in the supraohmic for the high temperature limit. At
zero-T there is not decoherence for the supraohmic environ-
ment, while the ohmic environment takes longer times but fi-
nally succeeds in destroying the quantum interferences, as can
be seen in the inset of the figure where the time scale is longer
than the one of the main plot.

As for the subohmic environment, we also perform an an-
alytical estimation of the decoherence timescale by computing
the fringe visibility factor. In the case that Λt � 1 and Ω � 1,
Eq. (2) reads

(4)Ȧint ∼ γ0Λ

(
2ML2

0 + ΓEuler

Ω
+ log(2Λt)

Ω

)
.

In this case, by integrating in time the above equation, we can
obtain the fringe visibility factor Aint ∼ γ0Λt/Ω log(2Λt). It
is easy to deduce the decoherence timescale as tD � Ω/(γ0Λ).
On the other hand, if we ask Ωt � 1, we would obtain a similar
decoherence time since the diffusion coefficients presented for
the subohmic environment depend slightly on the ratio Ω/Λ. It
is important to note that in order to be able to neglect the initial
transient, one needs to have product Ω/γ0 > 1.

We can check our estimations with the help of Fig. 2(a),
where we present the evolution of Γ (t) for a system coupled
to a subohmic environment at zero temperature. There is a pe-
culiar feature in this case. The exponential Γ (t) initially grows
but immediately after, decreases and reaches zero [12]. We can
easily note that the dependence with the coupling constant and
the frequency cutoff is similar to the ohmic case (the bigger Λ

and γ0, the sooner Γ (t) → 0) in the high temperature limit. In
Fig. 2(a) we present the time dependence of the linear entropy
Sl(t) for just one curve (for the sake of clarity), where it is easy
to observe that the saturation of this quantity is reached (the as-
ymptotic limit closer to one when the corresponding solid curve
is closer to zero and total decoherence is effective).

Finally, a very distinctive difference between this type of en-
vironment and the ohmic one at zero temperature is that the
former is much more effective in producing decoherence and
does so in a shorter decoherence timescale. In Fig. 2(b), we
show a comparison between the ohmic and subohmic environ-
ments at zero temperature and in the high temperature limit.
Therein, it is easy to see, that the subohmic environment is very
efficient in inducing decoherence on the quantum test particle
not only at high temperature but at strictly zero temperature as
well.

4. Noise induced energy excitation in the high temperature
limit

We shall start by studying the thermal activation process in
a general environment, either ohmic or non-ohmic. For each
case, we shall provide analytical arguments and numerical ev-
idence of the existence of this phenomenon and observe that,
those systems which are mostly activated, are those whose in-
terferences have already been suppressed by decoherence in a
previous timescale.
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(a) (b)

Fig. 3. (a) Evolution in time of the mean energy of the system coupled to an ohmic environment (n = 1) in the high temperature limit. We consider the case
γ0 = 0.001, Λ = 2000, Ω = 0.1, L0 = 2 for different temperatures of the environment. In the inset, we have plotted the time evolution of the linear entropy for
two different environments: kBT = 105 and kBT = 106 (same colors than in the main picture). Thermal activation is a post-decoherence phenomena. (b) Evolution
in time of the mean energy of the system coupled to an ohmic environment (n = 1) in the high temperature limit. We consider the case kBT = 105, Λ = 2000,
Ω = 0.1, L0 = 2 for different values of the coupling constant γ0. Big values of γ0 activate the system earlier. The parameters are measured in units of the bare
frequency Ω in all cases.

For all cases, we shall evaluate

〈
E(t)

〉 = 1

2M

〈
p2〉(t) + MΩ̃2(t)

2

〈
x2〉(t),

where 〈x2〉 = Tr(ρr(t)x
2) and 〈p2〉 = Tr(ρr(t)p

2) are calcu-
lated using the solution of the master equation for a super-
position of two Gaussian wave packets, initially located at
x = ±L0. In the following, we shall present the mean energy
of the system for different environments at all temperatures so
as to show the “noise induced activation” in a quantum Brown-
ian particle.

4.1. Ohmic environment

It is widely accepted that “thermal” activation is a post-
decoherence process for a system coupled to an ohmic environ-
ment in the high temperature limit. This is so because, after the
suppression of the system’s interferences due to the presence
of the environment, the system and the environment are still in
interaction. Therefore, there is still energy exchange between
them and consequently, the system increases its energy pro-
portionally to the temperature of the bath for short times. The
thermal activation rate for a classical system can be obtained by
working with the classical analogue of the master equation for
the Wigner function, the Fokker–Planck equation:

(5)Ẇ = {Hsys,W }PB + 2γ0∂p(pW) +D∂2
ppW.

The classical evolution for the average of any physical observ-
able A(x,p) in this regime is then given by:

(6)∂t 〈A〉 = −〈{Hsys,A}PB
〉 +D〈

∂2
pA

〉 − 2γ0〈p∂pA〉.
If we take A(x,p) to be the Hamiltonian of the main sys-

tem, we obtain ∂t 〈H 〉 = 2γ0(kBT − 〈p2〉) (being D = 2γ0kBT

for this case). This expression can be further simplified by as-
suming T to be much higher than the relevant energy scales in
the problem, 〈p2〉, during the early stages of the evolution. As a
result, the time dependence of the energy of the system is given
by:

(7)∂t 〈H 〉 = 2γ0kBT → E = 2γ0kBT t + E0,

where E0 is the initial energy of the system. We can then esti-
mate the thermal activation time tth as tth = (E−E0)/(2γ0kBT ).
In Fig. 3(a) we have plotted the time evolution of the system’s
mean energy for the ohmic environment and confirmed its be-
havior is proportional to the temperature of the bath as indicated
in Eq. (7). We can note that, initially in the cutoff timescale,
the energy develops a jolt. This is just a transient and does
not last long. The energy grows steadily for a while (propor-
tional to γ0kBT for short times) and does not depend on the
frequency cutoff Λ. It is important to note that we shall always
study the dynamics between times 1/Λ � t � tsat ∼ 1/γ0.
As it is already known [12], the decoherence timescale is
tD ∼ 1/(2Mγ0kBT L2

0) (very early for the environments of
Fig. 3(a)). In the inset of that figure, we can see the timescale
at which the linear entropy reaches its top value (unity for a
mixed state). By this time, interferences have already been de-
stroyed. Besides, the energy of the open system is always bigger
than the one of the closed one. Note that not only the decoher-
ence process but also the noise activation of the system depend
strongly on the external temperature of the environment. The
hotter the environment, the bigger the “activation” (thermal in
this case). In Fig. 3(b) we can check its dependence on the value
of the coupling constant γ0 at a fixed temperature and cutoff fre-
quency. As expected, the bigger the coupling constant γ0, the
bigger the increase of energy of the system. In Fig. 3(b) it is
shown that the coupling strength sets the time at which the en-
ergy starts growing. The long time evolution of the energy in
the high temperature case can be found in Ref. [5].
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4.2. Nonohmic environments

The previous analysis can be also done for non-ohmic envi-
ronments. However, expressions are not that easy to deal with
since, in this case, neither f (t) is negligible nor D constant.
Thus, we shall restrict ourselves to a numerical analysis based
on the thorough analytical study of the decoherence process we
have made in a previous section.

We begin our analysis with the supraohmic one. In Fig. 4(a)
and Fig. 4(b) we present the evolution in time of the mean en-
ergy of the system for different values of the coupling constant
and the external temperature respectively. In both cases, it is
easy to see that those curves where the initial jolt of the en-
ergy is bigger are those cases for which the mean energy will
be bigger in the final state (top inset in Fig. 4(a)). In particular,
therein, we can see that the mean energy is bigger as the cou-
pling constant grows and in Fig. 4(b), we see the same behavior
as the environment gets hotter. It is important to note that the
strength of the environment is given by a relation between the
three parameters γ0, kBT and Λ.

For “strong” supraohmic environments (2MkBT L2
0γ0 � Λ),

decoherence happens in timescales of tD ∼ (ΛMγ0kBT L2
0)

−1

since interferences are destroyed very rapidly. Surprisingly,
those curves correspond to a considerably bigger value of the
final mean energy of the system.

So far, we have shown that when the environment has “suc-
ceeded” in the destruction of the interferences, the exchange
of energy with the system promotes its “activation”. However,
for not so strong environments (MkBT L2

0γ0 < Λ), such as
γ0 = 0.001 in Fig. 4(a), the interferences are not completely
destroyed (the decoherence factor Γ (t) is not zero), and then,
the exchange of energy is not completely devoted to exciting
the system (the environment still tries to suppress the coher-
ences). This case differs qualitatively from the ohmic environ-
ment. In particular, it reaches an asymptotic limit in a very short
timescale. In the inset of Fig. 4(a) we show the evolution of the
mean energy for longer times, when the system enters in the
asymptotic regime for the given set of parameters.

Finally, the noise activation is very clear in the case of
the subohmic environment. In Fig. 4(c) we have plotted the
mean energy of the system for different values of the coupling
constant (γ0 = 0.001 and γ0 = 0.005), different temperatures
(kBT = 105 and kBT = 104) and different cutoffs in the high
temperature limit. It is easy to see that the energy grows faster
as the coupling constant, the frequency cutoff and the tempera-
ture grow. If we recall the behaviour of the decoherence factor
Γ (t) or the decoherence timescale tD ∼ (Mγ0L

2
0kBT )−1, we

can check once more, that the “noise activation” is a post-
decoherence phenomenon since it begins after the system has
already lost its interferences.

5. Noise induced energy excitation at strictly zero
temperature

As we have already mentioned, there is a widely spread
misconception that decoherence tends to zero as a function of
the temperature and therefore, there is no decoherence in the

(a)

(b)

(c)

Fig. 4. (a) Evolution in time of the mean energy of the system coupled to an
supraohmic environment (n = 3) in the high temperature limit. We consider
the cases kBT = 105, Λ = 2000, Ω = 0.1, L0 = 2 for different values of γ0.
In the inset, we have plotted the mean energy for longer times. (b) Evolution
in time of the mean energy of the system coupled to an supraohmic environ-
ment (n = 3) in the high temperature limit. We consider the cases γ0 = 0.001,
Λ = 2000, L0 = 2 for different temperatures of the environment and coupling
constants γ0. Parameters are measured in units of the bare frequency Ω in all
cases. (c) Evolution in time of the mean energy of the system coupled to an
subohmic environment (n = 1/2) in the high temperature limit kBT � h̄Λ. We
consider the cases Ω = 0.1, L0 = 2, γ0 = 0.001 (and γ0 = 0.005 when noted)
and kBT = 105 (kBT = 104 when noted) for different values of the frequency
cutoff Λ. Parameters are measured in units of the bare frequency Ω in all cases.
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(a) (b)

Fig. 5. (a) Evolution in time of the mean energy of the system coupled to an ohmic environment (n = 1) at zero temperature. It is clear to see that there is a
dependence upon the coupling constant but not on the frequency cutoff. (b) Evolution in time of the mean energy of the system coupled to an ohmic environment
(n = 1) at zero temperature. The parameters are measured in units of the bare frequency Ω . We consider the case γ0 = 0.001, Ω = 15, Λ = 1000 for different values
of L0. In the inset, we show the time evolution of the decoherence factor for different values of γ0. Energy excitation actually starts after decoherence becomes
effective. The parameters are chosen based on numerical convenience.

limit of zero environmental temperature. If that were the case,
physics should be different in the opposite thermal limit. Many
questions consequently arise. What do we expect to find if the
system is coupled to an ohmic environment at zero tempera-
ture? Is it possible to find “activation” in the system? The latter
answer is unexpectedly positive. Yet more, we shall see that
there is a close connection between decoherence and noise ac-
tivation since the most “decoherent” environments are the ones
with the most visible activation phenomenon. Once more, we
shall show that the latter is a post-decoherence process taking
place after the interferences have been suppressed.

When trying to interpret the post-decoherence behavior of
the open system, several features of its dynamics should be kept
in mind. Firstly, one should emphasize that the initial condition
is clearly not the ground state of the total action [5]. As soon as
the interaction between the main system and the environment
is turned on, at t = 0, the system will find itself in an excited
energy state. The environment will have a non-zero amount of
energy in relation to the new initial state. From a purely clas-
sical point of view, this energy cannot be responsible for the
excitation of the particle to higher values. This argument can be
made more quantitative in the following way: the full potential
for the system plus environment is

(8)V (x, qn) = Vsys(x) + Venv(qn) + Vint(x, qn),

with Vsys(x) = − 1
2Ω2x2, Venv(qn) = ∑

n
1
2ω2m2

nq
2
n and

Vint(x, qn) = ∑
n Cnxqn. Classically, the initial condition is

x = 0, and, because the environment is at T = 0, qn = 0. So,
for the full action, the energy terms of the initial condition
are given by Vsys = 0 (the minimum of Vsys), Venv = 0, and
Vint = 0. Consequently, the total initial potential energy of the
system plus environment is V = 0. Note that classically, the
value of the total energy is the same as the energy of the isolated
main particle, even when the interaction with the environment
is “switched on”. This is a consequence of taking zero temper-

ature for the environment. The quantum fluctuations present in
the initial state of the environment must play a role in the “ac-
tivation” [5]. One should note that these fluctuations are not
“vacuum fluctuations” of the full system. Nonetheless, the fact
that they have such a clear effect on the evolution of the system
is quite remarkable. Whereas in the high-T case the quantum
and classical oscillators composing the bath had identical dis-
tributions, they behave in a markedly different way as T → 0.
The quantum nature of the environment, which could be ig-
nored at high-T , leads in this limit to important non-negligible
effects.

In terms of the master equation, the quantum fluctuations
of the bath oscillators generate non-zero f (t) and D(t) terms,
making diffusive phenomena possible. This is particularly true
in the case of the anomalous diffusion coefficient f (t). In the
ohmic case it can be shown that it depends logarithmically on
the cutoff Λ and thus can be considerably large [3]. Diffusion
effects induced by quantum fluctuations are thus responsible
for exciting the particle. Though this process is very different
from high-T thermal activation, we conjecture that it may still
be interpreted in terms of a modified classical setting. The key
ingredient is that the classical bath should mimic the properties
of the quantum T = 0 environment. Considering the classical
and quantum versions of the noise kernel ν(s), it is possible
to show that a bath of classical oscillators with a frequency
dependent temperature T (ω) = h̄ω/2 should reproduce the ef-
fects of the initial quantum state. In fact, for this choice of
classical environment one obtains f (t) and D(t) terms iden-
tical to those of the T = 0 quantum case. Our main point is
that after decoherence takes place, a quantum open system at
T = 0 should behave as a classical open system in contact
with a classical bath whose oscillators are excited in a way that
reproduces the fluctuations of the corresponding quantum envi-
ronment [5]. Hereafter, we shall show noise induced activation
happening in different environments a strictly zero tempera-
ture.
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(a) (b)

Fig. 6. (a) Evolution in time for the mean energy of the system and the mean dispersion of the energy for an ohmic environment at zero temperature. It is also shown
the mean energy of the isolated system. Parameters used: Λ = 103, Ω = 15, L0 = 0.5 and γ0 = 0.001. Fluctuations in energy are relevant in the excitation process.
The parameters are measured in units of the bare frequency Ω in all cases. (b) Long time behaviour for an ohmic environment at zero temperature for different
values of the parameters. In all cases the value of the mean energy of the Brownian particle is bigger than the mean energy of the isolated system (solid line). The
parameters used are measured in units of γ0 so as to include different runs in the same figure. We consider the case Ω = 1 and γ0 = 0.1 and different values of L0:
L0 = 0 which means only one Brownian particle (squares and triangles) and L0 = 0.5 (circles). E0 is the energy of the isolated system. Parameters were deliberate
choosen due to the long-time difficulty in the numerical runs.

5.1. Ohmic environments

In Fig. 5(a) we numerically prove our statement for an ohmic
environment at zero temperature. Therein, we have plotted the
time evolution of the mean energy of the system for different
values of the frequency cutoff and the coupling constant γ0 for
an ohmic environment. The bigger the value of γ0, the sooner
the energy of the system grows. Initially, the mean energy of
the system is lower than that it would be if the system was iso-
lated (no interaction with the environment). However, after a
time t � tD , timescale for which the interferences have already
been suppressed due to decoherence, the mean energy increases
considerably because of the interaction with the environment.
The system gains energy at the expense of the environment
which turns out to be an energy source. Clearly, it is a “post-
decoherence” process, very much like the thermal activation at
high temperature. In Fig. 5(b), we have plotted the mean en-
ergy of the system for different values of the initial distance
between the Gaussian wave packets L0 [16]. As expected, the
energy does not depend much on this latter parameter: the big-
ger the initial distance L0 is, the sooner the decoherence process
takes place and the “noise activation” starts (since decoherence
times is in general proportional to L−2

0 ). But this time difference
is subtle. In the inset of Fig. 5(b), we can observe the expo-
nential decay of Γ (t) which indicates the timescale at which
interferences are completely destroyed. Notably, this timescale
coincides with the beginning of the “noise-induced activation”
phenomenon.

In Fig. 6(a) we have plotted the mean energy of the open
and closed system and the mean dispersion of the energy of the
open system for zero temperature. Obviously, the mean energy
of the closed system remains steady. In the open case, we can
see that, initially, it is lower than the isolated case, but imme-
diately starts growing. The dispersion of the energy shows that

the fluctuations are extremely important and are responsible for
the increase of the mean energy since it is an uniform growing
function of time.

Finally, we would like to show the correct long time behav-
iour of the mean energy. Consequently, we numerically solved
the master equation for times of the order of the saturation
time tsat ∼ 1/γ0. As we are working in the underdamped limit,
achieving these long timescales is a numerically expensive task.
Nonetheless, we present the correct asyntotic behaviour by an
appropiate selection of the physical parameters. In Fig. 6(b) we
show the correct long time behaviour for the ohmic environ-
ment at zero temperature for different values of the parameters.
In all cases the value of the mean energy of the Brownian parti-
cle is bigger than the mean energy of the isolated system (solid
line).

5.2. Nonohmic environments

We shall extend the above analysis to the supraohmic envi-
ronments. For example, in Fig. 7(a), we have plotted the time
evolution of the mean energy of the system at zero tempera-
ture. Therein, we can see that the energy has the initial jolt but
at long time it remains constant (see bottom inset). It reaches
a value and stays with that energy for ever since much of what
happens in the supraohmic environment is just a consequence
of that initial jolt, not a dynamic response. By the way, this type
of environment at strictly zero temperature, does not induce ef-
fective decoherence on the system. No decoherence implies no
energy activation. In Fig. 7(a) we have included a big value of
γ0 (γ0 = 0.5) which produces decoherence and therefore en-
ergy activation. However, this value is not appropriate because
it is not well covered by the underdamped approximation (i.e.,
weakly coupling with the environment). All the other values
of γ0 included in the figure, correspond to environments not
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(a) (b)

(c)

Fig. 7. (a) Evolution in time of the mean energy of the system coupled to an supraohmic environment (n = 3) at zero temperature. The parameters are measured in
units of the bare frequency Ω . We consider the cases Λ = 2000, Ω = 0.1, L0 = 2 for different values of the cutoff frequency and the coupling constant γ0. In the top
inset, we have plotted the mean energy in a shorter scale to see the dependence on the frequency cutoff. In the bottom inset, we have plot the mean energy for longer
times for some values of the main plot. (b) Evolution in time of the mean energy of the system coupled to an subohmic environment (n = 1/2) at zero temperature.
The parameters are measured in units of the bare frequency Ω . We consider the cases Ω = 0.1, L0 = 2, γ0 = 0.001 for different values of the frequency cutoff Λ.
We also plotted the case γ0 = 0.005 and Λ = 20 in order to compare. (c) Long time behaviour for non-ohmic environments at zero temperature. We consider the
case of supraohmic n = 2 and subohmic n = 1/2 environments. The parameters used are measured in units of γ0 so as to include different runs in the same figure.
We consider the case Ω = 1 and L0 = 2 for different values of γ0 so as to distinguish between “strong” and “weak” supraohmic environments. E0 is the energy of
the isolated system. Parameters were deliberate choosen due to the long-time difficulty in the numerical runs.

strong enough to neither destroy the interferences nor “activate”
the system.

As for the subohmic environment at zero temperature, we
can observe the same dynamics as in the high temperature limit,
but on a longer timescale as it is shown in Fig. 7(b). In this case,
it is also possible to check that the activation timescale tact is
subsequent to the decoherence timescale tD ∼ Ω/(Λγ0) with
the help of Fig. 7(b).

Finally, in Fig. 7(c) we show the long time evolution of the
mean energy for non-ohmic environments for different values
of the parameters. In all cases, we can see that an asyntotic be-
haviour is reached for the very long timescales.

6. Final remarks

We have studied general environments, namely ohmic and
non-ohmic and showed that the evolution of a QBM parti-

cle can be summarized in terms of two main environmental
induced physical phenomena: decoherence and energy activa-
tion.

We have presented the different physical features of the non-
unitary dynamics in the case of a quantum system coupled
to a general environment at zero temperature. In this thermal
regime, the quantum fluctuations of the environmental oscil-
lators, absent in a purely classical evolution, lead to non-zero
diffusive terms. Their effect is felt primarily through the anom-
alous diffusion coefficient f (t) that can have a large magnitude
in the ohmic and subohmic environments. The supraohmic case
is weakly diffusive due to the fact f (t) goes to zero after the
initial transient. In this case, both decoherence and energy ex-
citation, depend strongly on the coupling constant between sys-
tem and bath in order to generate remarkable effects. Yet more,
we have confirmed previous results on decoherence in quantum
field theory by the use of this model.
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We have shown that these non-trivial diffusion effects in-
duced by the quantum environment are large enough to excite
the particle to higher energy levels. Particularly it is a post-
decoherence process which means that no total decoherence
implies no energy activation, as was clearly shown in the case
of a supraohmic environment at zero temperature. This is to
be contrasted with the case where the environment is classical
forbidding any kind of activation phenomena. Though the late
time evolution in the presence of a quantum vacuum is in na-
ture very different from high-T thermal activation, we suggest
that it could still be interpreted in terms of a purely classical set-
ting, if the environment oscillators are described by a particular
non-thermal statistical state. We will pursue this line of enquire
in depth in a forthcoming publication.

A system entangled with environment states has a number
of properties which distinguishes it from systems for which the
ground state factorizes. In order to understand the physics un-
derlying the entanglement process, it is important to consider
the evolution of the energy of the main system. The energy
is always an observable, and at zero temperature, fluctuations
in the energy of the main system are a direct indication of
the system-environment interaction. We have shown that the
process we have called noise induced energy activation is a
post-decoherence process, therefore, the evolution of the lin-
ear entropy shows that the state of the system in all of these
cases is a mixed state. Thus, energy here can be used as a mea-
sure of the degree of entanglement for mixed states, under a
non-unitary evolution. What’s more, simple systems with well
known isolated quantum mechanical properties become “en-
tanglement meters” as nicely explained by Jordan and Büttiker
in [4].
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