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The static region outside the event horizon of an asymptotically anti–de Sitter black hole has a conformal
timelike boundary I on which boundary conditions have to be imposed for the evolution of linear fields
from initial data to be a well-posed problem. Only homogeneous Dirichlet, Neumann or Robin conditions
preserve the action of the background isometry group on the solution space. We study the case in which the
modal decomposition of the linear field leads to potentials not diverging at the conformal timelike
boundary. We prove that there is always an instability if Robin boundary conditions with large enough γ
(the quotient between the values of the derivative of the field and the field at the boundary) are allowed. We
explain the origin of this instability, show that for modes with non-negative potentials there is a single
unstable state and prove a number of properties of this state. Although our results apply, in general, to 1þ 1

wave equations on a half-infinite domain with a potential that is not singular at the boundary, our
motivation is to analyze the gravitational stability of the four-dimensional Schwarzschild anti–de Sitter
black holes in the context of the black hole nonmodal linear stability program initiated in Phys. Rev. Lett.
112, 191101 (2014), and the related supersymmetric type of duality exchanging odd and even modes. We
prove that this symmetry is broken except when a combination of Dirichlet conditions in the even sector
and a particular Robin condition in the odd sector is enforced, or vice versa, and that only the first of these
two choices leads to stable dynamics.
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I. INTRODUCTION

A preliminary stability criterion for a stationary black
hole is that linear fields on the outer stationary region do
not grow unbounded from initial data. Fields of interest are
Klein-Gordon, Maxwell and linear perturbations of the
metric. The evolution of linearized metric perturbations is
particularly important because it gives a hint about the
ultimate question of full nonlinear stability, which is
whether or not generic initial data for the gravitational
field equations, close to that of the black hole, will evolve
into spacetimes that asymptotically approach stationary
black holes of similar characteristics. There are cases,
however, where the complexity of the metric and the field
equations make even an integral treatment of the linear
gravity problem particularly complex (some examples are
higher dimensional hairy black holes in generalized gravity
theories). In those cases the stability of scalar and/or
Maxwell fields is often considered as indicative of linear
gravity stability.
In any case, the stability notion assumes unique evolu-

tion from initial data, which, given that the fields of interest
obey hyperbolic equations, is guaranteed only if the outer
region is globally hyperbolic. Asymptotically anti–de Sitter
spacetimes, however, are not globally hyperbolic; they have

a conformal timelike boundary I where boundary con-
ditions have to be imposed to guarantee unambiguous
evolution from initial data. When different choices of
boundary conditions are possible, they lead to different
dynamics outside the domain of dependence of the initial
data hypersurface, and therefore to potentially different
answers to the issue of stability.
We are interested in the four-dimensional Schwarzschild

black hole solution of general relativity (GR)

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

when the cosmological constant Λ in

fðrÞ ¼ 1 − 2M=r − Λr2=3; ð2Þ

is chosen to be negative (M > 0 is the mass). This is the
Schwarzschild anti–de Sitter black hole in four dimensions
(SAdS4), for which f has a unique positive root at r ¼ rh,
the horizon radius, in terms of which

fðrÞ ¼ 1 −
ð1 − 1

3
Λr2hÞrh
r

−
Λr2

3
: ð3Þ

In [1] a definite answer to the linear stability problem for
the Schwarzschild black hole [Λ ¼ 0 in (2)] was given, by
showing that generic metric perturbations will remain
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bounded and that the perturbed metric will approach
asymptotically that of a slowly rotating Kerr black hole.
All previous works on Schwarzschild linear stability had
been restricted to isolated harmonic modes. The proof of
nonmodal linear stability in [1] was extended to the Λ > 0
case in [2]. Crucial to this proof is the use of the duality
between odd and even Schwarzschild perturbation discov-
ered by Chandrasekhar [3]. This duality gives a bijection
between even and odd parity modes [1,2], and this bijection
allows us to write even perturbations in terms of solutions
of the odd perturbation Regge-Wheeler equation in ðt; rÞ
space (for a detailed proof see Lemma 7 in [2]). The even
mode Zerilli equation is therefore avoided and the linear
stability problem for the Λ ≥ 0 Schwarzschild black hole
shown to reduce to the study of a four-dimensional Regge-
Wheeler equation for a scalar field Φ

∇α∇αΦþ
�
M
r3

−
2Λ
3

�
Φ ¼ 0 ð4Þ

on the Λ ≥ 0 background [1,2].
Two difficulties arise when trying to generalize these

ideas to SAdS4:
(a) one, of a fundamental nature, is that there are different

dynamics depending on the boundary conditions at the
timelike conformal boundary,

(b) the other one is that for most boundary conditions
Chandrasekhar’s duality, which is instrumental in the
treatment of the Λ ≥ 0 cases, is broken.

We introduce, as usual, a “tortoise” coordinate x

x ¼ −
Z

∞

r

dr0

fðr0Þ : ð5Þ

If Λ were non-negative, we would find that x ∈ ð−∞;∞Þ;
however, for negative Λwe find that x ∈ ð−∞; 0Þ with x →
−∞ as r → rhþ and x → 0 as r → ∞ in the following way:

x≃
( rh

1−Λrh2
ln ð rrh − 1Þ; r → rþh

3
Λr ; r → ∞:

ð6Þ

In terms of x the metric on the static region reads

ds2 ¼ fð−dt2 þ dx2Þ þ r2ðdθ2 þ sin2θdϕ2Þ; ð7Þ

where r ¼ rðxÞ is the inverse of (5). This metric is defined
on the manifold Rt × ð−∞; 0Þx × S2 and has the same
causal structure of S2 times the x < 0 half of Minkowski
space in 1þ 1 dimensions, which is not a globally hyper-
bolic spacetime: given any spacelike hypersurface Σ there
will be causal lines not intersecting it (e.g., those which are
future directed and originate at an x ¼ 0 point to the future
of Σ). Fields obeying wavelike equations are no longer
determined by their values and time derivatives at, say, a
t ¼ to surface Σto . The differential equation they satisfy has

a unique solution only within the domain of dependence of
Σto , and this is not the entire space. To assure uniqueness on
the entire space, boundary conditions at the conformal
timelike boundary x ¼ 0 have to be specified. Different
boundary conditions may be consistent with the field
equations and yet lead to different evolutions of the same
initial datum.
The situation of SAdS4 generalizes to the large class of

asymptotically anti–de Sitter (AdS) static black hole
solutions of d ¼ nþ 2 dimensional GR with the horizon
an Einstein manifold σn with metric ĝAB and Ricci tensor
R̂AB ¼ ðn − 1ÞκĝAB, κ ¼ 0;�1. The metric of these black
holes in static coordinates ðt; r; zAÞ is given by [4,5]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ĝABðzÞdzAdzB; ð8Þ

with

fðrÞ ¼ κ −
2M
rn−1

−
2Λr2

nðnþ 1Þ ; ð9Þ

M the mass and Λ the cosmological constant. For Λ < 0,
M > 0 and any κ, f grows monotonically for r ∈ ð0;∞Þ
fromminus to plus infinity, with a simple zero at r ¼ rh and

f ¼ κ −
ðκrhðn−1Þ − 2Λrhnþ1

nðnþ1Þ Þ
rnþ1

−
2Λr2

nðnþ 1Þ : ð10Þ

The static region corresponds to rh < r < ∞, where we
define x as in (5) and find that

x≃
(

1
f0ðrhÞ ln ð rrh − 1Þ; r → rþh
nðnþ1Þ
2Λr ; r → ∞:

ð11Þ

In terms of x the static region metric is

ds2 ¼ fð−dt2 þ dx2Þ þ r2ĝABðzÞdzAdzB: ð12Þ

As for SAdS4, x ∈ ð−∞; 0Þ, then the static region manifold
Rt × ð−∞; 0Þx × σn has the causal structure of σn times a
half of 1þ 1 Minkowski spacetime.
Alternative theories of gravity, such as Lovelock’s, admit

asymptotically (A)dS black hole solutions with metrics
of the form (8) (see [6] and references therein). The
function f is no longer given by (9), but in the asymp-
totically AdS case, by definition, f ∼ −Λeffr2 for large r
and some negative effective cosmological constant Λeff ,
whereas near the event horizon r ¼ rh (the largest positive
root of f) f ∼ f0ðrhÞðr − rhÞ; thus, the integral (5) that
defines x [so that (12) holds] diverges logarithmically as
r → rþh and converges for r → ∞, then x is again restricted
to a half line. This is very different to what happens in the
asymptotically flat case, where f ∼ 1 for large r, then x ∼ r
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in this limit and x ∈ ð−∞;∞Þ. Similarly, in the asymp-
totically de Sitter case, the static region corresponds to rh <
r < rc (rc is the cosmological horizon). Here rh and rc are
simple roots of f that introduce logarithmic divergences
near both horizons in the integral defining x, therefore
x ∈ ð−∞;∞Þ. The metric can always be put in the form
(12), but only in the asymptotically AdS case is x restricted
to a half line and the static region fails to be globally
hyperbolic.
For metrics of the form (8) with constant curvature

horizons σn, scalar and Maxwell fields, as well as linear
metric perturbations, can all be expanded as a series in a
basis of eigentensors of the Laplace-Beltrami (LB) operator
on σn, with “coefficients” that carry tensor indexes in the
ðt; rÞ Lorentzian orbit manifold [5,7]. We call each term in
this series a field mode. After some work, the (Maxwell,
linear gravity, etc.) field equations reduce in every case to
an infinite set of 1þ 1 wave equations for a master
variable, one for each mode, with a time-independent
potential. Since the massless wave equation in 1þ 1
dimension is conformally invariant, the master equation
satisfied by the master variable has the Minkowskian form

�
−
∂2

∂t2 þ
∂2

∂x2 − VðxÞ
�
ϕ ¼ 0; x < 0: ð13Þ

For GR in arbitrary dimensions, this reduction was proved
by Kodama and Ishibashi [5,7]. For black holes with
constant curvature horizons in the restricted case of
second-order Lovelock theories known as Einstein-
Gauss-Bonnet gravity, the modal reduction of linear gravity
to the form (13) was done in [8,9]. Generalizations to
higher order Lovelock theories can be found in [10].
Further examples of reduction of linear field equations
to mode equations of the form (13) include hairy black
holes, as in [11]. In all these cases, it is the warped product
form of the background (8) that allows separation of
variables, independently of the form of f. The horizon
manifold drops out from the field equations, leaving a trace
of it in the mode counting (modes are in one-one relation
with the eigenspaces of the LB operator on different kinds
of tensor fields on σn), and on the form of the potentials V
for each mode. The nonglobally hyperbolic character of the
spacetime is what implies the existence of a conformal
timelike boundary at x ¼ 0, contrary to what happens for
Λ ≥ 0, for which the domain of the wave equations (13) is
1þ 1 Minkowski spacetime, in the asymptotically AdS
case x < 0.
For perturbations propagating in the inner region of a

Reissner-Nordström black hole or on the negative mass
Schwarzschild or super extreme Reissner-Nordström
nakedly singular spaces, the modal decomposition leads
again to the 1þ 1 wave equation (13) on a half-space.
However, in these cases, due to the background curvature
singularity, there is a unique self-consistent choice of

boundary condition, and thus no ambiguity at all in the
dynamics.
Since V in Eq. (13) does not depend on t, we can solve it

by separating the t variable, after which the problem
reduces to finding the eigenvalues and eigenfunctions of
a quantum Hamiltonian on a half-line:

H ¼ −∂2=∂x2 þ VðxÞ; x < 0: ð14Þ

In this paper we study the self-adjoint extensions of the
operator defined in (14) and the corresponding solutions of
Eq. (13). We do this for the case in which V is continuous
for x ∈ ð−∞; 0� since this case covers the gravitational
perturbations of SAdS4 we are interested in. We focus on
the different dynamics that arise under homogeneous
Dirichlet

ϕjx¼0 ¼ 0;

Neumann

∂xϕjx¼0 ¼ 0

or Robin

∂xϕjx¼0 ¼ γϕjx¼0

boundary conditions, which are the natural ones, as they
preserve the action of spacetime isometries on the solution
space (see [12]), with an accent on the least studied Robin
boundary condition, for which we find that there is always a
range of the Robin parameter γ under which the dynamics
is unstable. These different choices give all possible self-
adjoint extensions of (14).
It is a nontrivial fact that, as far as we know, for scalar

and Maxwell fields and also for linearized gravity in four
and higher dimensional GR and Lovelock theories with a
timelike boundary, V → 0 as x → −∞ and either V is
continuous for x ∈ ð−∞; 0�, or V is continuous in ð−∞; 0Þ
and diverges at the conformal boundary always as V ∼ c=x2

for some constant c that depends on the field type and the
mode. For those potentials with c < 3=4 some generalized
forms of Robin, Dirichlet and Neumann homogeneous
boundary conditions can be defined, whereas if c ≥ 3=4,
only homogeneous Dirichlet boundary conditions are
allowed [13].
The paper is organized as follows: Sec. II contains some

preliminary material on modal decomposition of linear
fields and self-adjoint extensions of operators like (14). Our
results are gathered in Secs. III and IV. In Sec. III we prove
that for nonsingular potentials the 1þ 1 wave equation has
a critical value of the Robin parameter above which the
system is unstable. We show that a boundary condition
allowing energy flow from the boundary is not a sufficient
condition for instability, and that the instability is due to the
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excitation of a unique negative energy bound state of the
associated quantum Hamiltonian, of which we give a
number of properties. These results are collected in
Propositions 1–6 and illustrated with two toy models.
Although motivated by the study of linear gravity on
AdS4, these results apply to any problem reducing to
equation (13) on a half-space with a nonsingular potential,
as well as to the related quantum mechanical problem on a
half line.
Section IV explores the effects of the Robin instability

of Maxwell fields and gravitational perturbations on SAdS4
with a focus on how the boundary conditions spoil the
even-odd duality, which is peculiar of four dimensions
and is key in proving the nonmodal stability of the
Schwarzschild and Schwarzschild–de Sitter black holes.
We show in Proposition 7 that this duality, which is
reminiscent of supersymmetric quantum mechanics, is
broken except for two out of the infinitely many choices
of boundary conditions, and that only one of these gives
stable dynamics.
Except for the self-contained section on the scalar

field on SAdS4, linear fields in asymptotically AdS back-
grounds leading to singular potentials in their modal
decompositions are not treated in this work. The massive
scalar field on a warped background (8) leads to singular
potentials after mode decomposition. For a comprehen-
sive nonmodal study of the massive scalar field on a
general [i.e., not necessarily of the form (8)] asymptoti-
cally AdS background, the reader is addressed to refer-
ences [14–18].

II. DYNAMICS IN A NONGLOBALLY
HYPERBOLIC BACKGROUND

The subject of dynamics in a nonglobally hyperbolic
static background has been treated in the series of papers
[12,13,19]. This is reviewed in Sec. II A, where we explain
the relation between boundary conditions for the general-
ized eigenfunctions of (14) at x ¼ 0 (i.e., the different self-
adjoint extensions of the operatorH) and the corresponding
dynamics driven by (13), which is the equation obeyed by a
linear field mode. The modal decomposition of linear fields
on the static warped backgrounds (8) in arbitrary dimen-
sions is treated in [5,7] and references therein; [20] offers a
detailed description of the four-dimensional case with
spherical symmetry. Linear fields are decomposed in
independent modes and a master variable is obtained for
each mode which satisfies a 1þ 1 wave equation of the
form (13). In Sec. II B we explain how this is done for
linear fields on SAdS4.

A. Boundary conditions and self-adjoint extensions

After expanding in modes a linear field, the field
equations reduce to a set of equations, one for each mode,
of the form [see (13) and (14)]

−ϕ̈ ¼ Hϕ; ð15Þ

where a dot means time derivative and the Hamiltonian
operator is

H ¼ −
∂2

∂x2 þ VðxÞ; ð16Þ

with V continuous in ð−∞; 0Þ and VðxÞ → 0 as x → −∞.
The general solution of (15) is of the form

ϕ ¼
Z

dEcEðtÞψEðxÞ; c̈E þ EcE ¼ 0; ð17Þ

where the ψE are generalized eigenfunctions

zHψE ¼ EψE ð18Þ

of a chosen self-adjoint extension zH with domain a linear
subset of L2ðð−∞; 0Þ; dxÞ. In what follows we will use H
to denote the operator (16) acting on unspecified functions,
and denote partic ular self-adjoint extensions to specified
domains in L2ðð−∞; 0Þ; dxÞ with a left upper superscript.
Note that whenever H admits different self-adjoint exten-
sions, the resulting dynamics from initial compact sup-
ported data (which are suitable for all extensions) will
depend on the extension we choose.
According to (17), a negative energy E < 0 in the

spectrum of the chosen extension zH allows exponentially
growing terms in (17). Thus, there will be an instability
whenever the spectrum of zH contains a negative E value.
The possible self-adjoint extensions depend on the behav-
ior of V near x ¼ 0 and minus infinity. The potential V is
said to be limit circle case (LC) at x ¼ 0 if any function in
the two-dimensional space of local solutions of the differ-
ential equation (18) is square-integrable near zero, and is
otherwise said to be limit point case (LP) at x ¼ 0. The
same notion applies at minus infinity (see the appendix to
section X.I in [21]). It is a nontrivial fact that, according to
Theorem X.6 b in [21], the LC/LP notion does not depend
on the value of E in (18) as long as V is continuous
for x ∈ ð−∞; 0Þ.
The potentials that appear in the modal decompositions

of linear fields are always LP at x ¼ −∞. Some of them are
LC at x ¼ 0, and some others are LP at x ¼ 0. In the first
case, any solution of (18) is of the form ψ ¼ Aψ1 þ Bψ2,
where both ψ1 and ψ2 are square-integrable near x ¼ 0.
Writing ðA;BÞ ¼ CðcosðαÞ; sinðαÞÞ and allowing the irrel-
evant overall factor C to be positive or negative while
restricting α ∈ ð−π=2; π=2�, we find that α parametrizes
the set of allowed boundary conditions at x ¼ 0. If αH
is the operator (16) with domain the linear subset of
L2ðð−∞; 0Þ; dxÞ of functions with boundary condition at
x ¼ 0 consistent with choosing α above, then αH is self-
adjoint. Any self -adjoint extension of H is of this form.
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Thus, if V is LC at x ¼ 0, there are infinitely many self-
adjoint extensions, and the dynamics are unambiguous only
after selecting a self-adjoint extension α. On the other hand,
if V is LP at x ¼ 0 there is no such ambiguity as there is a
single choice of boundary condition under whichH is self-
adjoint. In this case we have a unique evolution of initial
data at a t slice in spite of the nonglobally hyperbolic
character of the outer static region. This is ultimately due to
the fact that we have constrained boundary conditions at
x ¼ 0 to those making H self-adjoint. In principle, there
is a much wider set of possible boundary conditions.
However, if we require that the time translation symmetry
acts in the expected way on the space of solutions and
that there is a conserved energy, we are forced to adopt
solutions of the form (17) for some self-adjoint extension of
H [12]. Thus, the possibilities for linear fields evolving on
the outer static regions of AdS black holes are that either
there is a unique dynamic (corresponding to the case where
each V is LP at x ¼ 0) or a set of dynamics parametrized by
α ∈ ð−π=2; π=2� for each mode such that V is LC at x ¼ 0.
For massless scalar, Maxwell and gravitational pertur-

bations on SAdS4, the behavior of the mode potentials near
the horizon is

V ¼ fðrÞ½Uo þOðr − rhÞ�; Uo ≠ 0; r≃ rh: ð19Þ

In this limit

x≃ ln ð rrh − 1Þ
f0ðrhÞ

; ð20Þ

therefore, (19) gives an exponential decay of V as x → −∞
[note that f0ðrhÞ > 0],

V ≃ f0ðrhÞrhef0ðrhÞx½Uo þ � � ��: ð21Þ

The local Frobenius series solution of the differential
equation (18) near r ¼ rh is, using (19),

ψE ¼ Cðr − rhÞ
ffiffiffiffi
−E

p
f0ðrhÞ½1þOðr − rhÞ�

þDðr − rhÞ−
ffiffiffiffi
−E

p
f0ðrhÞ½1þOðr − rhÞ�: ð22Þ

From (20),

ðr − rhÞ�
ffiffiffiffi
−E

p
f0ðrhÞ ≃ rh

� ffiffiffiffi
−E

p
f0ðrhÞe�

ffiffiffiffiffi
−E

p
x; ð23Þ

therefore, for positive E any solution (22) is oscillatory,
which (as for quantum mechanic wave functions) is a
suitable behavior for a generalized eigenfunction, even
though it is not square-integrable near minus infinity under
dx. For negative E the exponentially growing solution has
to be discarded, leaving only the D ¼ 0 solution (22),
which decays exponentially with x as x → −∞. For no

value of E is every function in the two-dimensional space of
local solutions of the differential equation (18) square-
integrable near x ¼ −∞: for negative E the subspace of
square-integrable local solutions is one-dimensional and
for positive E is trivial [as explained above, since V is
continuous for x ∈ ð−∞; 0Þ, there is no need to check all
cases: Theorem X.6 b in [21] guarantees that if the space
of local square integrable solutions is less than two-
dimensional for one value of E, it will be so for any E
in the complex plane]. Thus, according to the definition
above, V is LP at x ¼ −∞. For fields on higher-
dimensional GR or Lovelock backgrounds we find a similar
pattern near the horizon.
In the limit r → ∞ we find that for Maxwell and

gravitational fields on SAdS4, V is continuous for
x ∈ ð−∞; 0�, with

VðxÞ ¼ v0 þ v1xþ v2x2 þ � � � ; ðv0 ≠ 0Þ ð24Þ

for x≃ 0. The modes of a massless scalar field on SAdS4
instead diverge near x ¼ 0 as V ∼ 2=x2.
For fields on higher-dimensional GR or Lovelock back-

grounds we find similarly that either V is nonsingular at
x ¼ 0 or diverges as V ∼ c=x2.
When analyzing the local solutions of (18) near x ¼ 0 for

both the nonsingular and the V ∼ c=x2 potentials, we find
that E appears only in subleading terms. Thus, any state-
ment of local integrability near x ¼ 0 is independent of E,
as anticipated by Theorem X.6 b in [21].

B. Mode decomposition of linear fields on SAdS4

In this section we illustrate the modal decomposition for
the Klein-Gordon and Maxwell fields and for linear metric
perturbations on the SAdS4 background (see, e.g., [20]).
For a systematic treatment of the modal decomposition on
dimension D ≥ 4 black holes with constant curvature
horizon manifolds we refer the reader to [5,7]. As explained
in the paragraph above Eq. (13), the word mode in this
context applies to the individual terms when writing scalar
and tensor fields as a series in a basis of eigenscalar/
tensors of the LB operator of the constant curvature
horizon manifold. In the case of SAdS4, this manifold is
the unit sphere and a mode corresponds to a fixed ðl; mÞ-
harmonic solution of the field equations. Modes can be
further decomposed into their time Fourier components
ðl; m;ωÞ of frequency ω.
In all cases the modal decomposition reduces the

problem of linear fields propagating on a background
(12) to a set of 1þ 1 wave equations of the form (13),
independently of the dimension of the background.

1. Massless scalar fields on SAdS4

For the SAdS4 metric (1)–(2), the massless scalar field
equation reads
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0 ¼ ∇α∇αΦ ¼ ðrfÞ−1½−∂2
t þ f∂rðf∂rÞ

þ fðr−2Δ − f0=rÞ�ðrΦÞ; ð25Þ

where Δ is the Laplacian on the unit sphere

Δ ¼ ∂2
θ þ cotðθÞ∂θ þ sinðθÞ−2∂2

φ: ð26Þ

Introducing

ϕ ¼ rΦ ð27Þ

and expanding ϕ in an L2ðS2Þ orthonormal basis Sðl;mÞ of
real spherical harmonics on the sphere,

ϕ ¼
X
ðl;mÞ

ϕðl;mÞðt; xÞSðl;mÞðθ;ϕÞ; ð28Þ

we find that (25) is equivalent to a set of wave equations of
the form (15) in the x < 0 half of 1þ 1 Minkowski
spacetime,

−ϕ̈ðl;mÞ ¼ Hs
lϕðl;mÞ; ð29Þ

with Hamiltonian

Hs
l ¼ −

∂2

∂x2 þ Vs
l ð30Þ

and potential

Vs
l ¼ f

�
2M
r3

þ lðlþ 1Þ
r2

−
2

3
Λ
�
: ð31Þ

Note that Vs
l > 0 and that

Vs
l ∼

8<
:

2
x2 −

Λ
3
ðl2 þ lþ 2Þ þOðxÞ; as x → 0−

ðlðlþ 1Þ þ 1 − Λr2hÞð1 − Λr2hÞr−2h exp
��

1−Λr2h
rh

�
x
�
; as x → −∞:

ð32Þ

According to Theorem X.10 in [21], the fact that the x−2

coefficient in (32) is greater than 3=4 implies that the
potential Vs

l belongs to the limit point case at x ¼ 0 (see
Sec. II A), which means that the space of local solutions of

ð−∂2
x þ Vs

lÞψ ¼ Eψ ð33Þ

for which
R
0
c ψ

2dx < ∞ for some negative c is one-
dimensional. To check this, note that the two-dimensional
space of Frobenius series solutions for (33) at x ¼ 0
(r ¼ ∞) is

ψ ¼ A
�
1

r2
−

3

10Λ2

ðlþ 3Þðl − 2ÞΛþ 3E
r4

þOðr−5Þ
�

þ B

�
rþ 3

2Λ2

lðlþ 1ÞΛþ 3E
r

þOðr−2Þ
�
; ð34Þ

and B ¼ 0 is required for the integral
R∞
ro

ψ2dr=f to
converge. Since there is a unique admissible condition at
x ¼ 0, namely, B ¼ 0 in (34) (i.e., Dirichlet), we conclude
that the dynamics of massless scalar fields on SAdS4 are
not ambiguous. The extension of the domain of Hs

l ¼
−∂2

x þ Vs
l from functions of compact support to allow

ψ ∼ r−2 for large r [B ¼ 0 in (34)] gives a self-adjoint
operator which, as we will now show, has a positive
spectrum.
For x → −∞ (r → rþh ),

ψ ¼ Cðr − rhÞκð1þOðr − rhÞÞ

þDðr − rhÞ−κð1þOðr − rhÞÞ; κ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−Er2h

p
1 − Λr2h

;

ð35Þ

[compare with (22)] where it is assumed that we take the
real part.
If E > 0, a solution behaving like (34) with B ¼ 0 at

infinity will behave near the horizon as in (35). This
oscillatory behavior is characteristic of generalized eigen-
functions for potentials that vanish in this limit, Eq. (32).
However, a negative value of E [real positive κ in (35)]

would be admissible only if there were solutions of (33)
behaving as in (34) with B ¼ 0 near x ¼ 0 and as in (35)
with D ¼ 0 near the horizon. To show that this is not
possible, note that, assuming B ¼ D ¼ 0 and E < 0,R
0
−∞ ψ2dx converges and we arrive at a contradiction,

E
Z

0

−∞
ψ2dx ¼

Z
0

−∞
ψð−∂2

xψ þ Vs
lψÞdx ¼ ½ψf∂rψ �jr¼∞

r¼rh þ
Z

0

−∞
ðð∂xψÞ2 þ Vs

lψ
2Þdx

¼
Z

0

−∞
ðð∂xψÞ2 þ Vs

lψ
2Þdx > 0: ð36Þ
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We conclude that the dynamics of massless scalar fields
on SAdS4 are free of ambiguities, as there is a unique
possible self-adjoint extension DHs

l (for Dirichlet) of Hs
l

[that allowing only B ¼ 0 in (34)], and that the field has no
modal instabilities, as for every l the spectrum of DHs

l has
no negative eigenvalues.
Stronger results on the stability of scalar fields

on asymptotically AdS backgrounds can be found in
[14–18], where boundedness and decay were studied using
a nonmodal approach to the Klein-Gordon equation.
Maxwell fields, as well as gravitational perturbations,

exhibit more complicated patterns: the effective potentials
of the modes are nonsingular at x ¼ 0 and this allows for
infinitely many boundary conditions, some of them leading
to unstable dynamics. To show this, we need to recall how
to reduce Maxwell equations and the linearized Einstein
equations (LEE) to a set of the form (15)–(16) using tensor
decompositions into harmonic S2 tensors, generalizing
what was done in (28) for the scalar field. This is a
well-known procedure which, for D ¼ 4, is reviewed, e.g.,
in [2,20] and specifically for SAdS4 in [22].

2. Maxwell fields on SAdS4

Write the Maxwell potential as a sum of its vector/odd (−)
and scalar/even (þ) pieces, Aβ ¼ Að−Þ

β þ AðþÞ
β [2,20,22];

these can be gauge fixed to the form

Að−Þ
β ¼

X
ðl;mÞ

ϕð−;l;mÞ
�
0; 0;

1

sin θ
∂ϕSðl;mÞ;− sin θ∂θSðl;mÞ

�

ð37Þ

AðþÞ
β ¼

X
ðl;mÞ

ðf∂rϕ
ðþ;l;mÞSðl;mÞ; f−1∂tϕ

ðþ;l;mÞSðl;mÞ; 0; 0Þ;

ð38Þ

where ϕð�;l;mÞ are functions of ðt; rÞ. Maxwell equations
F ¼ dA and ∇αFαβ ¼ 0 are equivalent to

−ϕ̈�
ðl;mÞ ¼ HMax

l ϕ�
ðl;mÞ; ð39Þ

where the Hamiltonian

HMax
l ¼ −∂2

x þ VMax
l ð40Þ

is independent of the � parity and the azimuthal number m
and has a potential

VMax
l ¼ f

lðlþ 1Þ
r2

: ð41Þ

Note that VMax
l > 0 and that

VMax
l ∼

8<
:

− Λ
3
lðlþ 1Þ þOðx2Þ; as x → 0−

lðlþ 1Þð1 − Λr2hÞr−2h exp
��

1−Λr2h
rh

�
x
�
; as x → −∞:

ð42Þ

For future reference we also note that

Z
0

−∞
VMax
l dx ¼

Z
∞

rh

VMax
l

dr
f

¼ lðlþ 1Þ
rh

: ð43Þ

3. Gravitational waves on SAdS4

As done for Maxwell fields, we can decompose metric
perturbations into scalar=even=þ and vector=odd=− fields
with harmonic numbers ðl; mÞ. This procedure is well
known; the details can be found in [2,20] and references
therein. The l ¼ 0, 1 sectors contain either pure gauge
fields or time-independent fields, which corresponds to
perturbations within the Kerr family, that is, a variation of
mass or an addition of angular momentum. These are

irrelevant to the stability problem, so we will focus on the
l ≥ 2 modes.
For �, l ≥ 2 modes the LEE reduce to the well-known

Regge-Wheeler (−) and Zerilli (þ) equations for the
gauge invariant fields ϕ�

ðl;mÞðt; rÞ, which are of the form
(15)–(16). The Regge-Wheeler potential of the odd
Hamiltonian H−

l is

Vð−Þ
l ¼ f

�
lðlþ 1Þ

r2
−
6M
r3

�
; ð44Þ

and is positive in the outer static region r > rh except when
rh is small compared to M, in which case it is negative
in the interval rh < r < 6M=ðlðlþ 1ÞÞ. This potential
behaves as

Vð−Þ
l ∼

(−Λlðlþ 1Þ=3þOðxÞ; as x → 0−

ðlðlþ 1Þrh − 6MÞð1 − Λr2hÞr−3h exp
��

1−Λr2h
rh

�
x
�
; as x → −∞:

ð45Þ
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The Zerilli potential of the even Hamiltonian Hþ
l is

VðþÞ
l ¼ f

½μ2lðlþ 1Þ − 24M2Λ�r3 þ 6μ2Mr2 þ 36μM2rþ 72M3

r3ð6M þ μ2rÞ2 ; μ ¼ ðl − 1Þðlþ 2Þ; ð46Þ

this potential is positive for r > rh and behaves as

VðþÞ
l ∼

( ð24M2Λ2Þμ−2 − Λlðlþ 1Þ þOðxÞ; as x → 0−

ðΛ2r4h−4Λr
2
hþl4þ2l3−l2−2lþ3Þð1−Λr2hÞ
ð1−Λr2hþlðlþ1ÞÞr2h

exp
��

1−Λr2h
rh

�
x
�
; as x → −∞:

ð47Þ

For future reference we note that

Z
0

−∞
VðþÞ
l dx ¼ 2Λ2rh3

3ðlþ 2Þðl − 1Þ þ
Λrhðlþ 3Þðl − 2Þ
2ðlþ 2Þðl − 1Þ þ 2l2 þ 2l − 3

2rh
: ð48Þ

III. NONSINGULAR POTENTIALS AND ROBIN INSTABILITIES

By a nonsingular potential V in (16) we mean one that is continuous for x ∈ ð−∞; 0�, satisfies (19) and, for x≃ 0,

VðxÞ ¼ v0 þ v1xþ v2x2 þ � � � ; ðv0 ≠ 0Þ: ð49Þ

In this case, the local solutions near x ¼ 0 of the differential equation (18) are of the form

ψE ¼ K cosðαÞ
�
1þ

�
vo − E

2

�
x2 þ v1

6
x3 þOðx4Þ

�
þ K sinðαÞ

�
x −

�
vo − E

6

�
x3 þOðx4Þ

�
; ð50Þ

where A ¼ K cosðαÞ ¼ ψEð0Þ and B ¼ K sinðαÞ ¼ ψ 0
Eð0Þ,

and we choose to allow negative values of K and restrict
α ∈ ð−π=2; π=2�. As discussed above [see the paragraph
starting at Eq. (19)], the potential is LP at x ¼ −∞. From
(50) it follows that the potential is LC at x ¼ 0, with
boundary conditions parametrized by α. Note that ψEð0Þ
and ∂xψEð0Þ are well defined and that the possible
boundary conditions at x ¼ 0 are Dirichlet (α ¼ π=2),
Neumann (α ¼ 0) or Robin (the remaining cases). Robin
boundary conditions are characterized by the nonzero
value of

ψ 0
Eð0Þ=ψEð0Þ ¼ tanðαÞ≡ γ: ð51Þ

Restricting to eigenfunctions satisfying (50) with a fixed α
value defines the spectrum of a self-adjoint extension ofH.
We denote the corresponding self-adjoint Hamiltonian
operator for α ¼ π=2, α ¼ 0 and γ ¼ tanðαÞ ≠ 0, ∞ re-
spectively as DH, NH and γH.
In this section we study the possibility that a chosen self-

adjoint extension zH admits a negative energy eigenfunc-
tion ψE, E < 0, and establish a number of properties for
such a state. The results of this section apply then to the
quantum mechanics problem on a half line with a non-
singular potential (as defined above) as well as any 1þ 1
wave equation (15)–(16) with such a potential, for which,
as explained above, a negative energy eigenvalue implies,

in virtue of Eq. (17), that a generic solution of the 1þ 1
wave equation grows exponentially in time. Our motivation
is, of course, spotting such instabilities in Maxwell fields
and linearized gravity in SAdS4, whose modal decom-
positions lead to the nonsingular potentials (41), (44)
and (46).
The asymptotic behavior near the horizon of a negative

energy eigenfunction ψE,

−ψ 00
E þ VψE ¼ EψE; for x ∈ ð−∞; 0Þ; E < 0;

ð52Þ

is that in (22) with D ¼ 0, then ψE is a “bound state,”
that is, belongs to L2ðð−∞; 0Þ; dxÞ [as follows from (22)
and (23)],

Z
0

−∞
ψ2
Edx < ∞: ð53Þ

If the chosen self-adjoint extension is not Dirichlet, we may
normalize ψE such that

ψEð0Þ ¼ 1; ψ 0
Eð0Þ ¼ γ: ð54Þ

A key observation is that our intuition from quantum
mechanics in R fails for the Schrödinger operator H on a
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half line subject to Robin boundary conditions, as this may
admit negative eigenvalues even if V ≥ 0. The reason is that
the “kinetic energy” operator −∂2

x fails to be positive
definite if γ > 0, as the following simple calculation of
the expectation values of H for a (not necessarily normal-
ized) real, square-integrable function on ð−∞; 0Þ shows:

hψ ;Hψi ≔
Z

0

−∞
ψHψdx ¼ −ψψ 0jx¼0

þ
Z

0

−∞
½ðψ 0Þ2 þ Vψ2�dx: ð55Þ

For Dirichlet or Neumann boundary conditions at x ¼ 0 the
first term on the right vanishes and we find that V ≥ 0 does
imply hψ ;Hψi > 0, i.e., the self-adjoint extensions DH and
NH have positive spectra. For a self-adjoint extension γH
corresponding to the Robin boundary condition

ψ 0ð0Þ ¼ γψð0Þ; γ ≠ 0; ð56Þ

we find from (55) that

hψ ; γHψi ¼ −γψð0Þ2 þ
Z

0

−∞
½ðψ 0Þ2 þ Vψ2�dx; ð57Þ

which, assuming V ≥ 0, is positive for γ < 0, but may be
negative if γ > 0.

A. General results for nonsingular potentials

In what follows, we use the fact that any function in
the domain of a self-adjoint operator such as γH can be
expanded in a basis of generalized eigenfunctions of the
operator. Therefore, as in ordinary quantum mechanics,
there is a function ψ in this domain for which hψ ; γHψi < 0
if and only if the spectrum of γH contains a negative value
of E.
Proposition 1. (Robin instabilities) Let V be nonsin-

gular. For large enough positive γ the spectrum of γH
contains a negative eigenvalue.
Proof.—Since nonsingular potentials are bounded,

jVðxÞj ≤ Vo for some Vo ≥ 0. Consider now the trial
function ψ ¼ eγx. If γ > 0, this function belongs to the
domain of γH, and the expectation value of γH is

hψ ; γHψi ¼
Z

0

−∞
eγxð−γ2eγx þ VeγxÞdx

¼ −
γ

2
þ
Z

0

−∞
Ve2γxdx ≤ −

γ

2
þ Vo

2γ
; ð58Þ

which is negative for

γ >
ffiffiffiffiffiffi
Vo

p
: ð59Þ

□

Proposition 2. Let VðxÞ be nonsingular. Assume that
γoH admits a negative energy bound eigenstate, then so
does γH for γ > γo.
Proof.—Let ψo be a negative energy bound eigenstate

of γoH, normalized such that ψoð0Þ ¼ 1, i.e., ψo satisfies
(52)–(54) for γo. Fix α≡ γ − γo > 0 and let ϕδðxÞ be
a smooth function of ðδ; xÞ ∈ ð−δ0; δoÞ × ð−∞; δoÞ for
some positive δo such that: ϕδð−δÞ ¼ 1, ϕδ

0ð−δÞ ¼ 0 ¼
ϕ00
δð−δÞ, ϕδ and ϕ0

δ are growing functions for x ∈ ð−δ; 0Þ,
ϕ0
δð0Þ=ϕδð0Þ ¼ α and ϕδð0Þ < 2. An example of such a

function is

ϕδðxÞ ¼
αðxþ δÞ3
δ2ð3 − αδÞ þ 1; 0 < δ <

3

2α
¼ δo: ð60Þ

Define

ψδðxÞ ¼
	
ψoðxÞ; x ≤ −δ
ψoðxÞϕδðxÞ; −δ < x ≤ 0:

ð61Þ

Note that this function belongs to the domain of γH. An
example of ψo and the corresponding ψδ is depicted in
Fig. 1. Since V is continuous and bounded, ψo and ψ 0

o are
bounded near x ¼ 0, and we may assume that

jψoðxÞj < A; jψ 0
oðxÞj < B;

jVðxÞj < C for x ∈ ð−δo; 0Þ: ð62Þ

This implies that

jψδðxÞj < 2A; jψ 0
δðxÞj < 2ðBþ αAÞ for x ∈ ð−δo; 0Þ:

ð63Þ

From these two equations and ϕδð0Þ ¼ ð1 − αδ=3Þ−1 it
follows that

FIG. 1. An example of ψo (thick line) and the corresponding ψδ

(thin line) used in Proposition 2.
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hψδ; γHψδi − hψo; γoHψoi

¼ γo − γϕδð0Þ2 þ
Z

0

−δ
½ðψ 0

δÞ2 − ðψ 0
oÞ2 þ Vðψ2

δ − ψ2
oÞ�

< γo − γð1 − αδ=3Þ−2 þ δ½4ðBþ αAÞ2 þ B2 þ 5CA2�:
ð64Þ

Note that A, B and C are independent of δ, then for δ
small enough the right side of (64) is negative. This implies
that hψδ; γHψδi < hψo; γoHψoi < 0. Since ψδ is in the
domain of γH, the spectrum of γH contains a negative
energy. □

B. Non-negative nonsingular potentials

For non-negative nonsingular potentials a number of
useful properties can be easily proved:
Proposition 3. Let VðxÞ ≥ 0 be a nonsingular potential.

The self-adjoint extensions DH, NH and γH with γ < 0 are
positive definite.
Proof.—This follows from Eqs. (55) and (57). □

The following proposition shows that if VðxÞ ≥ 0 is
nonsingular and γ positive, γH admits at most one negative
energy eigenstate. It also establishes some properties of the
corresponding eigenfunction.
Proposition 4. Let VðxÞ ≥ 0 be a nonsingular potential.

Assume there is E < 0 and ψE satisfying (52)–(54), then it
follows that:

(i) ψE has no roots, then we can choose it to be positive.
(ii) ψE grows monotonically from 0 to 1 ¼ ψEð0Þ and

ψ 0
E grows monotonically from 0 to γ ¼ ψ 0

Eð0Þ in the
interval x ∈ ð−∞; 0�.

(iii) There is at most one E < 0 and one ψE for which
conditions (52)–(54) hold.

Proof.
(i) First note that the roots of ψE are isolated points: if

xo ¼ limn→∞xn were roots of ψE, then ψEðxoÞ ¼
0 ¼ ∂xψEðxoÞ and, since ψE satisfies the second-
order equation (52), ψEðxÞ ¼ 0 for all x, which
is a contradiction. Note also that there cannot exist
a sequence xn of consecutive roots such that
limn→∞xn ¼ −∞; otherwise, there would be a se-
quence x0n of positive local maxima of ψE,
limn→∞x0n ¼ −∞, and/or a sequence x00n of negative
local minima of ψE, limn→∞x00n ¼ −∞. Both cases
lead to a contradiction: take, e.g., a sequence x0n of
positive maxima: the conditions ψEðx0nÞ > 0,
∂2
xψEðx0nÞ < 0, limn→∞x0n ¼ −∞ give

0 ≥ lim
n→∞

∂2
xψEðx0nÞ
ψEðx0nÞ

¼ lim
j→∞

ðVðx0nÞ − EÞ ¼ −E; ð65Þ

which contradicts E < 0 [if we assume a sequence
x00n of negative minima we get the same contradiction
as, again, ∂2

xψEðx00nÞ=ψEðx00nÞ < 0]. We may therefore

assume, without loss of generality (i.e., replacing
ψE with −ψE if necessary), that ψE > 0 for large
negative x. Now assume ψE has roots, then there
is a root xo with largest absolute value (the least
upper bound of the nonempty bounded set
fz ≤ 0jψðxÞ > 0 for x ∈ ð−∞; zÞg). Since ψE is
square-integrable, limx→−∞ψEðxÞ ¼ 0 ¼ ψEðxoÞ,
and ψEðxÞ > 0 in the interval x ∈ ð−∞; xoÞ. It
follows that there is a local maximum at x1 < xo,
and this leads us back to the same type of contra-
diction as above: 0>∂2

xψEðx1Þ=ψEðx1Þ¼Vðx1Þ−E;
however, Vðx1Þ − E > 0.

(ii) As ψE is in the domain of γH,
R
0
−∞ðψ 0

EÞ2dx < ∞,
then limx→−∞ψ

0
EðxÞ ¼ 0. From the hypotheses

and i) it follows that ψE > 0 for x ∈ ð−∞; 0�, then
∂2
xψE ¼ ðV − EÞψE > 0. This implies that ∂xψE

grows monotonically from zero to ∂xψEð0Þ. As
∂xψE > 0 everywhere, ψE increases monotonically
from zero to ψEð0Þ.

(iii) Assume 0 > E2 > E1 are two eigenvalues of γH. In
view of ii) we may assume that ψEi

ðxÞ > 0 for all x,
i ¼ 1, 2. Equation (52) implies that the Wronskian

W ¼ ð∂xψE1
ÞψE2

− ð∂xψE2
ÞψE1

ð66Þ

satisfies ∂xW ¼ ðE2 − E1ÞψE2
ψE1

> 0 for all x.
This implies that W grows monotonically. However,
limx→−∞WðxÞ ¼ 0 ¼ Wð0Þ. The uniqueness of ψE
follows from (54).

□

Proposition 5. Let VðxÞ ≥ 0 be a nonsingular potential
and consider the operator γH for γ > 0.

(i) If V is nontrivial, for small enough γ the spectrum of
γH contains no negative eigenvalue.

(ii) There is a critical value γc > 0 such that the set {γj
the spectrum of γH contains a negative eigenvalue}
is of the form ðγc;∞Þ.

(iii) For γ > γc, the negative energy eigenvalue Eγ

satisfies jEγj ≤ 2γ2.
(iv) If

R
0
−∞ Vdx < ∞ then γc ≤ 2

R
0
−∞ Vdx.

Proof.
(i) Assume γH admits a negative energy Eγ and let ψEγ

be the eigenstate satisfying ψEγ
ð0Þ ¼ 1. From

Lemma 4 we know that ψEγ
is positive, convex

and monotonically growing in ð−∞; 0�. In particular,
ψEγ

ðxÞ > γxþ 1 for −1=γ < x < 0 (Fig. 2), then

γ ¼
Z

0

−∞
ψ 00
Eγ
ðxÞdx ¼

Z
0

−∞
ðVðxÞ − EγÞψEγ

ðxÞdx

>
Z

0

−1=γ
ðVðxÞ − EγÞðγxþ 1Þdx ¼ hðγÞ þ kðγÞ;

ð67Þ

where, for γ > 0 we defined
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hðγÞ ¼
Z

0

−1=γ
VðxÞðγxþ 1Þdx ≥ 0 and

kðγÞ ¼ −
Eγ

2γ
> 0: ð68Þ

Note that dh=dγ ¼ R
0
−1=γ VðxÞxdx ≤ 0, then h is

a positive, decreasing function of γ, diverging as
γ → 0þ unless

R
0
−∞ VðxÞdx is finite. It follows

from (67) and (68) that the existence of a negative
energy eigenvalue implies γ > hðγÞ, and this implies
that γ > γ�, where γ� > 0 is the only solution of
γ ¼ hðγÞ. We conclude that, for small positive γ, γH
is positive definite.

(ii) This follows from i) and Propositions 1 and 2. For
γ ¼ γc we expect the lowest-energy eigenvalue to
be E ¼ 0.

(iii) From (67) and (68) it follows that, for the bound
state, γ ≥ kðγÞ ¼ −Eγ=ð2γÞ.

(iv) For the trial function used in Proposition 1

hψ ; γHψi ¼ −
γ

2
þ
Z

0

−∞
Ve2γxdx < −

γ

2
þ
Z

0

−∞
Vdx;

ð69Þ

and this is negative for

γ > 2

Z
0

−∞
Vdx: ð70Þ

□

For potentials with finite integral, condition (70) assures
the existence of negative energy states for γH. The sharper
bound

γ >
Z

0

−∞
Vdx ð71Þ

was proved in [11] using different methods. We can prove
(71) by making the assumption that the spectrum of γH is
continuous in γ.
Proposition 6. Let VðxÞ ≥ 0 be a nonsingular potential

and assume that limγ→γc
þEγ ¼ 0, then

γc ≤
Z

0

−∞
VðxÞdx; ð72Þ

Proof.—For γ > γc and the normalization ψEγ
ð0Þ ¼ 1

γ ¼
Z

0

−∞
ðVðxÞ − EγÞψEγ

ðxÞdx: ð73Þ

Taking the limit γ → γc
þ and using Proposition 4.ii, this

gives

γc ¼ lim
γ→γc

þ

Z
0

−∞
ðVðxÞ − EγÞψEγ

ðxÞdx

¼ lim
γ→γc

þ

Z
0

−∞
VðxÞψEγ

ðxÞdx ≤
Z

0

−∞
VðxÞdx; ð74Þ

from where the existence of a negative energy in the
spectrum for γ satisfying (71) follows. □

C. Energy considerations

As pointed out in [13], no matter which self-adjoint
extension we choose for H, there is always a notion of
conserved energy for solutions of the wave equation (15)–
(16) in the domain x < 0 of 1þ 1Minkowski spacetime for
the solution (17)–(18). If zH is the chosen self-adjoint
extension (z ¼ D, N, γ), the energy is defined as

Ez ¼
1

2
ðh∂tϕ; ∂tϕi þ hϕ; zHϕiÞ: ð75Þ

Conservation of Ez follows from ½∂t; zH� ¼ 0 and the self-
adjointness of zH,

_Ez ¼ h∂tϕ; ∂2
tϕi þ

1

2
ðh∂tϕ; zHϕi þ hϕ; ∂t

zHϕiÞ
¼ h∂tϕ; ∂2

tϕþ zHϕi ¼ 0: ð76Þ

Integrating (75) by parts, we get [cf. equation (55)]

Ez ¼ −
1

2
zϕ2jx¼0 þ

1

2

Z
0

−∞
½ð∂tϕÞ2 þ ð∂xϕÞ2 þ Vϕ2�dx

≡ Eo −
1

2
zϕ2jx¼0; ð77Þ

where z ¼ 0 for Dirichlet or Neumann boundary conditions
and z ¼ γ ¼ ð∂xϕ=ϕÞjx¼0 for Robin boundary conditions.

FIG. 2. Graphs of ψEγ
(thick line) and γxþ 1 for x > −1=γ,

zero otherwise (thin line) used in Proposition 5.i.
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The conservation of Ez in (77) can also be derived by
applying Gauss’s theorem to the conserved current
Ja ¼ Tabð∂=∂tÞb, where Tab is the energy momentum
tensor of the 1þ 1 field theory (15)–(16) in the two-
dimensional (half) Minkowski space. The region of inte-
gration is the one bounded by two t ¼ constant surfaces.
The integral at the horizon (x ¼ −∞) vanishes for fields ϕ
which are square-integrable on t slices, so if we use inertial
coordinates ðt; xÞ, we get

0 ¼
Z

0

−∞
Tttðt; xÞdx −

Z
0

−∞
Tttðto; xÞdx −

Z
t

to

Ttxðt0; 0Þdt0;

ð78Þ

where Tab ¼ ∂aϕ∂bϕ − 1
2
ηabð∂cϕ∂cϕþ Vϕ2Þ. Note that

Ttt ¼
1

2
ð _ϕ2 þ ϕ02 þ Vϕ2Þ; ð79Þ

and Ttx ¼ _ϕϕ0, then

lim
x→0−

Ttx ¼ lim
x→0−

_ϕϕ0

→

	
0; N or D boundary conditions
1
2
γ∂tðϕ2Þ; Robin boundary conditions:

ð80Þ

Thus, for N or D boundary conditions the third term in (78)
vanishes, there is no flux of energy at the conformal
boundary and the canonical energy Eo defined in (77) is
conserved. As seen from Eq. (80), the form (56) of the
Robin boundary condition is crucial for the existence of the
conserved quantity z ¼ γ in (77), as it allows the flux of
energy at infinity (the timelike boundary) to be integrated,
reducing (78) to

EoðtÞ − EoðtoÞ ¼
γ

2
½ϕ2ðt; 0Þ − ϕ2ðto; 0Þ�; ð81Þ

from where the conservation of Ez for the z ¼ γ case of (77)
follows. Note from (80) and (81) that the change γ → −γ
reverses the sign of the energy flow at x ¼ 0. Note also that
a positive γ in (81) opens the possibility of an unbounded
growth of the canonical energy Eo due to energy pumped in
from the boundary [right-hand side in (81)], but the fact that
the critical value γc for instability is, in general, strictly
positive implies that a flux of energy from the boundary is
not a sufficient condition for instability. What happens for
γ > γc is that the equation of motion allows that ϕðt; 0Þ
grew unbounded together with the energy ∼ϕ2ðt; 0Þ
pumped into the system, this being the mechanism driving
the instability. This can be understood with the help of the
toy models of the following section: Eq. (13) can be
regarded as transverse oscillations of a semi-infinite string
x < 0 [with elastic x-dependent restoring forces when

VðxÞ > 0], and the boundary condition ϕ0 ¼ γϕ at x ¼ 0
is equivalent to an elastic restoring force at x ¼ 0 with
elastic constant proportional to −γ. For positive γ, the force
is not restoring but repulsive and proportional to ϕðt; 0Þ
and, if γ > γc, it allows for solutions with ϕðt; 0Þ increasing
without bound. This negative elastic potential energy is
compensated with a diverging positive energy in the string
modes [see Eq. (81)].

D. Toy models

1. Vanishing potential: A semi-infinite string

Consider a string extending along the x < 0 half axis and
oscillating in the ðx; yÞ plane, and let ϕðx; tÞ be the y
displacement at time t. For small ∂xϕ we use the standard
approximation ∂xϕ ¼ tanðαÞ≃ sinðαÞ for the angle α of
the string with respect to the horizontal at x and calculate
the vertical component of the tension T as Ty ≃ T∂xϕ, then
Newton’s law applied to the piece of string extending from
x to xþ Δx gives

T½∂xϕðxþ Δx; tÞ − ∂xϕðx; tÞ� ¼ ρΔx∂2
tϕ; ð82Þ

where ρ is the mass per unit length. Taking the limit
Δx → 0, we obtain the wave equation

1

c2
∂2
tϕ − ∂2

xϕ ¼ 0; c2 ¼ T=ρ; ð83Þ

which, after rescaling t, has the form (15)–(16) with
H ¼ −∂2

x, that is, V ¼ 0.
For a string with a right end at x ¼ 0, Newton’s law

applied to the −Δx < x < 0 piece of the string,

f − T∂xϕð0 − Δx; tÞ ¼ ρΔx∂2
tϕ; ð84Þ

gives, after taking the limit Δx → 0, the force f applied to
the string end at x ¼ 0,

f ¼ T∂xϕð0; tÞ: ð85Þ

Dirichlet boundary conditions ϕð0; tÞ ¼ 0 corresponds to
fixing the string at the x ¼ 0 end, Neumann boundary
conditions ∂xϕð0; tÞ ¼ 0 to leaving it free (f ¼ 0), and
Robin boundary conditions ∂xϕð0; tÞ ¼ γϕð0; tÞ to sub-
jecting the end of the string to an elastic force

f ¼ γTϕð0; tÞ; ð86Þ

which corresponds to a spring with elastic constant k ¼
−γT if γ < 0 and gives a “repulsive elastic force” if γ > 0.
Dirichlet boundary conditions: The eigenfunctions of

DH are
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ψ ðE¼k2Þ ¼
ffiffiffi
2

π

r
sinðkxÞ; k > 0: ð87Þ

These were normalized such that

hψ ðE¼k2Þ;ψ ðE¼l2Þi ¼
2

π

Z
0

−∞
sinðkxÞ sinðlxÞdx

¼ δðk − lÞ; ðk; l > 0Þ: ð88Þ

Functions ψ satisfying the Dirichlet boundary conditions
extend naturally to odd functions inR. The completeness of
the above set of eigenfunctions then follows from the sine
Fourier transform theorem for odd functions as follows:

ψðxÞ ¼
ffiffiffi
2

π

r Z
∞

0

Ak sinðkxÞdk; ð89Þ

where

Ak ¼
ffiffiffi
2

π

r Z
0

−∞
ψðxÞ sinðkxÞdx: ð90Þ

The conserved energy in this case is Eo defined in (77).
Energy can be transferred among the different normal
modes of the string but remains conserved. This is due
to the fact that the external force that keeps the x ¼ 0 end of
the string fixed does no work on the string.
Neumann boundary conditions: The eigenfunctions of

NH are

ψ ðE¼k2Þ ¼
ffiffiffi
2

π

r
cosðkxÞ; k > 0: ð91Þ

These were normalized such that

hψ ðE¼k2Þ;ψ ðE¼l2Þi ¼
2

π

Z
0

−∞
cosðkxÞ cosðlxÞdx

¼ δðk − lÞ; ðk; l > 0Þ: ð92Þ

Functions ψ satisfying the Neumann boundary conditions
are naturally extended to even functions in R. The
completeness of the above set of eigenfunctions then
follows from the cosine Fourier transform theorem of even
functions.
The conserved energy in this case is again Eo defined in

(77). Vibrational energy can be transferred among the
different normal modes of the string but remains conserved.
This is due to the fact that no external force is acting on the
x ¼ 0 end of the string.
Robin boundary conditions: For any value of γ, the

generalized eigenfunctions corresponding to the continuum
spectrum are

ψ ðE¼k2Þ ¼
ffiffiffi
2

π

r �
1þ k2

γ2

�−1=2�
sinðkxÞ þ k

γ
cosðkxÞ

�
;

k > 0: ð93Þ

These were normalized such that

Z
0

−∞
ψ ðE¼k2Þψ ðE¼l2Þdx ¼ δðk − lÞ: ð94Þ

To verify (94), we use the integrals (88) and (92) together
with the distributional identity

Z
0

−∞
sinðlxÞ cosðkxÞdx ¼ l

ðkþ lÞðk − lÞ : ð95Þ

From Proposition 5.iv we expect instabilities when γ > 0.
This is trivially verified, the only (Proposition 4.iii) bound
state of γH for γ > 0 is

ψ ðE¼−γ2Þ ¼
ffiffiffiffiffi
2γ

p
eγx; ð96Þ

where we have normalized such that the integral of ψ2
ðE¼−γ2Þ

equals one. This function has to be added to the set (93) to
form a complete orthonormal set for the domain of γH
when γ > 0. To verify that (96) is orthogonal to the
functions (93), we use

Z
0

−∞
eγxe−ikxdx ¼ 1

γ − ik
; γ > 0: ð97Þ

We can also understand the expansion of functions
satisfying (56) in terms of ordinary Fourier transforms
by means of the following observation: the function τ ¼
ψ − ∂xψ=γ vanishes at x ¼ 0, and can naturally be
extended to an odd function in R, for which the sine
Fourier representation is possible,

τðxÞ ¼
ffiffiffi
2

π

r Z
∞

0

τk sinðkxÞdk;

τk ¼
ffiffiffi
2

π

r Z
0

−∞
τðxÞ sinðkxÞdx: ð98Þ

ψ can be easily recovered from τ,

ψðxÞ ¼ eγx
�
ψð0Þ þ γ

Z
0

x
τðuÞe−γudu

�
: ð99Þ

If we use the representation (98) of τ in the above equation,
we arrive at the following expansion of ψ in terms of
ψ ðE¼−γ2Þ and the ψ ðE¼k2Þ above:
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ψðxÞ ¼
�
ψð0Þ −

ffiffiffi
2

π

r Z
∞

0

dk
γkτk

γ2 þ k2

�
eγx

þ
ffiffiffi
2

π

r Z
∞

0

γ2τk
γ2 þ k2

�
sinðkxÞ þ k

γ
cosðkxÞ

�
dk:

ð100Þ

It is a nontrivial fact that the coefficient between square
brackets above vanishes if γ < 0.
The conserved energy Eγ [Eq. (77)] contains two terms:

the string vibrational energy Eo and the potential energy
−γϕ2ðx ¼ 0; tÞ=2 of the force acting on the x ¼ 0 end of
the string. For negative γ, this is an ordinary elastic force
pulling towards ϕ ¼ 0: we may imagine that the x ¼ 0 end
of the string is attached to a spring of elastic constant −γ,
then energy flows from the string to the spring and vice
versa in such a way that the total energy Eγ remains
constant. Since the spring potential energy is positive
definite, the amount of energy the spring can transfer to
the string is finite; this keeps the string vibrations bounded.
For positive γ, instead, the force at the x ¼ 0 end is
“repulsive elastic,” pushing away the string end with an
intensity that increases as ϕðx ¼ 0Þ grows. The repulsive
elastic potential −γϕ2=2 is unbounded from below; it can
feed the string with an unlimited amount of energy and
produce unbounded oscillations.
The string analogy can be extended to the VðxÞ ≥ 0 case

by assuming that, besides the string tension, there is an
x-dependent restoring elastic force pulling the string to the
ϕ ¼ 0 configuration. In this case, instead of (82) we have

T½∂xϕðxþ Δx; tÞ − ∂xϕðx; tÞ�
− VðxÞTΔxϕðx; tÞ ¼ ρΔx∂2

tϕ; ð101Þ

which, taking the limit Δx → 0 in (101) and rescaling t,
gives (15)–(16).

2. A step potential

Consider now the case

VðxÞ ¼
	
0 x < −a
Vo a < x ≤ 0;

ð102Þ

where Vo and a are positive, and assume γH has a negative
energy eigenvalue E ¼ −α2, α > 0. (Note that a single
finite discontinuity in V does not invalidate the results of
the previous section.) The wave function is proportional to

ψðxÞ ¼
	expðαðxþ aÞÞ; x < −a
coshðβðxþ aÞÞ þ α

β sinhðβðxþ aÞÞ; −a < x ≤ 0;

ð103Þ

where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ Vo

q
: ð104Þ

This function is C1 and satisfies the properties in
Proposition 4. Imposing (56) on (103) gives the following
relation:

γ ¼ β
β tanhðβaÞ þ α

β þ α tanhðβaÞ : ð105Þ

Inserting (104) into (105), we find that dγ=dα > 0 for
positive α. Since γ ∼ α for α → ∞, we conclude that, as α
goes from zero to infinity, γ ranges from

γc ¼
ffiffiffiffiffiffi
V0

p
tanhð

ffiffiffiffiffiffi
V0

p
aÞ ð106Þ

to infinity. This example is useful because γc introduced in
Proposition 5.ii can be explicitly calculated, Eq. (106). If
γ > γc, (105) has a unique solution α, which gives a unique
bound state, of energy E ¼ −α2. On the other hand, if
γ ≤ γc, there are no bound states. The bounds (59) and (71)
can be easily checked in this example; moreover, the
example shows that (71) cannot be improved as for small
a (106) gives

γc ¼ aVo þOða3Þ ¼
Z

0

−∞
VdxþOða3Þ: ð107Þ

IV. ROBIN INSTABILITIES IN SAdS4

In Sec. II B 1 we proved that Dirichlet is the only
possible choice of boundary condition at infinity for a
massless scalar field and that, moreover, the field is stable,
in the sense that exponentially growing modes are not
allowed. The uniqueness of the dynamics is due to the fact
that the mode potentials (31) are LP at x ¼ 0. For Maxwell
fields and gravitational perturbations, the mode potentials
are (41) and (44) and (46), respectively, and they are all LC
at x ¼ 0. Besides, these potentials are continuous for
x ∈ ð−∞; 0�, satisfy (19) and behave near x ¼ 0 as in
(49). Thus, the results in Sec. III apply to these cases. In
particular, instabilities are to be expected for certain Robin
boundary conditions. In this section we show that Robin
boundary conditions arise naturally for Maxwell fields and
gravitational perturbations on SAdS4 and explore the
associated “Robin instabilities.”

A. Maxwell fields

In what follows we show how the mode conserved
energy resulting from Eqs. (77) and (81) is connected
to the electromagnetic field energy. The electromagnetic
field modes are labeled by (p ¼ �, l, m) according
to (37) and (38), and (77) and (81) imply that for any
function Qðp;l; mÞ

BERNARDO ARANEDA and GUSTAVO DOTTI PHYSICAL REVIEW D 96, 104020 (2017)

104020-14



X
ðl;m;p¼�Þ

Qðp;l; mÞ
Z

0

−∞
½ _ϕ2

ðp;l;mÞ þ ϕ02
ðp;l;mÞ þ VMax

l ϕ2
ðp;l;mÞ�dxjt

¼
X

ðl;m;p¼�Þ
Qðp;l; mÞ

Z
0

−∞
½ _ϕ2

ðp;l;mÞ þ ϕ02
ðp;l;mÞ þ VMax

l ϕ2
ðp;l;mÞ�dxjto

þ
X

ðl;m;p¼�Þ
Qðp;l; mÞγðp;l;mÞðϕðp;l;mÞðs; 0ÞÞ2js¼t

s¼t0 : ð108Þ

We will show that the choice Qðp;l; mÞ ¼ lðlþ 1Þ=2
in (108) gives the balance equation for the change of
electromagnetic energy due to the energy flow from
infinity. Energy is measured using the conservation of
Jα ≔ Tαβξ

β for ξβ∂=∂xβ ¼ ∂=∂t the timelike Killing vector
field and Tαβ the energy momentum tensor of the Maxwell
field,

Tαβ ¼
1

4π

�
FαγFβ

γ −
1

4
gαβFγδFγδ

�
: ð109Þ

A similar result could be obtained in the gravity case, with
Tαβ the effective energy momentum tensor quadratic in the
first-order fields that sources the second-order perturbation
equations; however, we have found that this calculation
becomes unwieldy even using symbolic manipulation
computing.
Applying Gauss’s theorem to Jα in a region Ω of the

spacetime limited by two t ¼ constant surfaces gives

0 ¼
Z
Ω
∇αJα ¼

Z
∂Ω

Jαnα ¼
Z
Σt

JαnαΣt

þ
Z
Σt0

JαnαΣto
þ
Z
I t

JαnαI ; ð110Þ

where I t is the R → ∞ limit of an r ¼ R hypersurface
extending from Σto to Σt, t > to. The induced volume
elements on the hypersurfaces are understood on the
integrals, the outer pointing unit normal vectors are
nαΣt

∂=∂xα ¼ f−1=2∂=∂t, nαΣt
∂=∂xα ¼ −f−1=2∂=∂t and

nαI t
∂=∂xα ¼ f1=2∂=∂r. We can therefore rewrite (110) as

Z
0

−∞
dx

Z
S2
Tttðt; r; θ;ϕÞ sin θdθdϕ

¼
Z

0

−∞
dx

Z
S2
Tttðto; r; θ;ϕÞ sin θdθdϕ

þ lim
R→∞

R2fðRÞ
Z

t

to

dt
Z
S2
Ttrðt; R; θ;ϕÞ sinðθÞdθdϕ;

ð111Þ

where the second term on the right-hand side gives the
failure for the “standard energy” to be conserved. Inserting

Aβ ¼ Að−Þ
β þ AðþÞ

β given in (37)–(38) into F ¼ dA and
(109) gives (a prime denotes ∂x ¼ f∂r)

ðJðl;mÞ
α nαIÞjr¼R ¼

ffiffiffi
f

p
Ttrjr¼R ¼ 1

4πR2
ffiffiffiffiffiffiffiffiffiffi
fðRÞp

× ½ _ϕþ
ðl;mÞϕ

0þ
ðl;mÞ þ _ϕ−

ðl;mÞϕ0−
ðl;mÞ�

×

�
ð∂θSðl;mÞÞ2 þ

1

sin2θ
ð∂ϕSðl;mÞÞ2

�
:

ð112Þ

Note that in the R → ∞ limit, assuming Robin
boundary conditions gives the limit _ϕðp;l;mÞϕ0

ðp;l;mÞ ¼
d
dt ½γðp;l;mÞϕ2

ðp;l;mÞ=2� [γðp;l;mÞ the Robin constant (56) for
the mode ðp ¼ �;l; mÞ]. This fact allows us to integrate
the flux at I t. Note also that changing the sign of γðp;l;mÞ
reverses the direction of the flux at I t.
To proceed we use the fact that

Z
S2

�
ð∂θSðl;mÞÞ2 þ

1

sin2θ
ð∂ϕSðl;mÞÞ2

�
sinðθÞdθdϕ

¼
Z
S2
D̂ASðl;mÞD̂ASðl;mÞ ¼ −

Z
S2
Sðl;mÞD̂AD̂ASðl;mÞ

¼ 4πlðlþ 1Þ; ð113Þ

where D̂A is the covariant derivative on S2 and we used the
orthonormality of the Sðl;mÞ. After a lengthy calculation,
we find that (111) reduces to (108) with Qðp;l; mÞ ¼
lðlþ 1Þ=2, as anticipated.
We now comment briefly on the stability of Maxwell

fields. Note that VMax
l is nonsingular and non-negative.

Thus, the results in Propositions 1–6 apply. In particular: i)
the field is stable if either Dirichlet, Neumann or Robin
boundary conditions with negative γðp¼�;l;mÞ are chosen for
every ϕp¼�

ðl;mÞ (Proposition 3), and ii) the field is unstable if

there is a mode ðp;l; mÞ for which γðp;l;mÞ >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

=rh (Proposition 1). For the characteristics of
the unstable modes the remaining Propositions apply.
Note the rather indirect relation between the boundary

conditions on the electromagnetic field Fαβ and those on
the mode master variables ϕ�

ðl;mÞ: from (37), F ¼ dA with
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A ¼
X
ðl;mÞ

½ð∂xϕ
ðþ;l;mÞdtþ ∂tϕ

ðþ;l;mÞdxÞSðl;mÞ þ ϕð−;l;mÞð∂ϕSðl;mÞ= sinðθÞdθ − sinðθÞ∂θSðl;mÞdϕÞ�: ð114Þ

As an example, the condition Fð·; ∂=∂xÞ ¼ 0 at the
boundary implies Dirichlet boundary conditions for the
ϕþ
ðl;mÞ and Neumann boundary conditions on the ϕ−

ðl;mÞ.

B. Linearized gravity

Let Cαβγδ be the Weyl tensor, �Cαβγδ its dual. Define the
algebraic curvature scalars

Qþ ¼ 1

48
CαβγδCαβγδ;

Q− ¼ 1

48
�CαβγδCαβγδ; ð115Þ

and the differential curvature scalar

X ¼ 1

720
ð∇ϵCαβγδÞð∇ϵCαβγδÞ: ð116Þ

For SðAÞdS4 these fields are

QSAdSþ ¼ M2

r6
; QSAdS

− ¼ 0;

XSAdS ¼ M2

3r9
ðΛr3 − 3rþ 6MÞ: ð117Þ

Consider the first-order perturbation of these fields, δQþ,
δQ− and δX. From symmetry arguments one can show that
for odd perturbations only δQ− ≠ 0, whereas for even
perturbations δQ− ¼ 0, while δQþ and δX are nonzero.
The scalar fields

G− ¼ δQ− ð118Þ

and

Gþ ¼ ð9M − 4rþ Λr3ÞδQþ þ 3r3δX; ð119Þ

are gauge-invariant and encode all the gauge-invariant
information of the perturbation; in particular, it is possible
to reconstruct the metric perturbation in a chosen gauge
from the G� fields [1,2].
Schwarzschild black hole stability studies prior to [1]

were limited to placing pointwise bounds on the Regge-
Wheeler and Zerilli master fields ϕ�

ðl;mÞðt; rÞ (Wald, refer-
ence [23]) or analyzing the large t decay of these fields
(Price [24], Brady et al. [25]). The ϕ�

ðl;mÞ enter the metric

perturbation (in, say, the Regge-Wheeler gauge), in a series
of the form

hαβ ¼
X

ðl;m;p¼�Þ
Dðl;m;pÞ

αβ ½ϕðpÞ
ðl;mÞ; Sðl;mÞ�; ð120Þ

where the differential operators Dðl;m;pÞ
αβ are second-order

and linear. The separation of variables in (120) makes the
linearized Einstein equations equivalent to the 1þ 1 wave
equations satisfied by the ϕ�

ðl;mÞðt; rÞ and the spherical

harmonic equation satisfied by the Sðl;mÞðθ;ϕÞ. It is clear
from (120) that the relation of the ϕðpÞ

ðl;mÞ to measurable

perturbation effects is remote: four derivatives of these
fields enter a single harmonic component of the curvature.
Therefore, the boundedness of isolated ϕ�

ðl;mÞðt; rÞ fields

tells us little about the magnitude of the perturbation.
The nonmodal stability concept introduced in [1] is

based on the pointwise boundedness (and decay, see [2]) of
the G�, which are measurable geometric quantities on the
4D background spacetime that properly record the effect of
the perturbation on the geometry. Not only is it established
that there is a large t decay of the perturbed black hole to a
member of the Kerr-dS family, but also that there are no
transient growths of the G�, something that modal stability
cannot rule out. Examples of modally stable systems for
which the isolated modes decay exponentially with t and
yet measurable quantities experience large transient
growths are seen, e.g., in wall-bounded shear flows (see,
e.g., [26]).
By iterating the linearized Einstein equations we arrive,

after some work, to a relatively simple on-shell form ofG�.
For G− we find

G− ¼ −
6M
r7

ffiffiffiffiffiffi
4π

3

r X3
m¼1

jðmÞSðl¼1;mÞ

−
3M
r5

X
l>1;m

ðlþ 2Þ!
ðl − 2Þ!

ϕ−
ðl;mÞ
r

Sðl;mÞ; ð121Þ

where the first term contains the l ¼ 1 static contribution
(not considered in the previous sections), jðmÞ, m ¼ 1, 2, 3
being the components of the perturbed black hole angular
momentum. In view of (121), r5G− satisfies the four-
dimensional Regge-Wheeler equation (4). For the static
l ¼ 1 in (121) term this can be checked by a direct
calculation; for the l > 1 series this follows from the

spherical harmonic equation and the form of the Vð−Þ
l

potentials that enter the 1þ 1 wave equation satisfied by
ϕ−
ðl;mÞ, which contains the required lðlþ 1Þ=r2 term,

see (44).
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Due to the intricate l dependence of the VðþÞ
l in (46), no

similar construction leading to a four-dimensional wave
equation can be made using the Zerilli fields ϕþ

ðl;mÞ. These
fields enter the on-shell expression of Gþ as follows:

Gþ ¼ −
2MδM
r5

þ M
2r4

X
l≥2

ðlþ 2Þ!
ðl − 2Þ! ½f∂r þ Zl�ϕþ

ðl;mÞSðl;mÞ;

ð122Þ
where δM is the mass variation that comes from the l ¼ 0
even perturbation (which is time-independent and was not
considered in the previous sections), and

Zl ¼ 2MΛr3 þ μrðr − 3MÞ − 6M2

r2ðμrþ 6MÞ ;

μ ¼ ðl − 1Þðlþ 2Þ: ð123Þ
To see how natural imposing Robin boundary conditions on
the ϕ�

ðl;mÞ is, note that Dirichlet conditions on the G� are
equivalent to mixed Dirichlet/Robin conditions on the
ϕ�
ðl;mÞ,

ϕ−
ðl;mÞjx¼0 ¼ 0;

∂xϕ
þ
ðl;mÞ

ϕþ
ðl;mÞ






x¼0

¼ −
2MΛ

ðl − 1Þðlþ 2Þ ;

ð124Þ
whereas imposing Neumann or Robin boundary conditions
on the G� gives Robin conditions on the ϕ�

ðl;mÞ. The
suitability of a boundary condition depends on the problem
at hand, and for linear stability studies it should be kept in
mind that the fields ϕ�

ðl;mÞ, although convenient to disen-
tangle the linearized Einstein equations, are not relevant
since they are not directly measurable quantities.
Another context where Robin boundary conditions on

the ϕ�
ðl;mÞ arise is that of the AdS/CFT correspondence,

under which the unperturbed background corresponds to a
perfect fluid in the boundary and one is interested in metric
perturbations that, in a preferred gauge, vanish in large
r ¼ constant surfaces [27,28].
The metric for the CFT is conformally related to that

induced on large r surfaces by

ds2∞ ¼ lim
r→∞

�
−

3

Λr2
ds2r

�
: ð125Þ

In the unperturbed background ds2r is obtained by setting
dr ¼ 0 in (1)–(2), and the above limit gives

ds2∞ ¼ −dt2 −
3

Λ
ðdθ2 þ sin2ðθÞdϕ2Þ: ð126Þ

For even perturbations in the Regge-Wheeler gauge, (125)
gives [see equations (3.46) in [27] and (129) in [2], where
J is defined]

ds2∞ ¼ −dt2 −
3

Λ

�
1þ 1

2
lim
r→∞

J
�
ðdθ2 þ sin2ðθÞdϕ2Þ:

ð127Þ

Thus, for the induced metric not to be perturbed we require
that the ðl; mÞ harmonic component J ðl;mÞ of J vanishes
for large r. From equations (151), (153) and (154) in [2] we
find that

J ðl;mÞ ∝ 2fðrÞ∂rζ
þ
ðl;mÞ þ

lðlþ 1Þ
r

ζþðl;mÞ; ð128Þ

where

ζþðl;mÞ ¼
�
ðlþ 2Þðl − 1Þ þ 6M

r

�
ϕþ
ðl;mÞ: ð129Þ

Keeping the conformal boundary metric unperturbed will
then impose the following Robin boundary condition for
ϕþ
ðl;mÞ at x ¼ 0:

∂xϕ
þ
ðl;mÞ ¼ −

2MΛ
ðlþ 2Þðl − 1Þϕ

þ
ðl;mÞ: ð130Þ

1. Explicit unstable modes

The following field was reported in [2] as an unstable
solution for the even gravitational perturbations of SAdS4
[equations (15)–(16) with potential (46)] satisfying Robin
boundary conditions:

ϕþunst
ðl;mÞ ¼ χþl ðrÞ expðwltÞ; ð131Þ

where

χþl ðrÞ ¼
r expðwlxÞ

ðlþ 2Þðl − 1Þrþ 6M
; ð132Þ

x is the radial coordinate defined in (5) and

wl ¼ 1

12M
ðlþ 2Þ!
ðl − 2Þ! : ð133Þ

χþl ðrÞ defined in (132) satisfiesHþχþl ¼ −w2
lχ

þ
l whereHþ

l
is the Hamiltonian for even/scalar gravitational perturba-
tions. This equation is satisfied for any value ofM andΛ, as
long as xðrÞ in (132) satisfies dx=dr ¼ 1=f [cf. Eq. (5)]
with the appropriate parameters. For Λ ¼ 0, this solution
was found by Chandrasekhar [3] when looking for alge-
braically special perturbations: those with the property
where the first-order variation of one of the Weyl scalarsΨ0

or Ψ4 vanishes. A linearly independent solution with the
same negative energy is [3]
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roτ
þ
l ðrÞ ¼ χþl ðrÞ

Z
r

ro

dr0

fðr0Þðχþl ðr0ÞÞ2
: ð134Þ

Note that changing ro above adds a term proportional
to χþl ðrÞ.
Two linearly independent solutions of H−

lψ
−
l ¼ −w2

lψ
−
l

for the odd (vector) Hamiltonian with the same negative
energy E ¼ −wl

2 are [3]

χ−l ðrÞ ¼
1

χþl ðrÞ
; roτ

−
l ðrÞ ¼ χ−l ðrÞ

Z
r

ro

dr0

fðr0Þðχ−l ðr0ÞÞ2
:

ð135Þ

The fact that, for Λ ≥ 0, x ranges from minus infinity as
r → rhþ to infinity as r → ∞ (Λ ¼ 0) or approaches the
cosmological horizon (Λ > 0), makes the algebraically
special perturbations (132), (134) and (135) uninteresting
in these cases because all these solutions diverge at least
one of these two limits, and so are irrelevant as they are not
eigenfunctions of H�. The situation is different for Λ < 0
and also for the nonglobally hyperbolic Schwarzschild
naked singularity (Λ ¼ 0, M < 0). For the latter, x can be
chosen to range from x ¼ 0 (the timelike boundary at the
r ¼ 0 singularity) to infinity (as r → ∞) and, as wl < 0 in

this case, (132) behaves properly in both limits [this
happens only for even perturbations; neither χ−ðrÞ nor
τ−roðrÞ for any ro behave properly]. Moreover, it was found
in [29] (see also [30]) that there is a single boundary
condition at the r ¼ 0 timelike boundary that leads to a
consistent linear perturbation treatment; therefore, the
dynamics are not ambiguous in spite of the nonglobally
hyperbolic character of the spacetime. This particular
Robin boundary condition is precisely the one satisfied
by the mode (132). Since this mode grows exponentially in
time, the claim that the Schwarzschild naked singularity is
unstable is free of ambiguities [30,31].
In what follows we concentrate on the Λ < 0, M > 0

SAdS4 black hole, for which x ∈ ð−∞; 0Þ, and one can
check using (6) that χþðrÞ and

τ−l ≡ rhτ
−
l ðrÞ ¼ χ−l ðrÞ

Z
r

rh

dr0

fðr0Þðχ−l ðr0ÞÞ2
ð136Þ

satisfy the bound state, negative energy requirements (52)
and (53) for Hþ

ðl;mÞ and H−
ðl;mÞ, respectively, the choice

ro ¼ rh above being crucial for this to hold.
The unstable even solution (131) satisfies a Robin

boundary condition (56) at x ¼ 0 with γ equal to

γCh ≡ wl −
2MΛ

ðl − 1Þðlþ 2Þ ¼
ΛrhðΛrh2 − 3Þ
3ðl − 1Þðlþ 2Þ −

ðlþ 2Þðlþ 1Þlðl − 1Þ
2rhðΛrh2 − 3Þ : ð137Þ

The perturbation of the metric is

hþ unst
ðl;mÞ ¼ expðwlvÞSðl;mÞ

�
wl

6M
ðrlðlþ 1Þ − 6MÞdv ⊗ dvþ lðlþ 1Þ

6M
r2ðdθ ⊗ dθ þ sin2ðθÞdϕ ⊗ dϕÞ

�
; ð138Þ

where we defined v ¼ tþ x. The above expression shows
that the perturbation is well behaved across the future event
horizon, defined by r ¼ rh, v ∈ R. This perturbation has
the property of splitting only one of the two pairs of
principal null directions of the background so that the
perturbed spacetime is Petrov type-II. For generic pertur-
bations, instead, both pairs of principal null directions are
split, leaving a type-I spacetime (see [32] for details).
For the pure mode (131), (122) gives

Gþ½ϕþ unst
ðl;mÞ � ¼

ðlþ 2Þ!
ðl − 2Þ!

�
lðlþ 1Þr − 6M

24r5

�
expðwlvÞ;

v ¼ tþ xðrÞ: ð139Þ

The existence of the bound state χþl for the Zerilli SAdS4
Hamiltonian (15)–(16), which has a positive nonsingular
potential (46), implies, in view of Proposition 5.ii, that for
even lmodes the critical value of γ for instabilities satisfies

γc ≤ γCh ≃
8<
:

ðlþ2Þ!
ðl−2Þ!

1
6rh

; rh → 0

Λ2rh3

3ðl−1Þðlþ2Þ ; rh → ∞:
ð140Þ

We can use this to test the upper bound (74) in these limits
using (48),

γc <
Z

0

−∞
VðþÞ
l dx≃

8<
:

2l2þ2l−3
2rh

; rh → 0

2Λ2rh3

3ðlþ2Þðl−1Þ ; rh → ∞:
ð141Þ

For large horizon radii, γCh is half the value of the
integrated potential, whereas for small rh we find that
γCh is less than the integrated potential only for l ¼ 2 (the
minimum possible l value), and grows as l4 for large l,
whereas the integrated potential grows only as l2. We
should keep in mind, however, that statement (74) cannot
be improved, as the a → 0 limit of the step potential
example in Sec. III D 2 saturates this inequality.
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2. Boundary conditions and even/odd duality breaking

Unlike the negative mass Schwarzschild solution, for
which a unique boundary condition at the conformal
timelike boundary is singled out from the infinite set of
z conditions (z ¼ D, N or γ) by a consistency requirement
of the linear perturbation scheme [29], for SAdS4 we may
choose among Dirichlet, Neumann or Robin boundary
conditions with a specific γðp¼�;l;mÞ for every mode. We
recall that the potentials for even perturbations are non-
singular and positive definite, so Propositions 1 to 6 apply
to them, whereas odd perturbations have nonsingular
potentials, negative near the horizon for small enough
rh=M, so only Propositions 1–3 apply to them in general.
If, for every (p ¼ �, l, m) we choose the γðp¼�;l;mÞ)

below the critical value, the resulting dynamics will be
stable. However, a single mode for which γ is high enough
would introduce an instability. This implies that any
gravitational stability claim for SAdS4 is meaningful only
after specifying the chosen boundary conditions.
In what follows, we proceed to analyze the relation

between boundary conditions at the conformal boundary
r ¼ ∞ and the formal duality exchanging odd and even
modes, discovered by Chandrasekhar about thirty years ago
[3,33]. This duality played a crucial role in the nonmodal
stability proof for Schwarzschild black holes when Λ ≥ 0

[1,2] as it allows us to replace all ϕþ
ðl;mÞ Zerilli fields with

ϕ−
ðl;mÞ Regge-Wheeler fields, and then use the boundedness

and decay properties of the four-dimensional Regge-
Wheeler equation (4) for non-negative Λ. This substitution
generically fails when Λ < 0, holding only when related
boundary conditions are chosen in the odd and even
sectors. These issues are explored in this section.
All the relations we need follow from the observations in

[3,33] that

H�
l ¼ D�

lD
∓
l − w2

l; ð142Þ
where

D�
l ¼ �∂x þWl; Wl ¼ wl þ

6Mf
rðrμþ 6MÞ ; ð143Þ

and also that

Wl ¼ ∂xχ
þ
l

χþl
¼ −

∂xχ
−
l

χ−l
; ð144Þ

which can be verified using (132) and (135). From these we
find that

Vþ
l ¼ Wl

0 þ ðWlÞ2 − w2
l ¼ χþl

00

χþl
− w2

l; ð145Þ

V−
l ¼ −Wl

0 þ ðWlÞ2 − w2
l ¼ χ−l

00

χ−l
− w2

l; ð146Þ

where a prime means derivative with respect to x. The
second form in (145) allows us to write the ordinary
differential equation Hþ

l ψ ¼ Eψ as

−
ψ 00

ψ
þ χþl

00

χþl
¼ ðEþ w2

lÞ; ð147Þ

from where, for E ¼ −w2
l, we readily obtain the two

linearly independent solutions ψ ¼ χþl and ψ ¼ τþl given
in (134). A similar analysis leads to the unstable odd
modes (135).
In view of (142), acting with D−

l on a solution to the
differential equation Hþ

l ψ
þ ¼ Eψþ gives a—possibly

trivial—solution ψ− ¼ D−
lψ

þ of H−
lψ

− ¼ Eψ− and vice
versa,

Hþ
l ψ

þ ¼ Eψþ ⇒ H−
l ðD−

lψ
þÞ ¼ EðD−

lψ
þÞ; ð148Þ

H−
lψ

− ¼ Eψ− ⇒ Hþ
l ðDþ

l ψ
−Þ ¼ EðDþ

l ψ
−Þ: ð149Þ

From the equations above we find some trivial cases,

D−
lχ

þ
l ¼ 0; Dþ

l χ
−
l ¼ 0: ð150Þ

Note that the most general solution of the equation
D−

lψ
þ ¼ 0 (Dþ

l ψ
− ¼ 0) is a constant times χþl (χ−l ). For

eigenfunctions with eigenvalues different from −w2
l the

effect ofD�
l can be reversed byD∓

l (times a function of E),
and vice versa,

Hþ
l ψ

þ ¼ Eψþ ⇒ Dþ
l ðD−

lψ
þÞ ¼ ðHþ

l þ w2
lÞψþ

¼ ðEþ w2
lÞψþ ≠ 0 ð151Þ

H−
lψ

− ¼ Eψ− ⇒ D−
l ðDþ

l ψ
−Þ ¼ ðH−

l þ w2
lÞψ−

¼ ðEþ w2
lÞψ− ≠ 0: ð152Þ

From equations (151) and (152) it follows that if ψ−
j , j ¼ 1,

2, are two linearly independent solutions of H−
lψ

−
j ¼ Eψ−

j

with E ≠ −w2
l, then ψ

þ
j ¼ Dþ

l ψ
−
j , j ¼ 1, 2, are two linearly

independent solutions of Hþ
l ψ

þ
j ¼ Eψþ

j , and similarly if
we exchange − and þ.
We also note from the above equations that

D−
l roτ

þ
l ¼ χ−l ; Dþ

l roτ
−
l ¼ χþl ð153Þ

for any ro, and that

Dþ
l κ

−
l ¼ χþl ⇒ κ−l ¼ τ−l þ αχ−l ; ð154Þ

where τ−l was defined in (136) and α is a constant.
The possibility of exchanging even and odd modes using

D�
l is the duality, peculiar to four dimensions, that we will

analyze for Λ < 0 in the remainder of this section. For
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Λ ≥ 0, the fields ϕ�
ðl;mÞ belong to L2ðR; dxÞ and the

operators D�
l give a bijection between the sets of solutions

of the odd and even 1þ 1 wave equations (see Section IV.5
in [2].) The case where Λ < 0 is much subtler. The linear
gravity potentials V�

l are nonsingular, the values at x ¼ 0 of
solutions of H�

l ψ
� ¼ Eψ� and their x derivatives are well

defined and generically nonzero [Eq. (50)], so Dirichlet,
Neumann or Robin boundary conditions are allowed.
Suppose that, for a given ðl; mÞ, we choose

ψþ0jx¼0 ¼ γeψ
þjx¼0 ð155Þ

where, in what follows γe ∈ R∪f∞g to include the cases
γe ¼ 0 (Neumann) and γe ¼ ∞ (Dirichlet), and we sim-
ilarly introduce γo for the odd modes, dropping the ðl; mÞ
indices for simplicity.
From (143) we find that

ðD−
lψ

þÞjx¼0¼−ψþ0jx¼0þðWlψ
þÞjx¼0¼ðWl− γeÞψþjx¼0

ð156Þ

and that

ðD−
lψ

þÞ0jx¼0¼−ψþ00jx¼0þðWl
0 þ γeWlÞψþjx¼0; ð157Þ

where, from (144),

Wjx¼0 ¼ γCh and W0jx¼0 ¼
�
2MΛ
μ

�
2

; ð158Þ

and γCh was defined in (137). It is easy to prove from these
two equations that, in general, there is no function γoðγeÞ,
γe, γo ∈ R∪f∞g, such that ψþ0=ψþ ¼ γe at x ¼ 0 implies
ðD−

lψ
þÞ0=D−

lψ
þ ¼ γoðγeÞ at x ¼ 0. To show this, we use

the fact that ψþ fields satisfying (155) can be expanded
using the complete basis of generalized eigenfunctions
γeψþ

E (we suppress the l index) of the corresponding self-
adjoint extension γeHþ

l , so that

ψþ ¼
Z

dEcEγeψ
þ
E ; ð159Þ

where the integral notation includes a sum over bound
states, if there were any.
For an energy eigenstate we find from (157) that

ðD−
l
γeψþ

E Þ0jx¼0 ¼ ðHþ
l − Vþ

l þW0
l þ γeWlÞγeψþ

E jx¼0

ð160Þ

¼ ðEþ w2
l −W2

l þ γeWlÞγeψþ
E jx¼0; ð161Þ

which, together with (155), gives

ðD−
l
γeψþ

E Þ0
D−

l
γeψþ

E






x¼0

¼ Eþ w2
l −W2

l þ γeWl

Wl − γe






x¼0

: ð162Þ

Since, generically, the quotient above depends on E,
ψþ0=ψþ in (159) will have different values for different
functions in the linear space obtained by applying D−

l to
the domain of γeHþ

l , then the dynamics will not be defined
in this space since it is not a self-adjoint domain of H−

l
(note that this problem cannot be fixed by the alternative
definitions ~D− ≡ fðEÞD− of the dual map used in [27,33]).
The only exceptions [i.e., situations where the right hand
side of (162) does not depend on E] are: i) when we choose
Dirichlet boundary conditions in the even sector, that is,
γe → ∞ in (162), which gives Robin conditions in the odd
sector with γo ¼ −Wjx¼0 ¼ −γCh, that is,

γo ¼ −γCh ðγe ¼ ∞Þ; ð163Þ

and ii) when we choose Dirichlet boundary conditions in
the odd sector, that is, γe ¼ Wjx¼0 ¼ γCh in (162),

γe ¼ γCh ðγo ¼ ∞Þ: ð164Þ

The following proposition gives more details about the
supersymmetry and these two cases:
Proposition 7. Consider the maps D� defined in (143).

In what follows we use the symbol γH�
l both for the self-

adjoint operator and its domain.
(i) The spectra of DHþ

l and −γChH−
l are non-negative.

D−
l∶ DHþ

l → −γChH−
l is a bijection.

(ii) The spectrum of DH−
l is non-negative and that of

γChHþ
l contains a negative energy with eigenfunction

χþ. The map D−
l∶ γChHþ

l → DH−
l is surjective and

has kernel the linear space generated by χþl . The map
is surjective and its kernel is the linear space
generated by Dþ

l ∶ DH−
l → γChHþ

l is injective.
(iii) There are no other values of γ, γ0 ∈ R∪f∞g such

that D∓
l ðγH�

l Þ ⊂ γ0H∓
l .

Proof.—We have already proven iii).
To prove i) note that the only solution of D−

lψ
þ ¼ 0 is a

constant times χþ, which does not belong to DHþ
l , so the

map in i) has a trivial kernel and therefore is injective.
Similarly, the only solution of Dþ

l ψ
− ¼ 0 is a constant

times χ− ¼ 1=χþ which, although satisfies a Robin con-
dition with γ ¼ −γCh at x ¼ 0, diverges as x → −∞ and so
does not belong to −γChH−

l . This implies that the map
Dþ

l ∶ −γChH−
l → DHþ

l is injective. Since Vþ
l is non-negative,

Proposition 3 applies and the spectrum of DHþ
l is

non-negative. The spectrum of −γChH−
l must also be non-

negative; otherwise, a negative eigenfunction of −γChH−
l

would be sent by the injective map Dþ
l to a negative

eigenfunction of DHþ
l , which is a contradiction. This

proves that both DHþ
l and −γChH−

l have non-negative spectra
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and therefore lead to stable dynamics in the even and odd
sectors, respectively. To prove that D−

l∶ DHþ
l → −γChH−

l is
onto we proceed as in Lemma 7 in [2]: let ψ− be an
arbitrary function in −γChH−

l and ψ− ¼ R
dEqðEÞ−γChψ−

E its
expansion in eigenfunctions −γChψ−

E of −γChH−
l . Since the

spectrum of −γChH−
l is non-negative,

~ψ− ¼
Z

dE

�
qðEÞ

w2
l þ E

�
−γChψ−

E ð165Þ

is well defined and belongs to −γChH−
l . Then Dþ

l ~ψ− is in
DHþ

l and is the function sent to ψ− by D−
l, as the following

calculation shows:

D−
l ðDþ

l ~ψ−Þ ¼ ðH−
l þ w2

lÞ
Z

dE

�
qðEÞ

w2
l þ E

�
−γChψ−

E ¼ ψ−:

ð166Þ

This completes the proof of i).
To prove ii) recall that the only solution of Dþ

l ψ
− ¼ 0 is

a constant times χ−, which does not belong to DH−
l ;

therefore, Dþ
l ∶ DH−

l → γChHþ
l is injective. We have already

proven that the kernel of D−
l∶ γChHþ

l → DH−
l is the one-

dimensional space of functions proportional to χþl , which is
the eigenfunction of the only (Proposition 4.iii) negative
energy in the spectrum of γChHþ

l . If DH−
l admitted a

negative energy, an eigenfunction κ−l of this energy would
be sent to a negative energy eigenfunction of γChHþ

l by the
injective map Dþ

l ; i.e., we may assume that Dþ
l κ

−
l ¼ χþl .

However, it follows from (154) that the general solution of
the differential equation Dþ

l κ ¼ χþl is τ−l þ αχ−l and, given
that τ−l ðx ¼ 0Þ > 0, we need α ≠ 0 for τ−l þ αχ−l to equal
zero at x ¼ 0 and, since α ≠ 0, the resulting function
diverges as x → −∞ and therefore does not belong to
DH−

l , so we reach a contradiction and conclude that DH−
l

has a non-negative spectrum. This allows us to prove that
D−

l∶ γChHþ
l → DH−

l is surjective proceeding as above:
expand DH−

l ∋ ψ− ¼ R
dEsðEÞDψ−

E in a basis of general-
ized eigenfunctions Dψ−

E of the positive definite operator
DH−

l . Consider the function

ψ̂− ¼
Z

dE

�
sðEÞ

w2
l þ E

�
Dψ−

E: ð167Þ

Note that Dþ
l ψ̂

− belongs to the domain of γChHþ
l and that

D−
l sends it to ψ−. □

V. SUMMARY

In what follows we enumerate the subjects addressed
(items 1 and 2 below) and the results proven (items 3 and 4)
in this work:

A. Stability of scalar field as an indicator of
gravitational stability

The stability of a scalar test field on a given spacetime is
oftentimes taken as indicative of linear gravitational stability.
SAdS4 offers an example of how naive this idea can be:
although there is a single choice of boundary condition for a
scalar field on SAdS4, under which the field is stable, there
are infinitely many possible dynamics for gravitational
perturbations. If any mixture of Dirichlet, Neumann or
Robin boundary conditions with γ below the critical value
is chosen for the different modes, the evolution of gravita-
tional perturbations will be stable. If, on the contrary, a
Robin boundary condition with γ above the critical value is
allowed for a single mode, the perturbation will be unstable,
the instability being signaled by an exponentially growing
mode similar to (138). Similar comments apply to Maxwell
fields on SAdS4.

B. Naturalness of Robin boundary conditions

Robin boundary conditions on the 1þ 1 auxiliary fields
satisfying (15)–(16) are enforced by the self-consistence of
the linear perturbation treatment in nakedly singular space-
times (see references [29,30]). They are also a natural choice
when studying gravitational perturbations of asymptotically
AdS spacetimes, as they result from the imposition of
Dirichlet or Neumann conditions on geometrically mean-
ingful fields, as discussed in Sec. IVB 2. Robin conditions
also arise in the context of AdS-CFT dualities, and if wewant
to preserve the even/odd duality in SAdS4 (see item 4 below).

C. Robin instabilities in 1 + 1 wave equations

For any physical system reducing to Eq. (13) on the x < 0
half space with a nonsingular potential, there are instabilities
for high enough Robin parameter γ. If the potential is non-
negative, there is a critical value γc > 0 such that the set of
unstable boundary conditions is of the form γ > γc. A
number of properties about the energy spectrum of the
associated quantum Hamiltonian on a half line and its bound
state are given in Secs. III A and III B (Propositions 1–6).
The mechanism triggering the instabilities of (13) is
explained within Sec. III C and illustrated using simple
toy models in Sec. III D.

D. Even/odd duality and stability of SAdS4

Four-dimensional Schwarzschild black holes exhibit a
unique feature of a duality exchanging even and odd
modes, which is due to the fact that the corresponding
potentials form a supersymmetric pair. This is used in [2] to
extend to the even sector the proof of nonmodal stability for
Schwarzschild black holes when Λ ≥ 0. In the asymptoti-
cally AdS case, however, the even/odd duality is obstructed
by the boundary conditions at the timelike boundary. We
have found that there are only two boundary conditions
compatible with the even/odd symmetry, Dirichlet in the
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even sector and Robin with a particular, ðl; mÞ-dependent,
γ in the odd one, and vice versa, with only the first one
leading to a stable dynamic (Proposition 7 in Sec. IV). An
explicit unstable even gravitational mode for a specific γ is
shown in this section together with its effect on the
background geometry.
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