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Site-bond percolation of heteronuclear dimers irreversibly deposited on square lattices
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A generalization of the site-bond percolation problem was studied, in which pairs of neighboring sites (site
dimers) and bonds are occupied irreversibly, randomly, and independently on homogeneous square surfaces. A
dimer is composed of two segments and occupies two adjacent sites. Each segment can be either a conductive
segment (segment type A) or a nonconductive segment (segment type B). Two types of dimers are considered,
AA and AB, and the connectivity analysis is carried out by accounting only for the conductive segments
(segments type A) in combination with bonds. For the combination of dimers and bonds, two different criteria
were analyzed: the union or the intersection between the adsorbed percolating particles and the bonds. By means
of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating
from a non-percolating region was determined.
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I. INTRODUCTION

The percolation problem is one of the central problems
in statistical mechanics, and the activity in this field is still
growing [1–9]. Usually, the percolation model in a lattice
is classified into two categories, namely, site model and
bond model [6]. In the site (bond) model, sites (bonds) of
a lattice are randomly occupied with a probability ps (pb)
or empty (nonoccupied) with a probability 1 − ps (1 − pb).
Nearest-neighboring occupied sites (bonds) form structures
called clusters.

The main idea of the classical percolation theory is based
on finding the minimum concentration of elements (sites or
bonds) for which a cluster extends from one side of the system
to the other [6]. This particular value of concentration rate is
named critical concentration or percolation threshold and de-
termines a phase transition in the system. The percolation tran-
sition is then a geometrical phase transition where the critical
concentration separates a phase of finite clusters from a phase
where a macroscopic, spanning, or infinite cluster is present.
This geometric transition is a second-order phase transition
and can be characterized by well-defined critical exponents.

Some real physical systems, however, have blockage in both
sites and bonds, where occupied bonds act as communication
links between occupied sites. The sol-to-gel transition (gela-
tion) of polymers [10] is considered to be a prototype of this
kind of problem. In this case, bonds represent chemical bonds,
occupied sites represent monomers, and empty sites represent
solvent molecules. In general, these systems can be modeled by
assuming that both sites and bonds are randomly and indepen-
dently occupied with occupancy fractions ps and pb, respec-
tively. The occupation of sites and bonds are entirely indepen-
dent and simultaneous processes. Then, it is possible to define
two different site-bond percolation models: site and bond (S ∩
B) and site or bond (S ∪ B) percolation. In S ∩ B (S ∪ B),
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two points are said to be connected if a sequence of occupied
sites and (or) bonds joins them. Thus, in S ∩ B, a cluster is
considered to be a set of occupied bonds and sites in which the
bonds are joined by occupied sites, and the sites are joined by
occupied bonds. In S ∪ B, a bond or site contributes to cluster
connectivity independently of the occupation of its endpoints.

In the case of S ∩ B site-bond percolation, the problem has
many applications in different fields and has been studied in
a wide variety of geometries [11–18]. Thus, the model was
mentioned at first by Frisch and Hammersley [11]. Agrawal
et al. [12] and Nakanishi and Reynolds [13] showed, by using
a series method and position-space renormalization group,
respectively, that the critical exponents of pure site percolation
are also valid for site-bond percolation. Later, Yanuka and
Englman [14] proposed a equation for the critical curve
separating the sol-to-gel transition in the site-bond percolation
model, for square, triangular, simple cubic and face-centered
cubic (fcc) lattices. More recently, Tarasevich and van der
Marck [15] presented a very complete and systematic study,
where site-bond percolation thresholds were calculated by
means of numerical simulations in many lattices in two to
five dimensions. On the other hand, the S ∩ B model has been
treated in the literature for square [16], triangular [17], and
simple cubic [18] lattices.

More general percolation problems can be formulated by
including deposition of elements occupying more than one
site (multiple occupation of sites or multisite occupancy).
The dimer is the simplest case of a extended object and
contains all the properties of the multisite occupancy prob-
lem. In this framework, a generalization of the standard
site-bond percolation problem, in which pairs of nearest-
neighbor sites (site dimers) and pairs of nearest-neighbor
bonds (bond dimers) are independently occupied, was studied
on a square lattice [19]. The complete phase diagram of the
system was obtained, showing significant differences with
respect to the classical site-bond percolation phase diagram.
The study in Ref. [19] was recently extended to triangular
lattices [20].
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The dimer problem was also addressed by Harder et al.
[21], who investigated the formation of dimers on a surface to
describe the nonlinear dependence of transport properties on
composition in mixed-alkali ionic conductors. Holloway [22]
studied the problem of site percolation on a diamond lattice
occupied by a mixture of monatomic and diatomic species.
The results allowed us to understand some of the features
of the alloys of Ge with groups III–V semiconductors. Along
the same lines, Gao et al. [23] investigated the process of
dissociative adsorption of dimers and studied the percolating
properties of dissociated monomers as a function of both the
concentration of dimers and the dissociation probability. A
phase diagram separating a percolating from a nonpercolating
region was obtained.

In all of the papers mentioned above [19–23], the study was
restricted to homonuclear dimers. However, real depositing
particles generally present inhomogeneities due, for instance,
to the presence of various chemical species, which can signif-
icantly affect the percolation properties of the system. In this
sense, a site percolation model of linear k-mers with defects
(k-mers containing a fraction of nonconducting defects) on
an ideal square lattice was studied by Tarasevich et al. [24].
k-mer sizes ranging from 2 to 256 were considered. For each
size k, a critical concentration of defects was found. Above this
concentration, percolation is impossible. More recently, a site
percolation model of defective (or heteronuclear) dimers was
investigated by our group [25]. The presence of defects was
introduced as two kinds of segments composing the dimers:
type A (percolating) and type B (nonpercolating). Different
cases were analyzed, according to the sequence of deposition
of the particles, the types of dimers involved in the process, and
the degree of alignment of the deposited objects. The results
were found to be consistent with those from Ref. [24].

The site percolation problem has also been studied for
k-mers on lattices with defective sites [26,27] and bonds
[28]. However, in the best knowledge of the authors, there
is still a lack of systematic studies on S ∩ B and S ∪ B

percolation in the presence of multiple occupation of sites and
defects. The objective of this paper is to provide a thorough
study in this direction. For this purpose, extensive numerical
simulations have been performed to study the complete site-
bond percolation problem of heteronuclear dimers composed
of segments A and B. Two types of particles were considered:
AA and AB. The model offers a simplified representation of
the problem of percolation of defective (nonideal) particles,
where the presence of defects in the system is simulated by
introducing a mixture of conductive or ideal segments (A)
and nonconductive or imperfect segments (B). The site-bond
percolation model may also mimic, to a rough approximation,
more general cases of amorphous surfaces, where some bonds
have been removed and the connectivity varies from site to site.

The paper is organized as follows: the model and simulation
scheme are described in Sec. II. The calculation of the
percolation thresholds and the resulting phase diagram is
reported in Sec. III. The analysis of results obtained by using
finite size scaling theory is presented in Sec. IV. The main
purpose of this section is to test the universality of the problem
by determining the numerical values of the critical exponents
of the phase transition. Finally, conclusions are given in
Sec. V.

II. MODEL AND CALCULATION METHOD

A. The model

Let us consider a surface represented by a two-dimensional
square lattice of M = L × L sites with periodic boundary
conditions. Two types of depositing objects are considered:
site dimers and bonds. A site dimer is composed by two units,
and occupies two adjacent lattice sites. Thus, a site is occupied
by one dimer unit, or is empty. Each unit can be either a
conductive segment (segment type A) or a nonconductive
segment (segment type B). Two types of dimers have been
considered: AA and AB; and the connectivity analysis is
carried out by accounting only for the conductive segments
(segments type A).

Starting from an initially empty lattice, site dimers and
bonds are independently deposited. The process is done in two
stages. First, the dimers are deposited randomly, sequentially,
and irreversibly on the lattice. The process is the following:

(1) One lattice site i is chosen at random.
(2) If the site i is empty, a second site is randomly selected

from its four neighbors.
(3) If both sites are unoccupied, a dimer (AA or AB)

is deposited on those two sites. Otherwise, the attempt is
rejected. The sequence (1)–(3) is called elemental deposition
step (EDS), and corresponds to the well-known conventional
dimer filling problem [29–31].

(4) First, EDSs are repeated until the desired concentration
θAA of AA dimers is reached; and second, EDSs are repeated
until the desired concentration θAB of AB dimers is reached.

Equivalent configurations can be obtained by initially
depositing all dimers on the lattice up to desirable total
concentration θT = θAA + θAB , and then randomly differen-
tiating these dimers on AB and AA types according to
their concentration. We verify that jamming and percolation
properties are the same (within the numerical accuracy) for
both deposition algorithms. The details of this analysis are
given in the Appendix.

Due to the blocking of the lattice by the already randomly
deposited objects, the limiting or jamming coverage, θj , is
less than that corresponding to the close packing (θj < 1).
Consequently, the total site coverage θT = θAA + θAB ranges
from 0 to θj . In the case of square lattices, the value of the
jamming coverage for the conventional dimer filling problem
is θj = 0.9068 [30,31].

In a second stage, the conductive bonds are randomly
dropped on the free places (links) of the lattice. The procedure
is iterated until Nb bonds are deposited and the desired
concentration (θb = Nb/2L2) is reached.

Figure 1 schematically illustrates the system used in this
work. In part (a), a typical configuration of site dimers and
occupied bonds is shown. Solid circles, open circles, and thick
lines represent A-dimer units, B-dimer units, and occupied
bonds, respectively.

After the filling of the lattice with the site dimers and bonds,
two criteria were taken into account for percolation: S ∪ B and
S ∩ B. In S ∩ B (S ∪ B), two points are said to be connected
if a sequence of occupied sites and (or) bonds joins them.

The S ∩ B model can be considered as a correlated bond
percolation problem, or a pure site problem in which one
replaces the bond by a site with two neighbors. On the
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FIG. 1. (a) Schematic representation of a square lattice in which
some site dimers and bonds have been deposited. Solid circles, open
circles, and thick lines represent A-dimer units, B-dimer units, and
occupied bonds, respectively. (b) Rules for the mapping L →L′ from
an original site-bond lattice L (a) to an effective bond lattice L′ for
S ∪ B model. (c) Same as part (b) for S ∩ B model.

other hand, the S ∪ B model can also be thought of as a
bond problem, but not seem to be expressible as a pure site
problem. Then, to calculate the percolation threshold, we can
now think of a mapping L→ L′ from the original site-bond
lattice L to an effective bond lattice L′ where each bond and
its endpoints sites of L transforms into a bond one of L′. The
rules for the mapping depend on the studied problem. Thus,
for site-or-bond percolation [see Fig. 1(b)]:

(i) each occupied bond of L transforms into an occupied
bond one of L′;

(ii) each empty bond with one or two empty endpoint sites
of L transforms into an empty bond in L′; and

(iii) each empty bond with its occupied endpoint sites of L
transforms into an occupied bond of L′.

On the other hand, for site-and-bond percolation [see
Fig. 1(c)]:

(i) each empty bond of L transforms into an empty one
of L′;

(ii) each occupied bond with one or two empty endpoint
sites of L transforms into an empty bond in L′; and

(iii) each occupied bond with its occupied endpoint sites of
L transforms into an occupied bond of L′.

Once the mapping is completed, each percolating and non-
percolating configuration in the effective lattice corresponds to
a percolating and nonpercolating configuration in the original
lattice. Then, the standard Hoshen and Kopelman algorithm
[32] was applied for studying bond percolation on L′.

B. Simulation scheme and finite-size scaling

As mentioned in Sec. I, the central idea of the percolation
theory is based on finding the minimum coverage degree for
which at least a cluster extends from one side to the opposite
one of the system. This particular value of the coverage
degree is named percolation threshold and determines a phase

transition in the system. In the present paper, given θAA and
θAB , we look for the value of θb = θb,c (percolation threshold)
for which percolation occurs.

As the scaling theory predicts [33], the larger the system
size to study, the more accurate the values of the threshold
obtained. Thus, the finite-size scaling theory gives us the basis
to achieve the percolation threshold and the critical exponents
of a system with a reasonable accuracy. For this purpose, the
probability R = RX

L (θAA,θAB,θb) that a lattice composed of
L × L sites percolates at concentrations (θAA,θAB,θb) can be
defined [6,34,35]. Here, the following definitions can be given
according to the meaning of X: RU

L is the probability of finding
either a rightward or a downward percolating cluster. RI

L is the
probability of finding a percolating cluster both in rightward
and in downward direction. Finally, RA

L = (RU
L + RI

L)/2.
Each simulation run consists of the following steps: (a) the

construction of the lattice for the desired fractions (θAA, θAB ,
and θb) and the criteria of junction (S ∪ B) or intersection
(S ∩ B), according to the scheme mentioned in previous
section; and (b) the cluster analysis by using the Hoshen and
Kopelman algorithm [32]. Thus, n runs of such two steps are
carried out for obtaining the number mX of them for which a
percolating cluster is found. Then, RX

L = mX/n is defined. In
the present study, a set of n = 100 000 independent samples
are numerically prepared for each model (S ∪ B and S ∩ B),
for each set of concentrations (θAA,θAB,θb) and lattice size
L (L = 128, 192, 256, 320, 384). From the point of view of
calculations, we set θAA and θAB , and vary θb.

In addition to the different probabilities RX
L (θAA,θAB,θb),

the percolation order parameter (P = 〈SL〉/M) [36,37] and the
susceptibility (χ = [〈S2

L〉 − 〈SL〉2]/2L2) have been measured
for each model, where SL is the size of the largest cluster and
〈...〉 means an average over simulation runs.

III. PERCOLATION THRESHOLDS:
SITE-BOND PERCOLATION PHASE DIAGRAM

As already explained, percolation is determined for 105

runs for each concentration (θAA,θAB,θb), on each lattice size
L, for each model (S ∪ B and S ∩ B), and for each percolation
criterion (X = U,I,A).

The probabilities RU
L , RI

L and RA
L are reported in Fig. 2(a)

for a typical case: (a) S ∪ B model, θAA = 0.25 and θAB =
0.64. The fraction of bonds, θb, is varied during the simulation
process. The corresponding percolation threshold θb,c can be
obtained from the extrapolation of the positions θX

b,c(L) of
the maxima of the slopes of RX

L [6,34,35,38]. Thus, for each
criterion (U , I , or A),

θX
b,c(L) = θX

b,c(∞) + AXL−1/ν, (1)

where AX is a nonuniversal constant and ν is the critical
exponent of the correlation length which will be taken as 4/3
for the present analysis, since, as it will be shown in Sec. IV,
our model belongs to the same universality class as random
percolation [6].

Combining the three estimates for each case [θU
b,c(∞),

θI
b,c(∞), and θA

b,c(∞)], the final value of θb,c ≡ θb,c(∞) can
be obtained. Additionally, the maximum of the differences
between |θU

b,c − θA
b,c| and |θI

b,c − θA
b,c| gives the error bar for
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FIG. 2. (a) Fraction of percolating lattices RX
L (X = U,A,I as

indicated) as a function of the bond concentration θb for θAA = 0.25
and θAB = 0.64 (S ∪ B model). For each criterion, different lattice
sizes were considered: L = 128, squares; 192, circles; 256, up
triangles; 320, down triangles; and 384, diamonds. (b) Extrapolation
of θX

b,c(L) toward the thermodynamic limit [Eq. (1)] for the data
shown in (a). Triangles, circles, and squares denote the values of
θX
b,c(L), obtained by using the criteria I , A, and U , respectively.

each determination of θb,c. Figure 2(b) shows this methodology
for the data in Fig. 2(a). In this case, the value obtained was:
θb,c = 0.2278(4).

The procedure in Fig. 2 was repeated for both models
(S ∪ B and S ∩ B), and different values of θAA and θAB . In
addition, θAA and θAB must satisfy the jamming condition 0 �
θAA + θAB � 0.9068, where 0.9068 is the jamming coverage
corresponding to dimers on square lattices [30,31]. Under these
considerations, the complete phase diagram of the system was
obtained. The results are shown in Fig. 3(a).

Let us start with the case of S ∩ B model [see top-right
in Fig. 3(a)]. For a given value of θAB , a critical curve
separating the percolating and nonpercolating regions is
obtained. This curve varies between two limit points. The left
extreme arises from the jamming condition θ l1

AA = θj − θAB

and, consequently, θ l1
AA is the maximum possible value for

FIG. 3. (a) Percolation phase diagrams (in the θAA–θb parameter
space) corresponding to site dimers and bonds independently de-
posited on square lattices: S ∪ B model (solid symbols) and S ∩ B

model (open symbols). Different curves correspond to different values
of θAB : 0, squares; 0.10, circles; 0.20, up triangles; 0.30, down
triangles; 0.40, diamonds; 0.48, crosses; 0.50, left triangles; 0.58,
right triangles; 0.64, hexagons; 0.70, stars; 0.80, pentagons; and 0.90,
spheres. The size of the points is larger than the corresponding error
bars. (b) Phase diagram corresponding to θAB = 0.20. Percolating
and nonpercolating regions are indicated in the figure. Region 1:
forbidden region (θAA > θl1

AA = θj − θAB ); region 2: nonpercolating
region for S ∩ B and S ∪ B models; region 3, percolating region for
S ∪ B model, and nonpercolating region for S ∩ B model; and region
4, percolating region for S ∩ B and S ∪ B models.

θAA. The critical fraction of bonds corresponding to θ l1
AA will

be denoted as θ l1
b . The points [θ l1

AA,θ l1
b ] are indicated as big

open circles in Fig. 3(a).
On the other hand, the right extreme of each critical curve is

[θr1
AA,θb = 1], where θr1

AA represents the percolation threshold
of the standard site percolation model of AA and AB dimers.
This problem was studied in Ref. [25]. In the case of θAB = 0,
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only AA dimers are present in the system and θr1
AA corresponds

to the already known percolating threshold of 0.564(2) for
isotropic dimers on square lattices [39,40]. As θAB increases,
the value of θr1

AA diminishes up to θr1
AA ≈ 0.32 for θAB ≈ 0.58.

It is important to clarify here that θAB can vary between 0
and approximately 0.58. As shown in Ref. [25], there exists a
critical concentration of AB dimers (θAB ≈ 0.58). Above this
concentration, percolation is impossible.

In the range (θr1
AA < θAA < θl1

AA), the percolation thresholds
are obtained by following the scheme discussed in Fig. 2.
The resulting curves are shown in Fig. 3(a). Each curve,
corresponding to a different value of θAB , divides the space
of allowed values of θAA and θb in a nonpercolating region
(region below the critical curve) and a percolating region
(region above the critical curve). In addition, as discussed in
previous paragraphs, all critical curves are contained between
two limit lines: the line joining the points [θ l1

AA,θ l1
b ] (boundary

S ∩ B curve, big open circles) and the line θb = 1. Note that
for the maximum value of θAB ≈ 0.58, the critical curve is
reduced to only one point [θAA ≈ 0.32,θb = 1]. This point is
the intersection point of the two limit lines.

In the case of S ∪ B model [see bottom-left in Fig. 3(a)],
two types of behavior are observed for the percolation curves
depending on the values of θAB . For θAB � 0.58, the left
extremes of critical curves (θ l2

AA) intersect the coordinate axis.
In this case, θ l2

AA represents the critical fraction of AA dimers
for θb = 0. At this condition (θb = 0), S ∪ B model reduces to
S ∩ B model with θb = 1 and, consequently, θ l2

AA = θr1
AA.

As 0.58 < θAB � θj , percolation is impossible for θb = 0,
and a minimum fraction of bonds is needed for percolation. We
will denote as θ l2

b this fraction of bonds. To calculate θ l2
b , θAA is

set to θj − θAB , and θb is varied according to the procedure in
Fig. 2. The points [θr2

AA = θj − θAB,θ l2
b ] are shown in Fig. 3(a)

as big open squares.
Summarizing, the left extremes of the percolation curves for

S ∪ B model [θ l2
AA,θ l2

b ] can be written as: (1) θ l2
AA = θr1

AA and
θ l2
b = 0 for θAB � 0.58; and (2) θ l2

AA = θj − θAB and θ l2
b > 0

for 0.58 < θAB � θj .
The right extremes of the S ∪ B percolation curves are

obtained by setting θAA = 0 and varying θAB between 0 and
θj . These limit points will be denoted as [θr2

AA = 0,θ r2
b ]. In the

case of θAB = 0, the critical fraction of bonds is equal to 0.5.
This value represents the well-known percolation threshold for
the standard bond percolation model on square lattices [6]. In
general, θr2

b diminishes with θAB , being θr2
b ≈ 0.4053 in the

limit of θAB = θj .
Once the left and right extremes are determined for each

value of θAB , the intermediate points of the S ∪ B critical
curves are calculated by varying θAA between 0 and θ l2

AA. The
resulting curves are shown in Fig. 3(a) as open symbols. The
region below (above) the critical curve is the nonpercolating
(percolating) region. In the case of θAB = θj , the percolation
curve is reduced to only one point [θAA = 0,θb ≈ 0.4053].

Figure 3(b) allows for a better visualization of the per-
colating and nonpercolating regions. In the figure, the phase
diagram corresponding to θAB = 0.20 is shown. Four regions
were indicated in the phase diagram. Region 1: forbidden
region (θAA > θl1

AA = θj − θAB); region 2: nonpercolating
region for S ∩ B and S ∪ B models; region 3, percolating
region for S ∪ B model, and nonpercolating region for S ∩ B

model; and region 4, percolating region for S ∩ B and S ∪ B

models.
The phase diagrams presented in Fig. 3(a) offer a simplified

representation of the problem of percolation of heterogeneous
particles (particles containing conductive and nonconductive
segments) in amorphous solids, where the presence of defects
in the system is simulated by introducing a fraction of defective
(empty) bonds. In this context, the results obtained are very
useful as a first tool to predict the behavior of a system
governed by a large number of parameters.

IV. CRITICAL EXPONENTS AND UNIVERSALITY

In this section, the critical exponents ν, β, and γ will be
calculated. Critical exponents are of importance because they
describe the universality class of the system and allow for the
understanding of the related phenomena.

The standard theory of finite-size scaling [6] allows for
various efficient routes to estimate the critical exponent ν from
simulation data. One of these methods is from the maximum
of the function dRX

L /dθb,

(
dRX

L

dθb

)
max

∝ L1/ν . (2)

In Fig. 4(a), log[( dRA
L

dθb
)
max

] has been plotted as a function
of log[L] (note the log-log functional dependence) for two
typical cases: (i) S ∪ B model, θAA = 0.25 and θAB = 0.64;
and (ii) S ∩ B model, θAA = 0.52 and θAB = 0.30. According
to Eq. (2), the slope of each line corresponds to 1/ν. As it can
be observed, the slopes of the curves remains constant, being
ν = 1.34(3) for case (i), and and ν = 1.34(4) for case (ii).

Another alternative way for evaluating ν is from the
divergence of the root mean square deviation of the threshold
observed from their average values, �X

L ,

�RX
L ∝ L−1/ν . (3)

As an example of the validity of the last equation, the inset in
Fig. 4(a) shows �RA

L as a function of L (note de log-log scale)
for the same cases in the main figure. According to Eq. (3), the
slope of the line corresponds to −1/ν. In this case, ν = 1.34(3)
for θAA = 0.25 and θAB = 0.64 (S ∪ B), and ν = 1.33(3) for
θAA = 0.52 and θAB = 0.30 (S ∩ B).

The study in Fig. 4(a) was repeated for different values
of θAA and θAB , and the U , A, and I criteria. In all cases,
the results obtained for ν coincide, within numerical errors,
with the exact value of the critical exponent of the ordinary
percolation, namely, ν = 4/3 [6].

Once we know ν, the exponent γ can be obtained by
scaling the maximum value of the susceptibility χ . According
to the finite-size scaling theory [6], the behavior of χ at
criticality is χ = Lγ/νχ(u), where u = (θb − θb,c)L1/ν and χ

is the corresponding scaling function. At the point where χ

is maximal, u = const. and χmax ∝ Lγ/ν . Our data for χmax

are shown in Fig. 4(b). The values obtained are γ = 2.40(3)
for θAA = 0.25 and θAB = 0.64 (S ∪ B); and γ = 2.40(4)
for θAA = 0.52 and θAB = 0.30 (S ∩ B). Simulation data are
consistent with the exact value of the critical exponent of the
ordinary percolation problem, γ = 43/18.
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FIG. 4. (a) Log-log plot of (dRA
L/dθb)max as a function of L

for S ∪ B (θAA = 0.25 and θAB = 0.64) and S ∩ B (θAA = 0.52 and
θAB = 0.30). According to Eq. (2) the slope of the curve corresponds
to 1/ν. Inset: log �A

L as a function of L for the same case in the main
figure. According to Eq. (3), the slope of the curve corresponds to
−1/ν. (b) Log-log plot of χmax as a function of L for the cases in part
(a). The slope of each line corresponds to γ /ν = 43/24. (c) Log-log
plot of (dP/dθb)max as a function of L for the cases in parts (a) and
(b). According to Eq. (5), the slope of each curve corresponds to
(1 − β)/ν = 31/48.

On the other hand, the standard way to extract the exponent
ratio β is to study the scaling behavior of P at criticality [6],

P = L−β/νP (u′) (4)

FIG. 5. Data collapsing of the percolation probability, RA
L vs

(θb − θb,c)L1/ν . Upper left inset: data collapsing of the percolation
order parameter, PLβ/ν vs |θb − θb,c|L1/ν . Bottom right inset: data
collapsing of the susceptibility, χL−γ /ν vs. (θb − θb,c)L1/ν . The plots
were made using the exact percolation exponents ν = 4/3, β = 5/36,
and γ = 43/18. (a) S ∪ B model (θAA = 0.25 and θAB = 0.64), and
(b) S ∩ B (θAA = 0.52 and θAB = 0.30).

where u′ = |θb − θb,c|L1/v and P is the scaling function. At
the point where dP/dθb is maximal, u = const. and

(
dP

dθb

)
max

= L(−β/ν+1/ν)P (u′) ∝ L(1−β)/ν . (5)

The scaling of (dP/dθb)max is shown in Fig. 4(c) for the
cases in parts (a) and (b). From the slopes of the curves, the
following values of β were obtained: β = 0.14(2) for θAA =
0.25 and θAB = 0.64 (S ∪ B); and β = 0.13(2) for θAA = 0.52
and θAB = 0.30 (S ∩ B). These results agree very well with
the exact value of β for ordinary percolation, β = 5/36.
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The values calculated for ν [Fig. 4(a)], γ [Fig. 4(b)], and
β [Fig. 4(c)] clearly indicate that this problem belongs to the
same universality class that the random percolation regardless
the model (S ∩ B or S ∪ B) and the values of θAA, θAB , and
θb considered.

The scaling behavior can be further tested by plotting
RX

L versus (θb − θb,c)L1/ν , PLβ/ν versus |θb − θb,c|L1/ν , and
χL−γ /ν versus (θb − θb,c)L1/ν and looking for data collapsing
[6]. Using the values of θb,c calculated above and the exact
values of the critical exponents of the ordinary percolation
ν = 4/3, β = 5/36, and γ = 43/18, we obtain an excellent
scaling collapse for the cases discussed in the previous figures
(see Fig. 5). This leads to independent controls and consistency
checks of the values of all the critical exponents.

V. CONCLUSIONS

In the present work, the site-bond percolation problem
for heteronuclear site dimers on square lattices has been
addressed. The dimers are particles composed of two units and
occupy two adjacent sites. Each unit can be either a conductive
segment (segment type A) or a nonconductive segment
(segment type B). Two types of dimers were considered: AA

and AB; and the connectivity analysis was carried out by
accounting only for the conductive segments in combination
with bonds.

Two distinct connectivity schemes, site-and-bond (S ∩ B)
and site-or-bond (S ∪ B), were considered. In S ∩ B, a cluster
is considered to be a set of occupied bonds and sites in which
the bonds are joined by occupied sites, and the sites are joined
by occupied bonds. In S ∪ B, a bond or site contributes to
cluster connectivity independently of the occupation of its
endpoints. Under these considerations, the percolation phase
transitions occurring in the system were studied by using
numerical simulations and finite-size scaling theory.

A wide variety of behaviors were observed depending
on the scheme used (S ∩ B or S ∪ B), and the values of
the parameters of the model (θAA, θAB , and θb). From the
point of view of calculations, we set θAA and θAB , and vary
θb. The obtained phase diagram (S ∩ B and S ∪ B critical
lines separating the percolating and nonpercolating regions)
is presented for the first time in the literature. Its main
characteristics are the following:

(1) The jamming coverage plays an important role in the
system considered here. In fact, the curve θAA = θj (where
θj = 0.9068 is the jamming coverage corresponding to dimers
on square lattices [30,31]) determines the space of all the
allowed values of θAA. The region above this curve corresponds
to a forbidden region of the θAA-space. On the other hand, θb

varies between 0 and 1.
(2) In the case of S ∩ B model, the percolation curves

(obtained for different values of θAB) are contained between
two limit lines: the line determined by the jamming condition
θAA = θj − θAB and the line θb = 1. θAB varies between 0 and
≈ 0.58. As θAB = 0, only AA dimers are present in the system,
and the critical curve corresponds to the already known case
of S ∩ B model for isotropic dimers on square lattices [39,40].

As θAB ≈ 0.58, the critical curve is reduced to only one point
[θAA ≈ 0.32,θb = 1]. This point is the intersection point of
the two limit lines. θAB ≈ 0.58 is the critical concentration
of defective AB dimers. Above this concentration, S ∩ B

percolation is impossible.
(3) More complex is the situation for S ∪ B model. In this

scheme, the percolation curves show two different behaviors
depending on the values of θAB . For θAB � 0.58, critical
curves extend from the coordinate axis (θb = 0) to the abscissa
axis (θAA = 0). As 0.58 < θAB � θj , percolation is impossible
for θb = 0, and a minimum fraction of bonds is needed for
percolation. This minimum fraction of bonds is calculated
by setting θAA = θj − θAB (jamming condition). On the other
hand, the intersection points between the critical curves and the
abscissa axis are obtained by setting θAA = 0 and varying θAB

between 0 and θj . In the case of θAB = 0, the critical fraction
of bonds is equal to 0.5. This value represents the well-known
percolation threshold for the standard bond percolation model
on square lattices [6]. In the limit of θAB = θj , the critical
fraction of bonds is equal to 0.4053. Then, the effect of
the presence of defective dimers in the S ∪ B scheme could
be summarized as follows. For θAB = 0, the critical curve
corresponds to the already known case of S ∪ B model for
isotropic dimers on square lattices [19,39,40] and extends
from θb = 0 to θb = 0.5. As θAB is increased, the range of
values of θb for which percolation occurs is reduced. For the
maximum possible value of the fraction of defective dimers
θAB = θj , the percolation curve is reduced to only one point
[θAA = 0,θb ≈ 0.4053].

(4) The complete phase diagram presented in this work
offers a simplified representation of the problem of percolation
of heterogeneous particles (particles containing conductive
and nonconductive segments) in amorphous solids, where the
presence of defects in the system is simulated by introducing a
fraction of defective (empty) bonds. In this context, the results
obtained are very useful as a first tool to predict the behavior
of a system governed by a large number of parameters.

Finally, the accurate determination of the critical exponents
ν, β and γ revealed that, regardless the model (S ∩ B or S ∪ B)
and the values of θAA, θAB , and θb considered, the problem
belongs to the same universality class as two-dimensional
random percolation model.
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FIG. 6. (a) Fraction of percolating lattices RX
L (X = U, A, I as

indicated) as a function of the bond concentration θb for L = 128,
θAA ≈ 0.30, and θAB ≈ 0.13 (S ∪ B model). (b) Same as part (a) for
θAA ≈ 0.60 and θAB ≈ 0.13 (S ∩ B model). In all cases, the numerical
values were calculated on a set of 100 000 independent samples. Solid
(open) symbols represent data obtained using Algorithm 1 (2).

APPENDIX

Here we provide the details of the deposition algorithms
discussed in the manuscript.

Dimer deposition mechanisms

The dimers are deposited randomly, sequentially, and
irreversibly on the lattice. The process is the following:

(1) One lattice site i is chosen at random.
(2) If the site i is empty, a second site is randomly selected

from its four neighbors.
(3) If both sites are unoccupied, a dimer (AA or AB)

is deposited on those two sites. Otherwise, the attempt is
rejected. The sequence (1)–(3) is called elemental deposition
step (EDS), and it corresponds to the well-known conventional
dimer-filling problem [29–31].

(4) First, EDSs are repeated until the desired concentration
θAA of AA dimers is reached; and second, EDSs are repeated
until the desired concentration θAB of AB dimers is reached.
This algorithm will be called Algorithm 1.

Equivalent configurations can be obtained by initially
depositing all dimers on the lattice up to desirable total
concentration θT = θAA + θAB , and then randomly differen-
tiating these dimers on AB and AA types according to their
concentration. This algorithm will be called Algorithm 2.

The jamming properties depend only on the structure of
the deposited particles and, consequently, are not affected
by the particular sequence in which the AA and AB dimers
are deposited on the lattice. With respect to the percolation
properties, we verified that both deposition algorithms are
equivalent. This situation is clearly reflected in Fig. 6, where
the probabilities RU

L , RI
L, and RA

L are reported for two typical
cases: (a) θAA ≈ 0.30 and θAB ≈ 0.13 (S ∪ B model); and (b)
θAA ≈ 0.60 and θAB ≈ 0.13 (S ∩ B model). In all cases, the
numerical values were calculated on a set of 100 000 indepen-
dent samples with L = 128. Solid (open) symbols represent
data obtained using Algorithm 1 (2). The excellent agreement
observed between the curves corresponding to Algorithm 1 and
Algorithm 2 supports the equivalence between both deposition
mechanisms [41]. Similar results were obtained for several
values of θAA, θAB and L. Due to computational efficiency
considerations, Algorithm 1 will be used in this paper.
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