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It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar
field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of
previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing
the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations
living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime
than the age of the universe. This situation arises when the mass of the scalar field distribution is much
smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these
long-lived field configurations wigs. Here we extend our previous work to include the gravitational
backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically
symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black
holes. These configurations interpolate between boson star configurations and Schwarzschild black holes
dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical
evolutions of initial data sets extracted from our approximate solutions support the validity of our approach.
Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper
they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these
configurations could describe the innermost regions of dark matter halos.
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I. INTRODUCTION

There is now compelling evidence for the existence of a
fundamental scalar field in nature, given the recent dis-
covery of a new particle at the LHC consistent with the
Higgs boson in the standard model [1,2]. At a more
phenomenological level, however, scalar fields with a
deeper substructure have been well-known at least since
the dawn of nuclear physics. Nowadays scalar fields are
widely used in particle physics, in string theory, and also in
cosmology, representing an active area of research in
gravitational physics [3].
Along these lines, axionlike particles and other light

scalar fields have been considered as possible candidates
for dark matter [4–6]. At cosmological scales, the highly
populated, low-energy excitations of a scalar field could
drive the expansion of the universe during the matter
dominated era [7–9]. Possible mechanisms to excite these
long-wavelength modes in a macroscopic way include a
regime of thermal equilibrium with the standard model

sector giving rise to the appearance of a cosmological Bose-
Einstein condensate [10–13], or a nonthermal vacuum
realignment of the axion potential in the early universe
[14,15]. Furthermore, it has been shown that the large scale
structure that emerges as a consequence of the gravitational
instability of the primordial perturbations in this matter
component is consistent with observations as long as the
mass of the scalar particle is not too light, μ ≳ 10−22 eV
[16–19]. The QCD axion is probably the best motivated
and well-known realization of this scenario [20–23],
although there have been many other proposals with a
similar spirit [24–30] motivated to some extent by the
absence of any direct or indirect positive signal of the
existence of thermal WIMPs in astrophysical observations
and/or ground-based detectors.
At the scale of galaxies, the wave properties of an

ultralight matter component could in addition alleviate
some of the classic discrepancies of the standard cold dark
matter model [4–6]. On the one hand, the presence of light
particles in the universe suppresses the mass power
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spectrum below a characteristic length scale. For the highly
populated zero mode of a dark matter boson with a mass of
the order of μ ∼ 10−22 eV, this scale can be of astrophysical
interest, reducing the number of low-mass halo objects
from gravitational instability and alleviating in this way the
“missing satellites problem” [31]. Moreover, using cosmo-
logical nonlinear codes for the study of structure formation,
large concentrations of ultralight low-energy scalars have
been identified to smooth the innermost regions of galactic
halos through the formation of solitonic wavelike objects in
their centers [32–36]. These boson stars admit a description
in terms of a classical field theory [37,38], and more
interestingly can alleviate the so called “cusp/core prob-
lem” of the standard cosmological scenario [39]. Although
possible sources of tension between cosmological and
galactic observations in this model have been recently
identified in e.g. Refs. [40–42], an ultralight scalar dark
matter particle is today a hot research topic of modern
cosmology.
However, these solitonic coherent macroscopic scalar

excitations in the galactic center are likely not alone since
most galaxies are expected to host supermassive black
holes. It has been known for some time that if a galactic
dark matter halo is described in terms of a boson star, then
such a configuration cannot live forever [43]. The inter-
action of an ultralight scalar field with a black hole has been
considered in some detail in Refs. [44–50], and extremely
long-lived scalar field configurations (referred to as “quasi-
bound” states in the following) have been constructed in
the test-field regime of the theory [48–50]. Moreover, the
distribution of a massive scalar field surrounding a black
hole has been shown to give rise to very rich dynamics [51–
54] and to field configurations that fall off so slowly to the
point that they may coexist with the black hole for
cosmological times [48,49]. These results encourage fur-
ther studies of the properties of fundamental fields as a solid
candidates to describe the dark matter, providing an
alternative to the more usual particlelike description.
In a series of previous papers [48–50], we provided a

detailed analysis for the propagation of a massive Klein-
Gordon field on a fixed, Schwarzschild background. Among
other results, we showed thatwhen theComptonwavelength
of the field is much larger than the Schwarzschild radius of
the black hole, configurations which persist in the vicinity of
the horizon for cosmological times do exist [48], that such
field distributions are generic [49], and that their late time
behavior from arbitrary initial configurations can be
described using semi-analytic calculations without the need
of performing a Cauchy evolution [50].
Clearly, there are several natural extensions of this work

towards a more realistic model. One pressing goal is the
inclusion of the gravitational backreaction of the scalar
field that has been neglected in our previous calculations,
implying that our results so far are only applicable to
distributions whose mass is small enough such that the

gravitational field is dominated by the one generated by the
black hole. However, this is clearly not the case for dark
matter halos surrounding the black hole at the galactic
centers. A further goal is to take into account the angular
momentum of the black hole, although the effects of the
rotation are probably only important for an accurate
description of the scalar field distribution in the region
close to the event horizon. Some work in these directions
has already been carried out by different groups.
Numerical calculations of the full nonlinear Einstein-

Klein-Gordon system of equations for the evolution of
massive and massless scalar fields around nonrotating and
rotating black holes have been performed in Ref. [52]. The
authors report that some fraction of the initial scalar field is
accreted by the black hole, leading to an increase in its
mass, while another fraction remains in the vicinity of the
event horizon with a distribution resembling that of
quasibound states in the test-field approximation. In
Ref. [55,56], long-term evolutions of spherically symmetric
scalar field configurations around black holes were also
studied by numerical means. Using Gaussian packets as
initial data for the scalar field, the evolutions yield
configurations describing nonrotating black holes sur-
rounded by scalar clouds. It was found that, for initial
configurations consisting of a black hole with a rich scalar
environment, after a highly dynamical stage the evolution
settles down to states which are consistent with the quasi-
bound states. In both works [52,55], it has been found that
the scalar field oscillates with a combination of well-
defined frequencies, and exhibits a characteristic beating
pattern which is due to the combination of two frequencies
lying close to each other, as predicted by previous calcu-
lations in the test-field approximation [57]. Further numeri-
cal work [58,59] has revealed the existence of stationary
solutions of the full nonlinear Einstein-Klein-Gordon
equations branching off the Kerr solution (dubbed Kerr
black holes with scalar hair), provided the rotational
parameter of the underlying Kerr black hole assumes some
special values. This shows that infinitely long-lived con-
figurations of scalar fields may survive in the vicinity of
certain spinning black holes.
The present manuscript provides new results regarding

the description of self-gravitating scalar field configura-
tions in the presence of nonrotating black holes, and it
extends our previous work in Refs. [48–50] to the regime in
which the gravitational backreaction of the scalar field
becomes relevant. In particular, we present a new method
for constructing initial data sets which are devised to
represent a time slice of a scalar field distribution surround-
ing a black hole and surviving the presence of the horizon
for extremely long periods of time. Similar states have been
previously identified in numerical simulations, but contrary
to our construction, these simulations were performed
starting from either rather generic initial configurations
or from initial data motivated by results from the test-field
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limit, where large amounts of the field content are lost in
the initial stages of the evolution. Furthermore, we also
present for the first time an approximate semi-analytic
description of these self-gravitating objects, dubbed black
hole scalar wigs in this paper, that can be used to explore
their characteristic frequencies of oscillation and decaying
time scales without the need of performing a time
evolution.
In order to achieve this, we introduce an approximation

method for solving the Einstein-Klein-Gordon system in
the presence of black holes. This technique consists in
proposing a coherent state ansatz (in which the scalar field
has a harmonic time dependence) similar to that of a static
boson star, with the important difference that the standard
regularity conditions at the origin are replaced by an
appropriate “horizon boundary condition”, where purely
outgoing boundary conditions are imposed for the scalar
field. The configurations constructed in this way do not
yield exact solutions of the Einstein-Klein-Gordon equa-
tions; nevertheless, and as we show, they provide a model
for black hole scalar wigs which is accurate for large time
spans. Additionally, our configurations can be used to
construct exact initial data sets. Based on a numerical
evolution of the full Einstein-Klein-Gordon system starting
with such sets we prove the viability of our approximation
method.
The remaining part of this work is organized as follows.

In Sec. II, we present the Einstein-Klein-Gordon system as
well as a simple method for constructing spherically
symmetric initial data sets for this problem. Next, in
Sec. III, we review well-known solutions describing static
boson stars or quasibound states living on a Schwarzschild
background and mention some of their most important
properties that are relevant for the investigation that
follows. In Sec. IV, we present the main result of this
paper, namely our approximation method for computing
long-lived, self-gravitating scalar field configurations sur-
rounding black holes. This method leads to a nonlinear
radial eigenvalue problem which is solved numerically. By
construction, these new configurations interpolate between
the static boson stars and the quasibound states on the fixed
Schwarzschild background, and the verification of these
limits from the numerical data is also shown in Sec. IV.
Next, in Sec. V we perform numerical evolutions of the
spherically symmetric Einstein-Klein-Gordon equations
without further approximations, starting with initial data
corresponding to a fixed time slice of the solutions
constructed in Sec. IV. We find that the solutions computed
from the numerical time evolution slowly decay in time and
oscillate at rates which are in excellent agreement with the
approximate solutions, validating our approach. Finally,
conclusions and a discussion about the lifetime of some of
the black hole scalar wigs models discussed in this article
are given in Sec. VI.
Throughout this paper we work with Planck units, in

which the gravitational constant, the speed of light and

Planck’s constant are set to one, such that all quantities are
dimensionless. Additionally, we use the signature conven-
tion ð−;þ;þ;þÞ for the spacetime metric.

II. THE SPHERICAL EINSTEIN-KLEIN-GORDON
PROBLEM

In this section, we briefly review the equations of motion
describing a spherically symmetric, self-gravitating scalar
field configuration and introduce the choice of variables
and gauge conditions we find useful for our investigation.
The main result of this section is the presentation of the
Einstein-Klein-Gordon system in the form of Eqs. (5)
and (9). As a by-product, we also obtain a simple method
of constructing spherically symmetric initial data sets.
Without loss of generality we can parametrize the

spherically symmetric spacetime line-element in terms of
Arnowitt-Deser-Misner (ADM) variables,

ds2 ¼ −α2dt2 þ γ2ðdrþ βdtÞ2 þ r2dΩ2: ð1Þ

Here α denotes the lapse function, β the radial component
of the shift vector, γ2 the radial-radial component of the
three-metric, and dΩ2 ¼ dϑ2 þ sin2 ϑdφ2 the standard
line-element on the unit two-sphere. Due to the spherical
symmetry and choice of coordinates, these quantities
depend only on time t and the areal radius r, but not on
the angular variables ϑ and φ.1

Although the parametrization of the metric tensor in
terms of the variables ðα; β; γÞ is useful for many calcu-
lations, in this paper we find it more convenient to work
with the slightly different set of quantities ðα; ν; mÞ. Here,
as before, the function α denotes the lapse, which deter-
mines the future-directed unit normal covector nμ ¼ −α∇μt
to the slices of constant time t ¼ const., the function ν
refers to the quantity

ν ≔ −gμνð∇μrÞnν; ð2Þ

which is slice dependent as well, whereas m is the Misner-
Sharp mass function [60] which is invariantly defined in
terms of the areal radius r and its differential ∇μr as
follows:

1 −
2m
r

≔ gμνð∇μrÞð∇νrÞ: ð3Þ

1In the standard ADM formalism, the lapse function and the
shift vector are usually associated with the gauge degrees of
freedom corresponding to the choice of the spacetime coordi-
nates. In our case, the spatial coordinates are fixed by choosing
the areal radius r and the spherical coordinates ϑ and φ.
Therefore, we do not have the freedom of choosing both α
and β arbitrarily anymore; however, we can still choose a
combination of these two quantities, as we will do later.
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The relation between the ADM variables ðα; β; γÞ and the
new set of quantities ðα; ν; mÞ that we use in this paper is
given by

β ¼ αν; γ ¼
�
1 −

2m
r

þ ν2
�

−1=2
: ð4Þ

The functions ðα; ν; mÞ are related to the matter distri-
bution through Einstein’s field equations, Gμν ¼ κTμν,
which imply

D0ð2mÞ ¼ κr2ðνS − γ−1jÞ; ð5aÞ

2m0 ¼ κr2ðρ − γνjÞ; ð5bÞ

ðlog αÞ0 ¼ γ2
�
−D0νþ

m
r2

þ κr
2
S

�
: ð5cÞ

Here κ ¼ 8π is the gravitational coupling constant (remem-
ber that we work in Planck units), D0 ≔ nμ∂μ ¼ α−1∂t −
ν∂r is the derivative in the normal direction to the
hypersurfaces of constant time, and the prime denotes
the derivative with respect to r. The source terms ρ, j and S
are defined as the following contractions of the stress
energy-momentum tensor Tμν with the normal vector nμ

and the unit radial vector field wμ ¼ γ−1δμr orthogonal to it:

ρ≔ nμnνTμν; j≔−nμwνTμν; S≔ wμwνTμν: ð6Þ

So far these expressions are general and are applicable to
any matter fields in spherical symmetry.
However, in this paper wewill restrict our attention to the

macroscopic, coherent, solitonic excitations of a canonical
complex scalar field Φðt; rÞ with an internal Uð1Þ global
symmetry and, for simplicity, no self-interactions. For this
matter component the energy-momentum tensor can be
expressed in the form

Tμν ¼ Reð∇μΦ�∇νΦÞ − 1

2
gμνð∇αΦ�∇αΦþ μ2Φ�ΦÞ; ð7Þ

such that

ρ ¼ 1

2
ðjΠj2 þ jχj2 þ μ2jΦj2Þ; ð8aÞ

S ¼ 1

2
ðjΠj2 þ jχj2 − μ2jΦj2Þ; ð8bÞ

j ¼ −ReðΠ�χÞ: ð8cÞ

Here Φ� denotes the complex conjugate of Φ, Π ≔ D0Φ is
the conjugate momentum associated with the scalar field,
χ ≔ γ−1Φ0, and μ is the mass of the corresponding scalar
particle.

The Klein-Gordon equation ð∇ν∇ν − μ2ÞΦ ¼ 0 for the
dynamical evolution of the scalar field can be cast into the
following form:

D0Φ ¼ Π; ð9aÞ

D0Π ¼ 1

αγr2

�
r2
α

γ
Φ0
�0

− KΠ − μ2Φ: ð9bÞ

Herein, K is the trace of the extrinsic curvature associated
with the constant time slices, which can be computed from
the functions ν, γ and j ¼ −ReðΠ�χÞ, see below for details.
As previously discussed in this section, ν is a gauge
parameter which can be freely specified. Given appropriate
initial and boundary data, the lapse function α can then be
obtained by integrating Eq. (5c), the radial-radial compo-
nent of the three-metric γ2 from Eq. (4), and the mass
function m can be computed from Eq. (5a), from Eq. (5b),
or from a combination of the two.
We end this section with the following important remark.

By solving the single Eq. (5b), we may determine a
spherically symmetric initial data set satisfying the con-
straint equations of the Einstein-Klein-Gordon system. To
demonstrate this result, we first note that the components of
the extrinsic curvature associated with the hypersurfaces of
constant time t are

krr ¼
1

γ
D0γ −

1

α
ðανÞ0; ð10aÞ

krB ¼ 0; ð10bÞ

kAB ¼ −
ν

r
δAB; ð10cÞ

where A, B ¼ ϑ, φ. Next, using Eqs. (5a) and (5c) we can
rewrite the radial-radial component as

krr ¼ −ν0 −
κr
2
γj: ð11Þ

Now let mðrÞ and νðrÞ be any two smooth functions
satisfying Eq. (5b) with γ ¼ ð1 − 2m=rþ ν2Þ−1=2. Then,
we claim that the three-metric γðrÞ2dr2 þ r2dΩ and extrin-
sic curvature whose components are given by the expres-
sions in Eqs. (11), (10b) and (10c) satisfy the Hamiltonian
and momentum constraint equations. To check the claim,
we first notice that momentum constraint in spherical
symmetry yields the single equation

krr −
1

2
ðrkAAÞ0 ¼ −

κr
2
γj; ð12Þ

which is trivially satisfied by virtue of Eqs. (10c) and (11).
Next, the Hamiltonian constraint is a consequence of the
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momentum constraint and Eq. (5b), and the claim is then
proven.
Therefore, given any initial scalar field configuration

½ΦðrÞ;ΠðrÞ� and a choice for the gauge function νðrÞ one
can generate an initial data set for the spherically symmetric
Einstein-Klein-Gordon system by solving the single
Eq. (5b) for the mass function mðrÞ. Subsequently, this
data may be evolved in time by means of Eqs. (5) and (9)
and a suitable gauge condition for ν. We will use this
procedure to construct appropriate initial data sets repre-
senting a moment of time of self-gravitating scalar wigs
surrounding black holes in Sec. IV. These data sets will
be evolved numerically in Sec. V using an independent
method.

III. BRIEF REVIEW OF STATIC BOSON STARS
AND OF QUASIBOUND STATES SURROUNDING

BLACK HOLES

In this section, we provide a brief overview of two
different well-known applications of the spherically sym-
metric Einstein-Klein-Gordon system, Eqs. (5) and (9)
above. In both of them the scalar field describes a coherent
state of the form

Φðt; rÞ ¼ estψðrÞ; ð13Þ

with s ¼ σ þ iω a complex constant and ψðrÞ a complex-
valued function depending on the areal radius coordinate r
only. Here σ ≤ 0 denotes the decay rate of the state, whileω
describes the frequency of its oscillatory behavior.
Alternatively, one might think of −is ¼ ω − iσ as a
complex frequency with positive imaginary part describing
the decay rate. As we discuss next, the ansatz in Eq. (13) is
appropriate to describe both static boson stars and
quasibound scalar field configurations surrounding a
Schwarzschild black hole in the test field approximation.
Although these solutions have been extensively studied in
the literature, we review their most important properties in
the next two subsections since they will be essential for the
motivation of the more general construction for the self-
gravitating scalar soliton wigs of Sec. IV.

A. Static boson stars

Static boson stars are described in terms of globally
regular, localized solutions to the spherically sym-
metric Einstein-Klein-Gordon system, where the field
describes a coherent excitation of the form in Eq. (13)
with s ¼ iω purely imaginary and ψðrÞ real-valued. In
the gauge ν ¼ 0, the system in Eqs. (5b), (5c) and (9)
reduces to

m0 ¼ κr2

4γ2

�
ψ 02 þ γ2

�
μ2 þ ω2

α2

�
ψ2

�
; ð14aÞ

α0

α
¼ γ2

m
r2

þ κr
4

�
ψ 02 − γ2

�
μ2 −

ω2

α2

�
ψ2

�
; ð14bÞ

1

αγr2

�
r2
α

γ
ψ 0
�0

−
�
μ2 −

ω2

α2

�
ψ ¼ 0; ð14cÞ

where γ ¼ ð1 − 2m=rÞ−1=2.
Demanding regularity at the origin

mðr ¼ 0Þ ¼ 0; ð15aÞ

αðr ¼ 0Þ ¼ αc; ð15bÞ

ψðr ¼ 0Þ ¼ ψc; ð15cÞ

ψ 0ðr ¼ 0Þ ¼ 0; ð15dÞ

and asymptotic flatness at spacial infinity, ψðr → ∞Þ ¼ 0,
one obtains a nonlinear eigenvalue problem for the fre-
quency ω. Here ψc and αc are two free positive arbitrary
constants. Note, however, that the system in Eqs. (14) is
invariant under the rescaling ðα;ωÞ ↦ λðα;ωÞ with some
positive constant parameter λ, and hence the value of the
lapse at the origin αc is not really physical, although one
usually chooses this function in such a way that
αðr → ∞Þ ¼ 1. Solving this problem gives rise to a
discrete family of frequencies ωnðψcÞ for each central
value of the scalar field ψc, where n ¼ 1; 2; 3;… labels the
different possible solutions. More details about these states
are given shortly.
Since the integration of the system is done numerically,

in practice one can find the eigenfrequencies ωnðψcÞ by
means of a shooting algorithm. To proceed, one integrates
Eqs. (14) outwards, starting from the initial conditions in
Eq. (15), setting αc ¼ 1 for convenience, and fine-tunes the
value of the frequency ω to match the asymptotically flat
solution ψðr → ∞Þ ∼ exp½−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2=α2

p
r� at a large but

finite value of the radial coordinate rmax,

ψ 0ðrmaxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −

ω2

α2

s
ψðrmaxÞ; ð16Þ

increasing the value of rmax until the shooting parameter
converges numerically. We choose the solution as the one
which satisfies the outer boundary conditions for some final
rmax within a given tolerance. The “correct” values of αc
and ω can then be restored a posteriori by making use of
the rescaling ðα;ωÞ ↦ λðα;ωÞ of the Einstein-Klein-
Gordon system, with the value of λ computed such that
αðrmaxÞγðrmaxÞ ¼ 1 (as occurs for the Schwarzschild sol-
ution) at the outermost point of the spatial numerical grid.
We will follow a similar procedure later in Sec. IV when
constructing self-gravitating scalar field configurations in
the presence of black holes.
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Notice that in order for ψðrÞ to decay at infinity, one
needs jωj < μ, which puts an upper bound on the frequen-
cies ωnðψcÞ. The solution corresponding to its lowest
possible magnitude, n ¼ 1, describes the ground state,
for which the function ψðrÞ has no zeros. In contrast to
this, the function ψðrÞ for the excited states with n > 1
have n − 1 nodes. However, only the ground state is stable
under small perturbations [61], and for that reason only this
mode can be relevant for late time phenomena.
For a given mass of the scalar particle, μ, the field

amplitude at the origin can be varied continuously from
zero to ψ crit

c ∼ 0.26, increasing in this way the mass
mðr → ∞Þ of the self-gravitating object. Configurations
with an amplitude larger than ψ crit

c are also unstable against
small perturbations [62], and thus they are not of interest for
our purposes in this paper. A plot showing the typical
profile of the function ψðrÞ for the ground state is exhibited
in Fig. 1. In this case, we have fixed μ ¼ 0.1, although this
profile can be easily rescaled to an arbitrary value of the
scalar field mass using the invariance of the system in
Eqs. (14) under the transformation

μ→ aμ; ω→ aω; r→ a−1r; m→ a−1m; ð17Þ

with ψ , α and γ unchanged. In order to make contact with
an ultralight axion dark matter component, one would
choose a ¼ 8.2 × 10−51 μ½10−22 eV�=μ, where here
and in the following μ and μ½10−22 eV� refer to the scalar
field mass in Planck units and units of 10−22 eV,
respectively. Likewise, the characteristic astrophysical
mass and length scales can be obtained from the relations
m½108 M⊙� ¼ 1.3 × 104 ðmμÞ=μ½10−22 eV� and r½pc� ¼
6.4 × 10−2ðμrÞ=μ½10−22 eV�, where m and r refer to the
mass and radius in Planck units. Further properties of the
boson star solutions and their interpretation in terms of
conserved quantities are discussed in Ref. [38].

B. Quasibound states on a Schwarzschild background

Like the case discussed in the previous subsection,
quasibound states living on a Schwarzschild black hole
background are obtained from the coherent state ansatz in
Eq. (13). However, contrary to the case of boson stars, we
neglect now the self-gravity of the scalar field, which is
equivalent to setting κ ¼ 0 in Einstein’s field equations.
Under these assumptions, integration of Eqs. (5) gives (up
to a multiplicative constant which can be reabsorbed in the
definition of t)

α2ðrÞ ¼ 1

γ2ðrÞ ¼ 1 −
2m
r

þ νðrÞ2; m ¼ MBH; ð18Þ

with MBH the (constant) mass of the black hole. The
gauge choice ν ¼ 0 leads to the Schwarzschild metric in
standard Schwarzschild coordinates, which are regular in
the exterior region 2m < r < ∞ but singular at the
horizon, r ¼ 2m. The alternative choice νðrÞ ¼ 2m=
rð1þ 2m=rÞ−1=2, which we will use later, leads to ingoing
Eddington-Finkelstein (iEF) coordinates, which are regular
for all 0 < r < ∞ including the future horizon.2

Introducing the ansatz in Eq. (13) into the Klein-Gordon
Eq. (9), we obtain, in the gauge ν ¼ 0,

1

r2
ðr2α2ψ 0Þ0 −

�
μ2 þ s2

α2

�
ψ ¼ 0: ð19Þ

Note that the differential equation for the wave-function
ψðrÞ has precisely the same form as the one in the boson
star case, Eq. (14c), except that now s ¼ σ þ iω has in
general a nontrivial negative real part σ < 0, and the metric
coefficients α2ðrÞ and γ2ðrÞ correspond to those of the
Schwarzschild black hole, see Eq. (18), instead of being
determined by the self-gravity of the scalar excitation.
Solutions to Eq. (19) with a purely real frequency −is ¼ ω
which decay at spatial infinity still exist; however, they are
not regular on the future (nor the past) horizon, and in this
sense they do not correspond to physical situations [48]. As
mentioned previously, the negative real part σ < 0 is
necessary for the solution to decay in time and in this
way evading the hypothesis of the no-hair theorems.
As we have discussed in detail in Ref. [50], the quasi-

bound states are obtained by demanding purely outgoing
boundary conditions on the black hole horizon, and can be
expressed in terms of the confluent Heun function,

0 200 400 600
r

0

0.003

0.006

0.009

0.012
ψ

μ=0.1
ψ=0.0113
ω=0.0990

FIG. 1. The wave function ψðrÞ of a static boson star in the
ground state configuration, with μ ¼ 0.1, ψc ¼ 0.0113 and
ω ¼ 0.0990.

2In what follows, and in order to distinguish them from
Schwarzschild coordinates, these coordinates will be denoted
by ðtEF; rÞ and referred to as “ingoing Eddington-Finkelstein
coordinates” even though this name usually refers to the
coordinates ðtEF þ r; rÞ in the literature [63].
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ψðrÞ ¼ z2MBHse−ΩðsÞzHeunCð2ΩðsÞ; 4MBHs; 0; δ;−δ;−zÞ;
ð20Þ

where z ≔ r=ð2MBHÞ − 1, ΩðsÞ ¼ 2MBH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ s2

p
,

δ ¼ Ω2ðsÞ þ ð2MBHsÞ2, and HeunC is the confluent
Heun function as defined in MAPLE. By definition
HeunC is regular close to the origin and equal to one at
z ¼ 0, so the expression in Eq. (20) provides a closed-form
representation of the scalar field in the vicinity of the black
hole horizon. (Note, however, that since ReðsÞ < 0, the
term z2MBHs in Eq. (20) is not regular at z ¼ 0, so these
scalar field configurations are still singular on t ¼ const.
hypersurfaces. We will return to this point in a moment.)
For certain discrete values of s, the function defined on the
right-hand side of Eq. (20) decays to zero as z → ∞, and
these give rise to the quasibound states.
Detailed studies of quasibound states in Schwarzschild

and Kerr black holes have been given in several papers
using different techniques, see for instance Refs. [64–69].
Perhaps the most accurate way to find the quasibound states
is via the continued fraction method first employed by
Leaver [70] in the context of the quasinormal modes, and
later used by Dolan [67] to find the frequencies of the
quasibound sates, see also [71,72] and references therein.
Furthermore, analytic expressions for the discrete frequen-
cies, valid for small values of the dimensionless parameter
ε ≔ MBHμ, were obtained long ago by Ternov et al. [65]
and Detweiler [66]. When evaluating these expressions for
angular momentum number l ¼ 0, they reduce to

σ¼−16με5; ωn¼�μ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

ε2

n2

r
; n¼ 1;2;3;…; ð21Þ

for small ε. Although the derivation of the results in
Refs. [65,66] require l > 0, it turns out that the formula
in Eq. (21) agree very well with the complex frequencies
computed for l ¼ 0 using the continued fraction method,
see [49].
The quasibound states can be interpreted by reformu-

lating Eq. (19) as a time-independent Schrödinger equation
for the field rψ , whose effective potential has a well; see,
for instance, Refs. [48,49] for further details. For the case of
interest in this paper where l ¼ 0, the potential only
develops a well if the product of the black hole and the
scalar field masses satisfies the inequalityMBHμ < 1=4, i.e.
MBH½108M⊙�μ½10−22 eV�≲ 3.3 × 103 in physical units, so
this is a necessary condition for the existence of quasibound
states if no angular momentum is present in the field
configuration [48]. Their time decay is then due to
tunneling of the field through the potential barrier towards
the horizon. Although they do probably not form a basis for
the solution space, we have shown in [50] that the late time
behavior of the scalar field can be accurately described
by a linear combination of quasibound states, where the

coefficients can be computed from the initial data alone by
taking appropriate integrals.
The profile ψðrÞ of the ground state for the case in which

MBH ¼ 1 and μ ¼ 0.1 is plotted in Fig. 2. It is instructive to
compare this plot with the one showing a typical profile of a
static boson star in Fig. 1. In particular, note there are both
real and imaginary contributions to the wave function when
the black hole is present. There is again a scaling symmetry
similar to that in Eq. (17),

μ→aμ; s→as; r→a−1r; MBH→a−1MBH; ð22Þ

with ψ unchanged, that makes it possible to scale the
quasibound sates to an arbitrary value of the scalar field
mass. Note that the product MBHμ is invariant under this
symmetry transformation, so we can use the solution in
Fig. 2 to reach any value of MBH and μ in the combina-
tion MBHμ ¼ 0.1.
For a typical scenario involving an ultralight scalar field

one obtains, using the same conversion factor a ¼ 8.2 ×
10−51μ½10−22 eV�=μ as in the case of the static bosons stars,

t1=2½years� ∼
0.2

μ½10−22 eV�
�

μ

jσj
�
; ð23Þ

for the half-lifetime of a quasibound state in physical units,
where μ and σ are expressed in Planck units. For the case of a
ground state with no angular momentum, l ¼ 0, and as long
as the inequality MBH½108 M⊙�μ½10−22 eV� ≪ 1.3 × 104

between the black hole and scalar field masses is satisfied,
the expression for the decay rate in Eq. (21) provides a time
scale that is of cosmological interest, namely

0.4

0.5

0.6

0.7

0.8

0.9

ψ
R

0 5 10 15 20 25 30 35 40 45 50
r

0

0.2

0.4

0.6

ψ
I

0.4

0.6

0.8

1

1.2

ψ
R

Schwarzschild Eddington-Finkelstein

0 5 10 15 20 25 30 35 40 45 50
r

-0.4

-0.2

0

0.2

0.4

ψ
I

FIG. 2. Left column: The real and imaginary parts of the wave
function ψðrÞ describing a quasibound state in the ground state
configuration, withMBH ¼ 1, μ ¼ 0.1 and s¼−0.0000153092þ
0.09945i, in Schwarzschild coordinates. Right column: Same as
in left column but in iEF coordinates. Note that the use of iEF
coordinates moves the divergence of the wave function from the
horizon to the spacetime singularity.

SELF-GRAVITATING BLACK HOLE SCALAR WIGS PHYSICAL REVIEW D 96, 024049 (2017)

024049-7



t1=2½years� ∼
5.6 × 1018

M5
BH½108 M⊙�μ6½10−22 eV� ; ð24Þ

as has been previously noticed in Refs. [48–50]. However,
we emphasize that this expression does not take into account
the self-gravity of the boson particles that would constitute
the darkmatter halo.The correct half-lifetimeof these objects
which takes into account the gravitational backreaction will
be presented in Sec. VI.
We end this section with the following important remark

concerning the energy associated with the quasibound
states. The energy of the scalar field contained in a constant
t surface is given by (see the Appendix)

EðtÞ ¼ 4π

Z
∞

2m
ρr2dr; ð25Þ

where the energy density for the coherent state ansatz in
Eq. (13) turns out to be

ρ ¼ 1

2
e2σt

�
α2jψ 0j2 þ

�
μ2 þ jsj2

α2

�
jψ j2

�
: ð26Þ

Close to the horizon, the term α2jψ 0j2 diverges as z4MBHσ−1,
and since σ < 0, this implies that EðtÞ is infinite. Therefore,
the test scalar field has infinite energy on Schwarzschild
t ¼ const. slices [48,67]. In the self-gravitating case of
Sec. IV, such an infinite energy will be clearly problematic,
since it implies an infinite change in the mass function, see
the Appendix.
On the other hand, when measuring the energy of the

scalar field contained in a spacelike slice that penetrates the
future horizon, one obtains finite expressions. For instance,
choosing iEF coordinates, where the time coordinate t is
replaced with

tEF ¼ tþ 2MBH ln ðr=2MBH − 1Þ; ð27Þ

the ansatz in Eq. (13) takes the form

Φðt; rÞ ¼ estEFψEFðrÞ; ð28Þ

where in contrast to the function ψðrÞ,

ψEFðrÞ ¼ e−ΩðsÞzHeunCð2ΩðsÞ;4MBHs;0;δ;−δ;−zÞ; ð29Þ

is now regular at the horizon, z ¼ 0 [67]. The expressions
for the metric coefficients,

αEF ¼ γ−1EF ¼
�
1þ 2MBH

r

�
−1=2

; ð30aÞ

νEF ¼
2MBH

r
αEF; ð30bÞ

as well as the scalar field energy,

EEFðtEFÞ ¼ 4π

Z
∞

2m

�
ρ −

2MBH

r
j

�
r2dr; ð31Þ

are now also manifestly regular, where

ρ −
2MBH

r
j ¼ 1

2
e2σtEF

��
1 −

2MBH

r

�
jψ 0

EFj2

þ
�
μ2 þ

�
1þ 2MBH

r

�
jsj2

�
jψEFj2

�
: ð32Þ

Applying the balance law (A9) to the solution in Eq. (29),
one can simplify the expression for the energy to

EEFðtEFÞ ¼ 4π
ð2MBHjsjÞ2

jσj e−2jσjtEF ; ð33Þ

which shows that EEFðtEFÞ decays exponentially as
tEF → þ∞. This decay is due to the slow accretion of
the scalar field mode into the black hole, the difference

EEFðtð2ÞEF Þ − EEFðtð1ÞEF Þ describing the total flux of scalar
radiation that has fallen into the black hole during the

time interval ½tð1ÞEF ; t
ð2Þ
EF �. In the limit tð1ÞEF → −∞, the constant

Eddington-Finkelstein time slices approach the bifurcate
horizon, where the constant Schwarzschild time t slices
intersect the horizon, and thus this flux diverges and
describes the difference between the (finite) energy

EEFðtð2ÞEF Þ and the (infinite) energy EðtÞ.
Clearly, since we are neglecting the gravitational back-

reaction of these objects, the quasibound states described in
this subsection only make physical sense if their amplitude
is small enough (although at the mathematical level the
solutions given in Eqs. (20) and (29) can be rescaled by an
arbitrary factor since the differential Eq. (19) is linear and
homogeneous). For large amplitudes, the gravitational
effects associated with the scalar field need to be treated
self-consistently by solving the coupled Einstein-Klein-
Gordon equations. This is the main subject of the next
section.

IV. SELF-GRAVITATING SCALAR WIGS
SURROUNDING BLACK HOLES

After reviewing the main properties concerning static
boson stars and quasibound states surrounding
Schwarzschild black holes, here we present the main
new results of this work, namely the extension of the
quasibound states to the self-gravitating regime. After
presenting our semi-analytic approximation method for
constructing these modes, we provide numerical results and
analyze the properties of these solutions. As expected, and
as we also show explicitly here, these solutions reduce to
the quasibound states in the limit in which the ratio between
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the masses of the scalar field configuration and the black
hole is small. In the opposite regime, that is, when the black
hole mass is small compared to the total mass in the system,
we show that these objects approach standard static boson
star configurations. The results of this section will be
corroborated with numerical evolutions in Sec. V.

A. The approximation method

Our approximation method is based on the same ansatz
in Eq. (13) that leads to the static boson stars and the
quasibound states of Secs. III A and III B, respectively.
Like in the quasibound case but unlike in the boson star
one, we now assume s to have a negative real part σ < 0,
that is, the scalar field decays exponentially in time.
However, unlike the quasibound case but like in the boson
star one, we now consider the full coupled Einstein-Klein-
Gordon system in Eqs. (5) and (9).
In order to obtain the relevant equations in this section,

we assume that the scalar field Φ and its canonical
momentum Π can be described, approximately, by a
coherent state of the form

�Φðt; rÞ
Πðt; rÞ

�
¼ est

�
ψðrÞ
πðrÞ

�
: ð34Þ

Plugging this ansatz into Eqs. (5b), (5c), and (9), and
adopting the ν ¼ 0 gauge yields the following system for
the Misner-Sharp mass m, lapse α, and radial wave ψ ,
functions:

m0 ¼ κr2

4γ2
e2σt

�
jψ 0j2 þ γ2

�
μ2 þ jsj2

α2

�
jψ j2

�
; ð35aÞ

α0

α
¼ γ2

m
r2

þ κr
4
e2σt

�
jψ 0j2 − γ2

�
μ2 −

jsj2
α2

�
jψ j2

�
; ð35bÞ

1

αγr2

�
r2
α

γ
ψ 0
�0

−
�
μ2 þ s2

α2
þ κr
2α2

e2σtsReðsψψ 0�Þ
�
ψ ¼ 0;

ð35cÞ

with γ ¼ ð1 − 2m=rÞ−1=2, and where we have used the fact
that K ¼ −κrγj=2. These are the equations describing our
boson cloud configurations with a black hole in their center,
analogous to those in Eqs. (14) for the case of an isolated
static boson star (note that indeed these equations reduce to
those in Eq. (14) when the frequency is real, −is ¼ ω, and
ψ is real-valued). Like in the boson star case, at spatial
infinity we still impose asymptotic flatness conditions in
order to obtain localized objects with finite mass. However,
now the regularity conditions at the origin r ¼ 0 described
in Eqs. (15) need to be replaced with appropriate horizon
boundary conditions which incorporate the presence of the
black hole.

This will be discussed next; however, before doing so, it
is important to emphasize the following point: the remain-
ing Einstein Eq. (5a) yields

_m ¼ κr2

2γ2
e2σtReðsψψ 0�Þ; ð36Þ

which shows that the metric cannot be strictly static, since
σ ¼ ReðsÞ < 0. This is also evident from Eqs. (35a)
and (35b), due to the presence of the time-dependent
factors e2σt in their right-hand sides. Therefore, our method
consists in finding solutions of the system in Eq. (35) in
which the factors e2σt are set to one, for r-dependent
functions m, α, and ψ , and interpret them as approximate
solutions of the Einstein-Klein-Gordon system for which
the metric coefficients m and α are time-independent while
the scalar field has the time-dependent, slowly decaying
form in Eq. (13). Although this clearly does not yield an
exact solution, it should provide a reasonably good
approximation, at least for time scales 0 ≤ t ≪ 1=σ.3

Alternatively, instead of thinking of the solutions of the
system in Eq. (35) as representing approximate spacetime
solutions of the Einstein-Klein-Gordon system, we may use
them as exact initial data for the full coupled field
equations by defining the extrinsic curvature as discussed
towards the end of Sec. II. In fact, this is what we will do in
Sec. V in order to explicitly check the validity of our
approximate spacetime solutions.
After these remarks regarding the nature and validity of

our approximation, we now focus our attention to the
horizon boundary conditions. Close to the black hole, the
boson cloud configurations are expected to have approx-
imately the same form as a quasibound state, since in this
region the gravitational potential is dominated by the black
hole and the metric tensor is expected to be approximately
the Schwarzschild one, at least locally. Therefore, we
assume that sufficiently close to the inner boundary the
scalar field is accurately described by a Klein-Gordon field
propagating on a fixed Schwarzschild background of
positive mass m0 ¼ MBH, say, and thus the function
ψðrÞ should have the form given in Eq. (20). However,
as discussed in Sec. III B, this expression diverges as
r → r0 ≔ 2MBH, and further the energy of the scalar field
also diverges in this limit, yielding an infinite contribution
to the mass function. Therefore, it is not possible to impose
horizon boundary conditions at the inner boundary r ¼ r0,
since both ψ and m diverge there.
For this reason, our strategy is to impose horizon

boundary conditions at some radius r1 ¼ r0ð1þ z1Þ
slightly larger than r0, where the value of the function ψ
and its first derivative are determined according to the

3Time-dependent corrections to the metric can be considered
by expanding the metric field in powers of e2σt, but this will be
left to future investigation.
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expression in Eq. (20). More precisely, the horizon boun-
dary condition for the system in Eq. (35) are:

mðr1Þ ¼ MBH þ Δmðr1Þ; ð37aÞ

αðr1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2mðr1Þ
r1

s
; ð37bÞ

ψðr1Þ ¼ Az2MBHs
1 fðz1Þ; ð37cÞ

ψ 0ðr1Þ ¼
�
s
z1

þ 1

r0

d log f
dz

ðz1Þ
�
ψðr1Þ; ð37dÞ

with a nonvanishing constant A and where z1 ¼ r1=r0 − 1
and the function f is given by

fðzÞ ¼ e−ΩðsÞzHeunCð2ΩðsÞ; 4MBHs; 0; δ;−δ;−zÞ: ð38Þ

These conditions replace those in Eqs. (15) when a black
hole is present. As in the case of boson stars, the value of
the lapse function α at r ¼ r1 is unimportant, because the
system (35) with t ¼ 0 is still invariant with respect to the
rescaling ðα; sÞ ↦ λðα; sÞ by a positive constant λ.
Furthermore, since this system is also invariant with respect
to a global phase shift transformation, ψ ↦ eiφψ , it is
sufficient to take the constant A real and positive. For small
enough values of A one should (and one does indeed, as
shown further below) reproduce the quasibound states,
since in this case the self-gravity of the scalar field can be
neglected. However, in the method described in this section

there is no restriction on the magnitude of A, except that the
larger its value, the closer to the black hole horizon we
should fix the interior boundary conditions, such that the
quantity Δmðr1Þ=MBH remains small.
Now we address the problem of the computation of

Δmðr1Þ. Under our assumption wherein the self-gravity of
the scalar field may be neglected close to the black hole
horizon, we have seen in Sec. III B that while the energy E
diverges on constant Schwarzschild time slices, it is finite
when computed on spacelike slices which penetrate the
future horizon. Therefore, we can first compute the change
of mass Δm due to the scalar field in iEF coordinates
ðtEF; rÞ and then change the result to the gauge ν ¼ 0we are
using in this section.
Given the value for Δm at some point ðtEF; rÞ ¼ ð0; r0Þ,

say, the value for Δm at any other point can be obtained
using the integral formula (A12) in the Appendix. Noticing
that in the test field limit ψEFðrÞ ¼ z−2MBHsψðrÞ ¼ AfðzÞ,
we obtain

ΔmðtEF; r1Þ ¼ Δmð0; r0Þ þ 2δ

Z
r1

r0

�
ρ −

2MBH

r
j

�
r2dr

þ δ
jsj2
jσj r

2
0ð1 − e2σtEFÞ; ð39Þ

where we have set δ ≔ κA2=4, and where ρ − 2MBHj=r is
given by Eq. (32) in which ψEF is replaced by ψEFðrÞ ¼
fðzÞ. The integral expression on the right-hand side can be
further simplified by applying the balance law (A9) to the
solution in Eq. (29), which yields the identity

Z
r1

r0

��
1 −

r0
r

�
jf0ðrÞj2 þ

�
μ2 þ

�
1þ r0

r

�
jsj2

�
jfðrÞj2

�
r2dr

¼ r20
jσj jsj

2jfðr0Þj2 −
r2

jσj
�
r0
r
jsj2jfðrÞj2 þ

�
1 −

r0
r

�
Reðsff0�Þ

�
r¼r1

: ð40Þ

Therefore, the integral in Eq. (39) can be eliminated completely and we end up with the simple expression

ΔmðtEF; r1Þ ¼ Δmð0; r0Þ þ
δ

jσj
�
r20jsj2 − e2σtEFr21

�
r0
r
jsj2jfj2 þ

�
1 −

r0
r

�
Reðsff0�Þ

�
r¼r1

�
ð41Þ

for the change of the mass function at the point ðtEF; r1 >
r0Þ due to the presence of the scalar field. In the following,
we set the integration constant Δmð0; r0Þ to zero, which
implies that at iEF time tEF ¼ 0 the apparent horizon has
areal radius r0: 2mðtEF ¼ 0; r0Þ ¼ r0. Notice that in this
case, the correction ΔmðtEF; r1Þ is small for tEF ≥ 0 as long
as δ=jσj ≪ 1 and r1 lies close to r0.
Finally, we transform this formula back to a constant

Schwarzschild time slice by setting tEF ¼ 2MBH logðzÞ,
such that

ΔmðrÞ ≔ ΔmðtEF; rÞjtEF¼2MBH log ð r
2MBH

−1Þ

in the horizon conditions in Eq. (37). This concludes the
discussion of our horizon boundary conditions, and we are
now ready to solve the system in Eq. (35).

B. Results from a numerical shooting algorithm

The system of Eqs. (35) with e2σt ¼ 1 and boundary
conditions as expressed in Eqs. (37) can be solved for any
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value of s. Nevertheless, since we are mainly interested in
self-gravitating compact objects, we need to search for
those values of s for which the scalar field decreases
asymptotically to zero at spatial infinity, such that the mass
m and the lapse α converge to a constant value at large radii.
Again, this constitutes a nonlinear eigenvalue problem for
the complex frequency −is.
In order to proceed, we follow an approach similar to that

outlined in Sec. III A for the boson star case, except that
now we start the integration from the inner boundary at
r ¼ r1 where the horizon boundary conditions (37) are
imposed, and integrate towards an outer boundary at a large
but finite value of the radial coordinate, r ¼ rmax, using a
second order shooting method. For configurations which
are localized in space, it follows from Eqs. (35) that the
scalar field must decay exponentially at spatial infinity,
more specifically, it should behave as ψðrÞ ∼
exp½−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ s2=α2

p
r� for r → ∞.4 This behavior is analo-

gous to that of a static boson star; however, now the
function ψðrÞ and the frequency −is are in general
complex. Accordingly, the outer boundary condition in
Eq. (16) are generalized to

ψ 0ðrmaxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ s2

α2

s
ψðrmaxÞ: ð42Þ

This translates into two different conditions for the real,

ψ 0
RðrmaxÞ ¼ −λRψRðrmaxÞ þ λIψ IðrmaxÞ; ð43Þ

and imaginary parts

ψ 0
IðrmaxÞ ¼ −λRψ IðrmaxÞ − λIψRðrmaxÞ; ð44Þ

of the wave function, where λ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ s2=α2

p
, and since s

is complex, λ is a complex number as well, i.e.
λ ¼ λR þ iλI. For any given value of the field amplitude
A, there is an infinite tower of possible states snðAÞ
satisfying the system (35) together with the boundary
conditions in Eqs. (37) and (42). However, in the following
we will focus our attention on the ground state only, that is,
the state for which the magnitude of ω is minimal. These
self-gravitating objects are referred to as black hole scalar
wigs in this paper.
The behavior of the different physical quantities in a

typical black hole scalar wig is exhibited in Fig. 3, where
the real and imaginary parts of the wave function, ψðrÞ, as
well as the Misner-Sharp mass, mðrÞ, and lapse function,
αðrÞ, are shown for a combination of the parameters such
that MBH ¼ 1, μ ¼ 0.1, and A ¼ 0.0354. Here the inner
boundary has been chosen at r1 ¼ 2.1MBH, close enough to
the apparent horizon, such that the final results are not
substantially affected by the choice of r1. The scaling
symmetry of the Einstein-Klein-Gordon system that has
been mentioned previously now implies

μ → aμ; s → as; r → a−1r;

MBH → a−1MBH; m → a−1m; ð45Þ

with ψ , α and γ unchanged. This makes it possible to map
given solutions in the parameter space ðMBH; μ; AÞ to new
ones, keeping the product MBHμ and field amplitude A
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FIG. 3. The real and imaginary parts of the wave function ψðrÞ, the Misner-Sharp mass mðrÞ, and the lapse function αðrÞ, for a black
hole scalar wig with A ¼ 0.0354,MBH ¼ 1, and μ ¼ 0.1. Here the inner boundary has been chosen at r1 ¼ 2.1MBH. See the fourth line
in Table I for more details about this self-gravitating object.

4More precisely, the asymptotic behavior of the scalar field is
given by ψðrÞ ∼ ðr=2MÞ−pe−qr, with p ¼ 1þ 2Mq −Mμ2=q,
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ s2=α2∞

p
, and M ¼ m∞ the total mass. However, this

only adds small terms of the order 1=r to the right-hand sides of
Eqs. (42), (43) and (44), which can be neglected provided rmax is
chosen large enough.
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fixed. This feature will turn out to be essential in the
discussion section, when making contact with real astro-
physical objects.
Note that the value of A affects the local solution

determining the horizon boundary conditions in
Eqs. (37). In particular, increasing the field amplitude
gives rise to solutions with higher ratiosMT=MBH between
the total and black hole masses, whereMT is defined as the
value of the Misner-Sharp mass function at the final
numerical integration point rmax,

MT ≔ mðrmaxÞ: ð46Þ

In analogy with static boson stars, this behavior is expected
at least until a critical value of A is reached, beyond which
the ratio MT=MBH starts to decrease and the system
becomes unstable. We leave a more detailed analysis
regarding this conjecture for future work. Table I shows
the relevant quantities for some self-gravitating configura-
tions with different values of A, again with MBH ¼ 1
and μ ¼ 0.1.
As may be appreciated from Fig. 4, the total massMT of

these configurations with fixed parameters MBH ¼ 1 and
μ ¼ 0.1 but varying field amplitude A we have constructed
can have their mass as large as several times the black hole
mass, so the self-gravity of the corresponding objects is
important. For these parameter choices, they have larger
decay rates than their associated quasibound states with
negligible self-gravity, as can be noticed for instance in
Table I. The presence of the black hole also compresses the
scalar field configurations, making the self-gravitating
objects more compact than the corresponding quasibound
state. This can be seen in Fig. 5, where we compare the
energy density of a quasibound state (i.e. no backreaction
included), with the corresponding self-gravitating object of
same amplitude. For the sake of illustration we also show
the profile of a static boson star in this figure, which is
regular at the origin.

C. Boson stars and quasibound states as a limit
of the black hole scalar wigs

As discussed previously, if the wave function ψðrÞ and
the mode frequency are chosen to be real, then the non-
linear eigenvalue problem of the previous subsection
reduces to the Einstein-Klein-Gordon system describing
the static boson stars of Sec. III A. If on the contrary we
turn off the self-gravitational interaction of the scalar field,
κ ¼ 0, then this same system of equations describes the
quasibound states of Sec. III B. In what follows, we show
explicitly how the black hole scalar wigs smoothly transit
between boson star configurations and Schwarzschild black
holes dressed with long-lived scalar test field distributions

TABLE I. Decay rates σ, frequencies ω, and total to black hole
mass ratios MT=MBH, for some self-gravitating configurations of
different field amplitudes A, but same values of MBH ¼ 1 and
μ ¼ 0.1. Here the frequencies and decay rates have been
normalized in such a way that the lapse function is fixed to
one at spatial infinity. See Fig. 4 for a corresponding plot of
MT=MBH vs. A.

A σ ω MT=MBH

A1 ¼ 7.71 × 10−7 −1.533 × 10−5 9.944 × 10−2 1.00001
A2 ¼ 5.66 × 10−3 −2.041 × 10−5 9.911 × 10−2 1.39012
A3 ¼ 1.14 × 10−2 −3.196 × 10−5 9.845 × 10−2 2.00696
A4 ¼ 3.54 × 10−2 −1.205 × 10−4 9.608 × 10−2 3.65115
A5 ¼ 6.36 × 10−2 −3.282 × 10−4 9.256 × 10−2 4.37737
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FIG. 4. The total to black hole mass ratio, MT=MBH, of a black
hole scalar wig of MBH ¼ 1 and μ ¼ 0.1 as function of the field
amplitude A.
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FIG. 5. The energy density ρ as defined in Eq. (26) for different
configurations of same field amplitude A. Note that the black hole
scalar wig appears more compact than the quasibound state. At
large radii the presence of the central black hole is not relevant
and the black hole scalar wig and the static boson star approach
each other.
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in appropriate limits of the model parameters. (See Fig. 6
for a clarifying picture.)
In order to do so, we analyze a family of black hole scalar

wigs characterized by the same value of the parameters μ
and A, but different black hole masses MBH. In particular,
we fix μ ¼ 0.1 and A ¼ 5.66 × 10−3, and solve the system
in Eqs. (35) as explained in Sec. IV B, starting from
MBH ¼ 0.06, and increasing the value of the black hole
mass up to MBH ¼ 1. Each configuration in this family has
well-defined outputs for the wave function ψðrÞ and mode
frequency −is, and in what follows we discuss the behavior
of these two quantities as function of the total to black hole
mass ratio MT=MBH.
In Fig. 7, left column, we plot the real and imaginary

parts of s ¼ σ þ iω as a function of MT=MBH, for
configurations in the above mentioned family. As expected,
when the black hole dominates the self-gravitational

configuration, i.e. MT=MBH → 1, the black hole scalar
wig frequencies approach those associated with a quasi-
bound state, in this case the one characterized by MBH ¼ 1
and μ ¼ 0.1. In the opposite limit, when the mass of the
black hole is negligible compared to the total mass of
the self-gravitating object, MT=MBH → ∞, we recover the
frequency of the static boson star with μ ¼ 0.1 and
A ¼ 5.66 × 10−3. Note that this is a nontrivial result,
because even if the black hole is so small that it barely
contributes to the overall gravitational field in the exterior
region, we cannot think of it simply as a small perturbation
of the metric, due to the large compactness ratio 2m=r in
the vicinity of the apparent horizon.
Similarly, in the right column of Fig. 7 we show the

smooth transition along the aforementioned family of
scalar wigs from the boson star configurations to the
Schwarzschild black hole dressed with the quasibound
state, now at the level of the wave function.

V. FULL NONLINEAR DYNAMICAL EVOLUTION
AND COMPARISON

In order to validate our approximation scheme and to
explore its limitations, in this section we perform numerical
evolutions of the spherically symmetric Einstein-Klein-
Gordon system. More specifically, we use the self-
gravitating approximate configurations constructed in the
previous section to provide initial data for the metric and
the scalar field, which are then evolved numerically and
compared to the approximate solutions. We show that the
latter remain accurate for large amounts of time, supporting
the validity of our approximation method.
In order to carry out the numerical evolutions, we first

rewrite the initial data in terms of horizon-penetrating
coordinates. More specifically, we change the time coor-
dinate t associated with the gauge ν ¼ 0 to an iEF one,

011
0.095

0.096

0.097

0.098

0.099

0.1

ω

boson star

quasi-bound state

011
M

T
/M

BH

-0.004

-0.003

-0.002

-0.001

0

0.001

σ

boson star

quasi-bound state

0 100 200 300 400
0

0.002

0.004

0.006

0.008

ψ
R

Boson star (M
T
/M

BH
→ ∞)

M
T
/M

BH
=16.1

M
T
/M

BH
=1.85

M
T
/M

BH
=1.07

Quasi-bound state (M
T
/M

BH
=1)

0 100 200 300 400
r

-0.001

0

0.001

0.002

ψ
I

FIG. 7. Real and imaginary parts of s ¼ σ þ iω, as well as of the wave function ψðrÞ, as a function of the ratio,MT=MBH, for a family
of black hole scalar wigs characterized by μ ¼ 0.1, A ¼ 5.66 × 10−3. Notice that a quasibound state and a static boson star are recovered
in the limits MT=MBH → 1 and MT=MBH → ∞, respectively.

FIG. 6. The different limits of a black hole scalar wig. If the
mass of the black hole tends to zero, static boson stars are
recovered. As long as the field amplitude remains small, the
quasibound states are a good approximation.
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defined as in Eq. (27), keeping the radial coordinate r
unchanged and MBH denoting the apparent horizon mass.
In these new coordinates, the solutions to our approxima-
tion method in Eq. (13) take the form

Φðt; rÞ ¼ estEFðr=2MBH − 1Þ−2MBHsψðrÞ; ð47Þ

with the function ψðrÞ constructed as described in
Sec. IV B on the interval ½r1; rmax�. In order to extend this
function on the computational domain ½0; rmax� as needed to
solve the Hamiltonian constraint within the puncture
approach (see below), we linearly interpolate it between
ψð0Þ ¼ 0 and the value it assumes at r ¼ r1. Although this
interpolation is somehow crude, it occurs entirely within
the horizon and thus does not affect the solution in the
exterior region.
For the evolution of the initial data we adopt the

Baumgarte-Shapiro-Shibata-Nakamura formalism of
Einstein’s equations in spherical symmetry [73,74], in
which the three-metric has the form

dl2 ¼ e4ϕðt;rÞ½aðt; rÞdr2 þ bðt; rÞr2dΩ2�: ð48Þ

Here eϕ is a conformal factor and a and b are metric
coefficients. It has been shown that this formulation is
particularly suitable for evolving spacetimes with black
holes [55,74]. The gauge conditions we use are the 1þ log
condition for the lapse and a Gamma-driver condition for
the shift vector in order to avoid the slice stretching of
coordinates. Although the dynamical gauge conditions
adopted here differ from the ones described in previous
sections, they have become standard in the numerical
evolution of black hole spacetimes and thus we adopt
them here as well, providing an extra test to validate the
findings in Sec. IV.
The initial scalar field distribution described by Eq. (47)

at tEF ¼ 0 is shown in Fig. 8. In order to obtain the initial
metric and curvature coefficients, we solve the Hamiltonian
and momentum constraints in spherical symmetry assum-
ing, without loss of generality, that the initial slice is
conformally flat, that is að0; rÞ ¼ bð0; rÞ ¼ 1. Under these
assumptions the Hamiltonian and momentum constraints

reduce to ordinary differential equations for the conformal
factor, eϕ, and the radial component of the extrinsic
curvature. Furthermore, we write the conformal factor in
a puncturelike form,

eϕ ¼ 1þMBH

2r
þ uðrÞ; ð49Þ

assuming that uðrÞ vanishes at spatial infinity. We solve the
coupled equations using a fourth order Runge-Kutta
integrator. Initially, the shift is set to zero and we use a
precollapsed lapse of the form α ¼ e−ϕ.
We numerically evolve the Einstein-Klein-Gordon sys-

tem for the models A1 and A2 of Table I. The first case
constitutes a small deviation from the test field regime,
since the scalar field only contributes little to the total mass
of the system, whereas in the second case the mass of the
scalar configuration is much larger and comparable to that
of the black hole. In both cases, we found that the solution
in Eq. (47) accurately describes the evolution over large
(coordinate) time spans; at least for time periods for which
we were able to maintain the code stable (t ∼ 1800) before
noise coming from the boundaries interferes with the field.
In Fig. 9, we plot the metric coefficients aðtf ; rÞ, bðtf ; rÞ

and αðtf ; rÞ, where tf ∼ 1800 is the final time of evolution.
In Fig. 10, we show the evolution of the maximum
(minimum) value of a (b). The behavior of these two
fields reflects the evolution of the metric. Initially, the
metric is conformally flat and then it changes in time until it
settles down to a new state which remains almost
unchanged.
A Fourier transform of the maximum value of the real

part of the scalar field shows that it oscillates according to
Eq. (47). The time of evolution is just large enough to
find the values of the frequencies ω1 ¼ 0.09943 and
ω2 ¼ 0.09914 for the two cases A1 and A2, respectively,
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FIG. 8. Real and imaginary parts of the scalar field Φ as a
function of r at fixed iEF time tEF ¼ 0.
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that are in a good agreement with the values given in
Table I.
In Fig. 11, we also monitor the mass of the scalar

configuration throughout the evolution by integrating over
the density given in Eq. (8a) with nμ ¼ α−1ðδμt − βδμrÞ the
four-velocity of the Eulerian observers in the 1+log slice.
We found the time decay rate via a numerical fit for this
mass of the form e2σnt. Our results indicate that after an
initial stage of complex dynamics, the mass presents an
exponential decay, indicating that the field is falling into the
black hole. For model A1 we find a time rate decay σn for
the field of the order−1.5 × 10−5, whereas for model A2 we
obtain −2 × 10−5, which are roughly the values of the
predicted rates given in Table I. These results are consistent
with the expression for the time evolution of the energy
given by Eq. (33) in iEF coordinates. This result is
interesting because it shows that once we have constructed
the black hole scalar wigs on a regular foliation (the tEF ¼ 0
slice) it remains finite in the other regular foliation
determined by the 1+log slicing condition.
The main constraint in getting longer evolutions is the

fact that the time step is limited by the Courant condition
which requires it to be sufficiently smaller than the spatial
grid size, which in turn needs to be small in order to keep
the numerical solution stable. Thus, in our current setup, it

is not possible to obtain evolutions for very large times with
a spatial domain that is large enough such that the solution
is not contaminated by boundary effects.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have extended the quasibound states to
the regime where the gravitational backreaction of the
scalar field is relevant. In order to do so, we introduced a
new approximation method for semi-analytically solving
the Einstein-Klein-Gordon system in presence of black
holes. This method consists in proposing a coherent state
ansatz for the scalar field which, together with appropriate
(inner) horizon boundary conditions and asymptotic flat-
ness at spatial infinity, leads to a nonlinear eigenvalue
problem which is solved numerically. The viability of our
approximation has been confirmed using numerical evo-
lutions of the full nonlinear equations. Although in this
work we have focused on nonrotating systems, it should in
principle be possible to generalize it to more sophisticated
scenarios including rotation.
Our results corroborate that, as expected from previous

numerical dynamical evolutions [52,55], the quasibound
states possess analogues in the self-gravitating case, yield-
ing self-consistent, asymptotically flat solutions of the
Einstein-Klein-Gordon equations. We called these self-
gravitating objects black hole scalar wigs, in analogy with
the Schwarzschild scalar wigs described in our previous
work [49,50].
These objects are characterized by three independent

parameters: the scalar field mass μ (like is the case for any
solution of the Klein-Gordon equation), the black hole
massMBH (in analogy to the quasibound states), and a field
amplitude A (which plays a similar role to the central value
of the scalar field in the static boson star case).5 However,
thanks to the scaling symmetry described in Eq. (45), it is
possible to eliminate one of the mass scales and character-
ize black hole scalar wigs solely in terms of two parameters.
It is convenient to express these two parameters in terms of
the following dimensionless quantities: the product MBHμ
between the black hole and the scalar field masses (in
Planck units), and the ratioMT=MBH between the total and
black hole masses.
As expected, the black hole scalar wigs change consid-

erably as MT=MBH increases, undergoing a transition from
a quasibound state in the test field limit when
MT=MBH ¼ 1, to cases in which the mass of the scalar
wig is several times larger than the mass of the black hole
and represents a large boson star with a tiny black hole in its
center (the black hole being tiny when compared to the size
of the whole self-gravitating object). In the context of the
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5A further parameter in our setup is the position r1 at which the
inner boundary conditions are specified; however, as long as it is
chosen close enough to the apparent horizon it does not affect the
physical results.
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ultralight axion dark matter models, these latter situations
may represent the large core of the halos in presence of
central supermassive black holes.
In order to make contact with real astrophysical systems,

we conclude with some rough estimates regarding the
lifetime of the scalar field configurations constructed in this
article. In order to do so, we first note that the half-lifetime
of the black hole scalar wigs can be estimated from the
results given in Sec. IV, together with the expression in
Eq. (23). Next, as a specific example we consider the family
of black hole scalar wigs characterized by μ ¼ 0.1 and
A ¼ 5.66 × 10−3. Fitting the magnitude of the decay rate as
a function of the total to black hole mass ratio to a power
law, see Fig. 12, one obtains the empirical formula

jσj ≈ a1ðMT=MBHÞa2 ; ð50aÞ

where

a1 ¼ 1.8582 × 10−5; a2 ¼ −1.9489: ð50bÞ

Introducing Eqs. (50) into the expression (23) yields

t1=2½years� ∼
1.1 × 103

μ½10−22 eV�
�

MT

MBH

�
2

: ð51Þ

The black hole mass MBH in Planck units belonging to a
particular configuration in the above family can be read off,
or extrapolated, from the upper horizontal axis in Fig. 12
and converted to physical units using the conversion
formula MBH½108 M⊙� ¼ 1.3 × 103MBH=μ½10−22 eV�. As
an example, considering a case where the scalar field
configuration is hundred times higher than the black hole
mass, Eq. (51) yields a time of the order of ten million

years, corresponding to a black hole of mass 109 M⊙.
Comparing this with the order 1013 years obtained from
Eq. (24) for a test field configuration with the same value
for the product of MBHμ ∼ 103, we notice that the self-
gravitating configurations may have much smaller life-
times, although we stress that this conclusion is based on a
very specific family of black hole scalar wigs. We leave a
more systematic analysis of these states and their appli-
cability to real astrophysical systems for future work.
In practice, the self-gravitating scalar wigs we have

discussed in this article may be detected through their
dynamical influence on the stars, gas clouds, light rays or
other compact objects surrounding the supermassive black
hole at the center of galaxies. Indeed, the motion of these
bodies is affected by all form of mass contained inside their
orbital radius, that is, by the mass of any (hypothetical)
matter distribution in addition to the black hole mass. As
we have shown, for the case of a scalar field, such
distribution can be several times larger than the actual
mass of the black hole. Near-future observations such as the
Event Horizon Telescope project [75] should yield accurate
estimates for the size of the black hole shadow in
Sagittarius A* and at the center of other galaxies, thus
providing an estimate for the actual black hole mass. If
there was a difference between this mass and the total mass
measured through independent, dynamical observations,
this would be a clear indication for the presence of large
matter distributions surrounding the black hole, such as the
ones discussed in the present work. A further possible
signature for the presence of a scalar wig could be detected
in the gravitational wave signal emitted by the accreted
matter in the form of a monopole black hole ringdown [52].
However, we leave these and other studies for future
investigation.
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APPENDIX: CONSERVATION LAWS FOR
THE SPHERICALLY SYMMETRIC EINSTEIN-

KLEIN-GORDON SYSTEM

The purpose of this appendix is to make a few general
remarks about conservation laws for spherically symmetric
systems, including the Einstein-Klein-Gordon one dis-
cussed in Sec. II. Although the conservation laws we
discuss here are known, they are directly relevant for the
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FIG. 12. Same plot as in Fig. 7 for the magnitude of the decay
rate jσj as a function of the total to black hole mass ratio, now in a
logarithmic scale. This plot makes the power-law behavior for
MT=MBH ≳ 3 of this function evident.
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results presented in this paper, and thus we summarize them
for the convenience of the reader.
It is well known that—unlike in the special relativistic

case—in general relativity the existence alone of a diver-
gence-free stress-energy tensor Tμν is not sufficient to
construct conserved quantities from integrals of Tμν over
spacelike hypersurfaces Σ. The reason for this is that in a
curved spacetime, it is in general not possible to integrate a
vector field over Σ; hence, besides the future-directed unit
normal vector nμ to Σ, a further vector field Xμ is needed to
contract with the stress-energy tensor Tμν. Given such a
vector field Xμ, one introduces the associated “current
density”

JμX ≔ −Tμ
νXν; ðA1Þ

which satisfies the divergence identity

∇μJ
μ
X ¼ S; S ≔ −Tμν∇ðμXνÞ; ðA2Þ

where due to the symmetry of Tμν only the symmetric part
∇ðμXνÞ ¼ ð∇μXν þ∇νXμÞ=2 of the gradient of Xν enters
the “source term” S. In general, S does not vanish.
However, when S ¼ 0, then JμX is divergence-free and in
this particular case integration of Eq. (A2) over a spacetime
region enclosed between two Cauchy surfaces and the
application of Gauss’ theorem leads to the “conserved
charge”

QX½Σ� ¼ −
Z
Σ

JμXnμ
ffiffiffiffiffi
gΣ

p
d3x; ðA3Þ

where Σ denotes one of the Cauchy surfaces and
ffiffiffiffiffi
gΣ

p
d3x

the induced volume element on it. (Here, we have assumed
that the matter fields fall off sufficiently fast in the
asymptotic region for the boundary terms to vanish. If
Tμν does not fall off sufficiently fast or if the spacetime
region over which Eq. (A2) is integrated is enclosed
between two spacelike hypersurfaces Σ1;2 which are not
Cauchy surfaces, then the difference between QX½Σ2� and
QX½Σ1� is given by the boundary flux integrals, see further
below for an example.) In particular, if Xμ is a future-
directed timelike vector field satisfying S ¼ 0 and if Tμν

satisfies the dominant energy condition,6 then the con-
served charge QX is guaranteed to be non-negative, and in
this case it may be associated with “mass” or “energy.”
A particular scenario for which S ¼ 0 occurs when Xμ is

a future-directed timelike Killing vector field, in which case
∇ðμXνÞ ¼ 0 and the quantity QX in Eq. (A3) is just the
conserved energy E associated with the time-invariance

symmetry of the spacetime generated by Xμ. However,
dynamical spacetimes such as the ones analyzed in this
work do not admit any timelike Killing vector fields and in
this case one does not expect a priori the existence of a
timelike vector field Xμ satisfying ∇μJ

μ
X ¼ 0.

Interestingly, spherically symmetric spacetimes provide
an exception to this expectation. In this case, even though
the spacetime might be dynamical, there exists a natural
choice for a vector field Xμ which does lead to a conserved
current density ∇μJ

μ
X ¼ 0. This vector field is known as the

Kodama vector field [76], see also [77]. In order to describe
it, we assume the spacetime to be oriented and denote by
ηαβγδ the natural volume form induced by the spacetime
metric gμν. Denote by feμ2; eν3g a local oriented orthonormal
frame tangent to the invariant two-spheres, and introduce
the antisymmetric tensor field

~ηαβ ≔ ηαβγδe
γ
2e

δ
3:

This ~ηαβ can be identified with the volume form on the two-
dimensional manifold ~M orthogonal to the invariant two-
spheres. Then, the Kodama vector field is defined as

Kμ ≔ ~ημν∇νr: ðA4Þ

By construction, the integral curves of Kμ leave r invariant
and thus Kμ is timelike in the region where the gradient of r
is spacelike, that is, in the region outside trapped spheres.
As a consequence of Einstein’s field equations it is not
difficult to verify that Kμ satisfies

∇μKν þ∇νKμ ¼ κr~ηðμαTνÞα; ðA5Þ

such that the Kodama vector field Kμ is a Killing field
whenever Tμν ¼ 0, or more generally, whenever the pro-
jection of Tμν on ~M is proportional to the induced metric on
~M. In terms of the ADM parametrization of the metric
tensor discussed in Sec. II, we find

Kμ ¼ 1

γ
nμ þ νwμ ¼ 1

αγ
δμt; ðA6Þ

which yields the timelike Killing vector ∂=∂t in the
Schwarzschild case. Remarkably, even when Kμ is not a
Killing vector field, it still yields a conserved current
density when contracted with Tμν. Indeed, using
Eq. (A5), one finds

∇μJ
μ
K ¼ −Tμν∇ðμKνÞ ¼ −

κr
2
~ημνTα

μTαν ¼ 0; ðA7Þ

and thus one obtains a conserved charge QK of the form
given in Eq. (A3). For asymptotically flat, spherically
symmetric spacetimes, this charge coincides with the total
(ADM) mass MADM of the spacetime, as we show next.

6The dominant energy condition states that for any future-
directed timelike vector field uμ the associated current density
Jμu ¼ −Tμ

νuν must be future-directed timelike or null [63].
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More generally, the current density JμK constructed from
the Kodama vector field defined in Eq. (A4) is directly
related to the Misner-Sharp mass function defined in
Eq. (3). In differential form, this relation is given by

κr2JμK ¼ −~ημν∇νð2mÞ; ðA8Þ
which can be deduced from Eqs. (A6) and the field
Eqs. (5a) and (5b) for the mass function m. (Note that
the integrability condition ∇½μ∇ν�ð2mÞ ¼ 0 for obtaining
the mass function through an integral of Eq. (A8) is
equivalent to the conservation law ∇μJ

μ
K ¼ 0.)

Integrating Eq. (A7) over a rectangular region of spacetime
of the form ½t1; t2� × ½r1; r2� × S2 which is enclosed
between the two partial Cauchy surfaces ft1g × ½r1; r2� ×
S2 and ft2g × ½r1; r2� × S2 and using Gauss’ theorem, one
finds the balance law

Z
r2

r1

r2TμνKμnνγdr

				t2
t1

¼
Z

t2

t1

r2TμνKμðγνnν þ wνÞαdt
				r2
r1

:

ðA9Þ

This law could equally well be obtained by integrating the
Eqs. (5a) and (5b) for the mass function m, which, in terms
of the Kodama vector field Kμ, can be rewritten as

∂m
∂t ¼ κr2

2
αTμνKμðγνnν þ wνÞ; ðA10Þ

∂m
∂r ¼ κr2

2
γTμνKμnν: ðA11Þ

Combining Eqs. (A9), (A10) and (A11), we also find the
identity

mðt2; r2Þ ¼ mðt1; r1Þ þ
κ

2

Z
t2

t1

r2TμνKμðγνnν þ wνÞαdtj
r¼r1

þ κ

2

Z
r2

r1

r2TμνKμnνγdrj
t¼t2

; ðA12Þ

which can be used to determine the mass function at an
arbitrary point ðt2; r2Þ of the spacetime manifold from its
value at a fixed reference point ðt1; r1Þ and an integral over
the stress-energy tensor. In particular, when t2 ¼ t1 ¼ t, the
identity (A12) reduces to

mðt; r2Þ ¼ mðt; r1Þ þ
κ

2

Z
r2

r1

r2TμνKμnνγdrj
t

; ðA13Þ

and as long as the dominant energy condition is fulfilled
and Kμ is timelike, it follows that mðr2; tÞ ≥ mðr1; tÞ for
r2 ≥ r1, that is, the mass contained inside a spherical shell
is positive. For an asymptotically flat spacetime, the
Misner-Sharp mass function mðt; rÞ converges to the total
mass MADM when r → ∞ along a hypersurface t ¼ const
which reaches spatial infinity. The identity (A12) is key to
our discussion in Sec. IV.
Finally, we note that, for the particular case where the

matter field is described by a canonical complex scalar field
Φ with a Uð1Þ-symmetric potential, there is an additional
conserved current density which is associated with the
internal Uð1Þ symmetry of the field and is given by

Jμ ¼ −
i
2
½Φð∇μΦ�Þ − ð∇μΦÞΦ��: ðA14Þ

The corresponding conserved charge Q defined by
Eq. (A3) is usually identified with the difference between
the number of particles and antiparticles in the configura-
tion. For the particular case of the static boson stars
discussed in Sec. III A, this quantity is given by

Q ¼ κω

2

Z
∞

0

jψ j2 γ
α
r2dr: ðA15Þ

It should be interesting to analyze the implications of the
conserved quantity Q for the scalar field configurations
surrounding a black hole constructed in this article.
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