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Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev.
Lett. 112, 191101 (2014)], we study odd linear perturbations of the Einstein-Maxwell equations around a
Reissner-Nordström anti–de Sitter black hole. We show that all the gauge invariant information in the
metric and Maxwell field perturbations is encoded in the spacetime scalars F ¼ δðF�

αβF
αβÞ and

Q ¼ δð 1
48
C�
αβγδC

αβγδÞ, where Cαβγδ is the Weyl tensor, Fαβ is the Maxwell field, a star denotes Hodge

dual, and δmeans first order variation, and that the linearized Einstein-Maxwell equations are equivalent to
a coupled system of wave equations for F and Q. For a non-negative cosmological constant we prove that
F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy
horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic
censorship. In the asymptotically anti–de Sitter case the dynamics depends on the boundary condition at the
conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.

DOI: 10.1103/PhysRevD.95.124041

I. INTRODUCTION

General relativity coupled to Maxwell fields admits
static charged black hole solutions in spacetime dimensions
d ¼ 4 and higher. The spacetimes are warped products
M ¼ N ×r2 σ

n of a two-dimensional Lorentzian “orbit
manifold” N with line element ~gabðyÞdyadyb and an n ¼
d − 2 dimensional Riemannian “horizon manifold” σn with
metric ĝABðxÞdxAdxB (see, e.g., [1]),

gαβdzαdzβ ¼ ~gabðyÞdyadyb þ r2ðyÞĝABðxÞdxAdxB: ð1Þ

In four dimensions, the solution with S2 horizon is the
Reissner-Nordström black hole. If we use the standard
angular coordinates ĝijðxÞdxidxj ¼ dθ2 þ sin2θdϕ2 and
static coordinates ðt; rÞ for the orbit manifold, the
Reissner-Nordström metric is given by

gαβdzαdzβ ¼ −fdt2 þ dr2

f
þ r2ðdθ2 þ sin2θdϕ2Þ; ð2Þ

where the norm f of the Killing vector ka ¼ ∂=∂t in (2) is

f ¼ 1 −
2M
r

þQ2

r2
−
Λ
3
r2: ð3Þ

In (3), Λ is the cosmological constant, and M and Q are
constants of integration that correspond to mass and charge,
respectively. The metric (2), together with the Maxwell
field

F ¼ Q
r2
dt ∧ dr; ð4Þ

solves the Einstein-Maxwell field equations

Gαβ þ Λgαβ ¼ 8πTαβ; ð5Þ
∇½αFβγ� ¼ 0; ð6Þ

∇βFαβ ¼ 0; ð7Þ

where

Tαβ ¼
1

4π

�
FαγFβ

γ −
1

4
gαβFγδFγδ

�
: ð8Þ

Note that, since Tαβ is traceless, (5) is equivalent to

Rαβ − Λgαβ ¼ 8πTαβ: ð9Þ

We assumeQ ≠ 0 and focus on the black hole cases, which
are those for which there is an outer static (f > 0) region,
that is, either Λ ≤ 0 and 0 < rh < r < ∞ or Λ > 0 and
0 < rh < r < rc. Here the event and cosmological horizons
r ¼ rh and r ¼ rc are simple zeros of the quartic poly-
nomial r2f if the black hole is nonextremal. The range of
values of M, Q, and Λ giving black holes can be found in
Appendix A of [1].
We are interested in proving the nonmodal linear stability

of the outer static region of the solution (2)–(4) of the field
Eqs. (5)–(8). By this we mean [2,3], showing that

(i) there are gauge invariant (in both the Maxwell and
the linear gravity senses) scalar fields χ∶ M → R
that contain the same information as the perturbation
F αβ ¼ δFαβ of the electromagnetic field and the
gauge class ½hαβ� of the metric perturbation
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hαβ ¼ δgαβ, and measure the distortion of the geom-
etry and the Maxwell field. By “contain the same
information” we mean that hαβ in a given gauge and
F αβ can be obtained by applying some injective
linear functional on the fields χ.

(ii) the fields χ are pointwise bounded on the outer static
region by constants that depend on the initial data of
the perturbation on a Cauchy surface.

The perturbed metric and Maxwell fields can be
expanded in series involving rank 0, 1, and 2 eigentensor
fields of the horizon manifold Laplace-Beltrami (LB)
operator, with “coefficients” that are tensor fields in the
orbit space N ; this is the mode expansion of hαβ and F αβ

[1]. The linearized Einstein-Maxwell equations (LEME) do
not mix modes. A master scalar field N → R can be
extracted for each mode such that the LEME reduce to an
infinite set of scalar wave equations on N , one for each
master scalar field. This was proved in four-dimensional
general relativity in the seminal black hole stability papers
[4–6] and in higher dimensions more recently by Kodama
and Ishibashi (see, e.g., [1,7]). Prior notions of linear
stability are based on the boundedness of the master fields
on the orbit manifold N , we call this modal (linear)
stability. In the case of four-dimensional asymptotically
flat charged black holes the modal linear stability was
proved by Zerilli and Moncrief in the series of articles
[6,8–10] (see also [11]).
The limitations of the modal linear stability notion are

explained in [2,3], where a nonmodal stability concept
based on (i) and (ii) above was proved to hold for the
Schwarzschild and Schwarzschild–de Sitter black holes. In
these papers the fields χ in (i) are gauge invariant
combinations of perturbations of scalars made out of
contractions of the Weyl tensor, its dual, and its first
covariant derivative.
For Einstein-Maxwell black holes the extra degrees of

freedom coming from the Maxwell field have to be
accounted for. Perturbations naturally split into two
decoupled types: odd and even (Sec. II). In this paper we
prove the nonmodal linear stability of the Reissner-
Nordström black hole under odd perturbations. The fields
χ that fulfill the requirements (i) and (ii) above are the first
order perturbation of the scalars obtained by contracting
the Maxwell and Weyl tensors with their Hodge duals:
F ¼ δðF�

αβF
αβÞ andQ ¼ δð 1

48
C�
αβγδC

αβγδÞ. These fields are
shown to satisfy a coupled system of wave equations in the
Reissner-Nordström background, and this fact is used to
prove their pointwise boundedness on the outer static region.
We defer to future work the treatment of even perturbations.

II. LINEARIZED EINSTEIN-MAXWELL
EQUATIONS

Let ðgðεÞαβ; FðεÞαβÞ be a one-parameter family of
solutions of the Einstein-Maxwell Eqs. (8) and (9), with

gðε ¼ 0Þαβ and Fðε ¼ 0Þαβ the Reissner-Nordström fields
(2)–(4). Note that all fields in this paper are assumed to be
jointly smooth in the spacetime coordinates and (in the case
of one-parameter families) the perturbation parameter. The
perturbation fields

hαβ ≡ d
dε

����
ε¼0

gðεÞαβ; F αβ ≡ d
dε

����
ε¼0

FðεÞαβ ð10Þ

satisfy the LEME,

d
dε

����
ε¼0

GαβðgðεÞÞ þ Λhαβ

¼ 2
d
dε

����
ε¼0

½FðεÞαγFðεÞβμgðεÞγμ

−
1

4
gðεÞαβðFðεÞμνFðεÞμ0ν0gðεÞμμ0gðεÞνν0 Þ�; ð11Þ

d
dε

����
ε¼0

∂ ½αFðεÞβγ� ¼ 0; ð12Þ

d
dε

����
ε¼0

∇βFðεÞαβ ¼ 0: ð13Þ

As in Eq. (1), we adopt the notation in [12] and use
lowercase indices a, b, c, d, e for tensors on the orbit
manifold N , uppercase indices A;B;C;D;… for tensors
on S2, and Greek indices for spacetime tensors, and we
follow the additional convention in [3] that

α ¼ ða; AÞ; β ¼ ðb; BÞ;
γ ¼ ðc; CÞ; δ ¼ ðd;DÞ;…: ð14Þ

Tensor fields introducedwith a lower S2 index (say ZA) and
then shown with an upper S2 index are assumed to have
been acted on with the unit S2 metric inverse ĝAB (i.e., in
our example, ZA ≡ ĝABZB), and similarly with upper S2

indices moving down. This has to be kept in mind to avoid
wrong r�2 factors in the equations. ~Da, ~ϵab, and ~gab are the
covariant derivative, volume form (any chosen orientation),
and metric inverse for theN orbit space; D̂A and ϵ̂AB are the
covariant derivative and volume form sinðθÞdθ ∧ dϕ on the
unit sphere. As an example, the Laplacian on scalar fields
can be written in terms of the differential operators ~Da and
D̂A as

∇α∇αΦ ¼ ~Da
~DaΦþ 2

r
ð ~DbrÞð ~DbΦÞ þ 1

r2
D̂AD̂

AΦ: ð15Þ

The linearized field Eqs. (10) and (12) imply that locally
there exists a vector potential Aα such that

F αβ ¼ ∂αAβ − ∂βAα: ð16Þ

JULIÁN M. FERNÁNDEZ TÍO and GUSTAVO DOTTI PHYSICAL REVIEW D 95, 124041 (2017)

124041-2



The linear fields entering the LEME are hαβ and Aα. Under
the index convention (14) the covector field Aα is written

Aα ¼ ðAa; AAÞ: ð17Þ

From the S2 viewpoint Aα contains two scalar fields
Aþ
a ≡ Aa and a covector field AA. Using Proposition 2.1

in [13] and the fact that the first Betti number of S2 is zero
(which implies that divergence-free S2 covectors are of the
form ϵ̂A

BD̂BP, with P an S2 scalar field), we can write
AA ¼ D̂AAþ þ ϵ̂A

CD̂CA−; thus

Aα ¼ ðAþ
a ; D̂AAþ þ ϵ̂A

CD̂CA−Þ: ð18Þ

The scalar fields A� are unique if they are required to
belong to L2ðS2Þ>0 [3], where L2ðS2Þ>lo

is the space of
square integrable functions on S2 orthogonal to the
l ¼ 0; 1;…;lo eigenspaces of the LB operator, and l
labels the LB scalar field eigenvalue −lðlþ 1Þ. The plus
(even) and minus (odd) signs on tensor fields refer to the
way they transform when pulled back by the antipodal map
P on S2 [2].
A symmetric tensor field Sαβ ¼ Sβα,

Sαβ ¼
�
Sab SaB
SAb SAB

�
; ð19Þ

such as the perturbations of the metric, the Einstein, and the
energy momentum tensor fields, contains three S2 scalar
fields Sþab ≡ Sab, two S2 covector fields SaB and a sym-
metric tensor field SAB. The S2 covectors can be decom-
posed as in (18)

SaB ¼ D̂BSþa þ ϵ̂B
CD̂CS−a ; ð20Þ

where again S�a are unique if their components are in
L2ðS2Þ>0. From Proposition 2.2 in [13] and the fact that
there are no transverse traceless symmetric rank two tensor
fields on S2, it follows that

SAB ¼ D̂ðAðϵBÞCD̂CS−Þ þ
�
D̂AD̂B −

1

2
ĝABD̂

CD̂C

�
Sþ

þ 1

2
SþT ĝAB ðSþT ¼ SCCÞ: ð21Þ

The fields S� are unique if required to belong to L2ðS2Þ>1
[3]. In this way, the symmetric field Sαβ is replaced by two
sets of fields, even (þ) and odd (−),

Sαβ ∼ fSþab ¼ Sab; Sþa ; Sþ; SþT g ∪ fS−a ; S−g: ð22Þ

If we decompose the linearized symmetric tensor fields hαβ,
dGαβ=dεj0 ≡ Gαβ and dTαβ=dεj0 ≡ T αβ as in (19)–(22), we
get the following sets of even and odd fields:

hαβ ∼ fhþab; hþa ; hþ; hþT g ∪ fh−a ; h−g; ð23Þ

Gαβ ∼ fGþ
ab; G

þ
a ; Gþ; Gþ

T g ∪ fG−
a ; G−g; ð24Þ

T αβ ∼ fTþ
ab; T

þ
a ; Tþ; Tþ

T g ∪ fT−
a ; T−g: ð25Þ

Group theoretical arguments (refer to Sec. 2 of [13])
indicate that the LEME involving the even fields in (18)
and (23)–(25) decouple from those involving the odd fields,
so we can switch off one sector and study purely odd or
even perturbations. Odd perturbations are the subject of
this paper.
We will find it useful to introduce the square angular

momentum operator

J2 ≡ ð£Jð1Þ Þ2 þ ð£Jð2Þ Þ2 þ ð£Jð3Þ Þ2; ð26Þ

where Jð1Þ, Jð2Þ, and Jð3Þ are S2 (and thus spacetime) Killing
vector fields corresponding to rotations around the orthogo-
nal axis in R3 ⊃ S2, with maximum orbit lengths set to 2π
(e.g., Jð3Þ ¼ ∂=∂ϕ). On S2 scalar fields the operator J2

agrees with the S2 LB operator D̂AD̂A, but these two
operators act differently on higher rank tensors. A key
property of J2 is that it commutes with∇α, ~Da, and D̂A, and
this follows from ½∇a; £Jk � ¼ 0 ¼ ½D̂A; £Jk � ¼ ½ ~Da; £Jk �.
The modal decomposition consists in expanding the S2

scalars in (18) and (23)–(25) in a real basis of spherical
harmonics of S2, which are eigenfields of J2 with eigen-
values −lðlþ 1Þ, the eigenspaces being of dimension
2lþ 1. The differential operators that give a symmetric
tensor Sαβ or a covector Aα in terms of these S2 scalars
commute with J2. Thus, if the S2 scalar fields in (23) and
(18) lie on the l eigenspace, then hαβ;Gαβ;F αβ will all be
eigentensors of J2 with eigenvalue −lðlþ 1Þ; i.e., differ-
ent modes stay unmixed. The distinction between even and
odd modes can now be stated in a precise way: if X� is a
covector (18) or symmetric field Sαβ (19)–(22) of a given
parity, made out of scalars of harmonic numbers (l; mÞ,
then J2X� ¼ −lðlþ 1ÞX� and P�X� ¼ �ð−1ÞlX�.
We will assume that A�, S�a to L2ðS2Þ>0 and S� to

L2ðS2Þ>1, since then the linear operators ðAþ; A−Þ → Aα in
(18), and fSþab; Sþa ; Sþ; sþg ∪ fS−a ; S−g → Sαβ in (21) are
injective [3]. Consequently, the odd sector LEME (11) are
equivalent to

G−
a þ Λh−a ¼ 8πT−

a ; ð27Þ

G− þ Λh− ¼ 8πT−: ð28Þ

A. Odd sector perturbations

Odd perturbations are those for which the plus fields in
(18) and (23) are zero, that is,
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hαβ ¼
�

0 ϵ̂B
CD̂Ch−a

ϵ̂A
CD̂Ch−b D̂ðAðϵBÞCD̂Ch−Þ

�
;

F αβ ¼
�

0 ~Daðϵ̂BCD̂CA−Þ
− ~Dbðϵ̂ACD̂CA−Þ −ϵABD̂CD̂CA−

�
; ð29Þ

with A−, h−a ∈ L2ðS2Þ>0 and h− ∈ L2ðS2Þ>1, which are
conditions that guarantee their uniqueness, as explained at
the end of the previous section.Uð1Þ gauge transformations
of the Maxwell field are of the form Aα → Aα þ ∂αB and
therefore affect only the even piece of the vector potential
(18), leaving A− invariant.
Under a coordinate gauge transformation (infinitesimal

diffeomorphism) along the odd vector field ζα ¼
ð0; ϵ̂ABD̂BξÞ, ξ ∈ L2ðS2Þ>0, hαβ and F αβ transform into
the physically equivalent fields

h0αβ¼hαβþ£ζgαβ; F 0
αβ¼F αβþ£ζFαβ¼F αβ: ð30Þ

We call L− the set of odd solutions ðhαβ;F αβÞ of the LEME
(11)–(13) mod the equivalence relation hαβ ∼ h0αβ above,
that is, if ½hαβ� denotes the equivalence class under the first
transformation (30), then

L− ¼ fð½hαβ�;F αβÞjðhαβ;F αβÞ
is an odd solution of ð11Þ-ð13Þg: ð31Þ

The transformation (30) is equivalent to

h−a → h−a þ r2 ~Daξ; h−→ h−þ r2ξ>1; A−→A−; ð32Þ

and implies that the field A≡ A− is gauge invariant. If we
project h−a ¼ ðh−a Þðl¼1Þ þ ðh−a Þð>1Þ onto its L2ðS2Þðl¼1Þ and
L2ðS2Þ>1 pieces, and similarly for the other fields, and keep
in mind that h− ¼ ðh−Þð>1Þ, we find that

(i) The N 1-form h>1a ∈ L2ðS2Þ>1 defined by

h>1a ≡ ðh−a Þ>1 − r2 ~Daðr−2h−Þ ð33Þ

is gauge invariant.
(ii) There exists a gauge for ðhαβÞ>1 such that h− ¼ 0. In

view of (33), in this gauge

ðhαβÞ>1 ¼
�

0 ϵ̂B
CD̂Ch>1a

ϵ̂A
CD̂Ch>1b 0

�
: ð34Þ

This is the well known Regge-Wheeler (RW) gauge
for ðhαβÞ>1, and it is unique, in the sense that,
according to (32), applying to (34) any gauge
transformation that is nontrivial in the l > 1 sector
spoils the h− ¼ 0 condition.

(iii) For l ¼ 1 the only possible gauge invariant metric
field is [14]

Z ≔ ~ϵcd ~Dc

�
hðl¼1Þ
d

r2

�
: ð35Þ

From now on we work in RW gauge (34), then we set
h− ¼ 0 in (29), and we replace h−a with ha ¼
ðhaÞðl¼1Þ þ h>1a . With this choice the absolute value g of
the determinant of the metric agrees (to linear order) with
the absolute value go of the unperturbed metric determi-
nant, and then

ffiffiffi
g

p ¼ ffiffiffiffiffi
go

p ¼ r2ð~gÞ1=2ðĝÞ1=2;
~g ¼ − detð~gabÞ; ĝ ¼ detðĝABÞ: ð36Þ

To linear order the inverse metric is

gαβ ¼
�

~gab −εr−2ϵ̂BCD̂Cha

−εr−2ϵ̂ACD̂Chb r−2ĝAB

�
:

This is used to raise the indexes of the perturbed Maxwell
field Fαβ ¼ Qr−2 ~ϵab þ εF αβ. The result is

Fab ¼ Eo ~ϵ
ab; Eo ≡Qr−2;

FaB ¼ εr−2ϵ̂BCD̂C
~DaA − εEor−2 ~ϵadϵ̂BCD̂Chd ð¼−FBaÞ;

FAB ¼ −εr−4ϵ̂ABD̂CD̂CA: ð37Þ

Taking advantage of (36) we find that the linearized
Maxwell Eq. (13) can be written

0 ¼ 1ffiffiffi
g

p ∂αð
ffiffiffi
g

p
FαβÞ ¼ 1ffiffiffiffiffi

go
p ∂αð ffiffiffiffiffi

go
p ðFαβ

o þ εF αβÞÞ

¼ ε
1ffiffiffiffiffi
go

p ∂αð
ffiffiffiffiffi
go

p
F αβÞ; ð38Þ

and using
ffiffiffiffiffi
go

p ¼ r2ð~gÞ1=2ðĝÞ1=2, we find that the β ¼ b
equation above is trivial, whereas the β ¼ B equation gives

0 ¼ 1ffiffiffiffiffi
go

p ∂αð
ffiffiffiffiffi
go

p
F αBÞ

¼ r−2ϵ̂BCD̂C½ ~Da ~DaAþ r−2D̂DD̂DA − ~ϵad ~DaðQr−2hdÞ�;
ð39Þ

which, since A, ha ∈ L2ðS2Þ>0, is equivalent to

0 ¼ ~Da ~DaAþ r−2D̂DD̂DA − ~ϵad ~DaðQr−2hdÞ: ð40Þ

The linearized Einstein’s Eqs. (11) are equivalent to the
set (27) and (28). After a lengthly calculation we find

G− ¼ ~Dah>1a ; T− ¼ 0: ð41Þ

We also find that
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8πT−
a ¼ −

2Q
r2

~ϵa
b ~DbAþQ2

r4
ha ð42Þ

and

−2r2G−
a ¼ ~ϵa

b ~Db

�
r4 ~ϵcd ~Dc

�
hd
r2

��
þ D̂BD̂Bha

þ ð ~Dc ~Dcr2 þ 4r2ΛÞha: ð43Þ

1. l > 1 modes

Since h− ¼ 0, Eqs. (28) and (41) give ~Dah>1
a ¼ 0. The

solution of this equation is

h>1a ¼ ~ϵa
b ~DbðZÞ; Z ∈ L2ðS2Þ>1 ð44Þ

for some potential Z, defined up to the sum of a function of
ðθ;ϕÞ,

Zðt; r; θ;ϕÞ → Zðt; r; θ;ϕÞ þ qðθ;ϕÞ: ð45Þ

Inserting (42), (43), and (44) into the projection onto
L2ðS2Þ>1 of the linearized Einstein Eq. (27) gives

~ϵa
b ~Db

�
r4 ~Dc

�
~DcZ
r2

�
þ D̂BD̂BZ

	

þ
�
~Dc ~Dcr2 þ 2r2Λþ 2

Q2

r2

�
ϵa

b ~DbZ

− 4Qϵa
b ~DbA>1 ¼ 0: ð46Þ

The fact that

~Dc ~Dcr2 þ 2r2Λþ 2
Q2

r2
¼ 2 ð47Þ

makes it possible to pull the operator ϵab ~Db to the left in
(46). Since the kernels of ϵab ~Db acting on N -scalar fields
are the N constants [i.e., functions of ðθ;ϕÞ], we can lift
ϵa

b ~Db from this equation and get

r4 ~Dc

�
~DcZ
r2

�
þ D̂AD̂AZ þ 2Z ¼ 4QA>1 þ zðθ;ϕÞ: ð48Þ

We now use the freedom (45) and choose qðθ;ϕÞ to
cancel zðθ;ϕÞ. This is possible since the operator Z →
D̂BD̂BZ þ 2Z is invertible in L2ðS2Þ>1. This choice of Z is
equivalent to setting zðθ;ϕÞ ¼ 0 in (48). The resulting
equation is equivalent to the four-dimensional wave
equation

∇α∇αΦþ
�
8M
r3

−
6Q2

r4
−
2Λ
3

�
Φ ¼ 4Q

r3
W>1; ð49Þ

where

W>1 ¼ A>1

r
; Φ ¼ Z

r2
∈ L2ðS2Þ>1: ð50Þ

The equation obtained after inserting (44) into the
projection onto L2ðS2Þ>1 of the linearized Maxwell
Eq. (40) and then using (48),

~Da ~DaA>1þD̂BD̂BA>1

r2
−
4Q2

r4
A>1¼−

Q2

r4
ðJ2þ2ÞZ; ð51Þ

also admits the form of a four-dimensional wave equation
linking W and Φ above,

∇α∇αW>1 þ
�
2M
r3

−
6Q2

r4
−
2Λ
3

�
W>1 ¼ −

Q
r3
ðJ2 þ 2ÞΦ:

ð52Þ

Here we used the facts that on scalar fields D̂AD̂A ¼ J2

and ~Dc ~Dcr ¼ df=dr.
Note that all steps above can be reversed: the system of

Eqs. (49)–(52) is equivalent to the system (48)–(51), which,
using (44) and the definitions (50), implies the LEME. We
conclude that the odd sector l > 1 LEME are entirely
equivalent to the system of (four-dimensional) wave
Eqs. (49) and (52) coupling the fields Φ and W. These
fields are potentials from which the (l > 1 piece of the)
metric perturbation in the RW gauge RWhαβ is given by
Eqs. (34), (44), and (50), and that of the electromagnetic
field perturbations by the second Eq. (29) with A− ¼
A>1 ¼ rW. The map ðΦ;WÞ → ðRWhαβ; FαβÞ is injective.
Otherwise, there is a ðΦo;WoÞ ≠ ð0; 0Þ sent to (0,0). In
view of the second Eq. (29) and rWo ¼ A>1, it must be
D̂CD̂CWo ¼ 0 and therefore Wo ¼ 0 which, inserted in
(52), gives ðJ2 þ 2ÞΦ ¼ 0, and this is equivalent to Φ ¼ 0

since Φ ∈ L2ðS2Þ>1. We conclude that Wo ¼ Φo ¼ 0.

2. l = 1 modes

The projection of the linearized Maxwell Eq. (39) onto
the three-dimensional l¼1 subspace L2ðS2Þl¼1⊂L2ðS2Þ is

QZ ¼ ~Da ~DaAðl¼1Þ − 2
Aðl¼1Þ

r2
; ð53Þ

where Z, introduced in (35), is the only gauge invariant
field of the l ¼ 1 metric perturbation [see (32)].
The projection of the LEME (27), using (42), (43), and

(47), is

~ϵab ~Db½r4Z − 4QAðl¼1Þ� ¼ 0; ð54Þ

and this implies that r4Z − 4QAðl¼1Þ is a function of ðθ;ϕÞ
that, for convenience, we call 6MSðθ;ϕÞ; therefore
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Z ¼ 4QAðl¼1Þ þ 6MSðθ;ϕÞ
r4

: ð55Þ

Since both Z and A belong to L2ðS2Þðl¼1Þ, it must be

S ¼
ffiffiffiffiffiffi
4π

3

r X3
m¼1

jðmÞSðl¼1;mÞ; ð56Þ

where the Sðl¼1;mÞ are a real orthonormal basis of
L2ðS2Þl¼1, such as

Sðl¼1;m¼1Þ ¼
ffiffiffiffiffiffi
3

4π

r
sinðθÞ cosðϕÞ;

Sðl¼1;m¼2Þ ¼
ffiffiffiffiffiffi
3

4π

r
sinðθÞ sinðϕÞ;

Sðl¼1;m¼3Þ ¼
ffiffiffiffiffiffi
3

4π

r
cosðθÞ: ð57Þ

Inserting (55) in (53) gives

~Da ~DaAðl¼1Þ −
�
2

r2
þ 4Q2

r4

�
Aðl¼1Þ ¼ 6MQ

r4
S: ð58Þ

The general solution of the l ¼ 1 equations is therefore
obtained by choosing Sðθ;ϕÞ [equivalently, the jðmÞ in (56),
which, as we will show below, are infinitesimal angular
momentum components] and a solution Aðl¼1Þ of (58).
Then Z is given by (55) and ha is obtained, mod gauge
transformation, from (35).
A particular solution of the inhomogeneous Eq. (58)

when S ¼ a cosðθÞ ∝ Sðl¼1;3Þ is obtained by considering
the Kerr Newman (anti) de Sitter black hole solution with
mass M and angular momentum J ¼ aM along the θ ¼ 0
axis in Boyer Lindquist coordinates [see, e.g., [15],
Eqs. (2.19)–(2.24)], and letting the angular momentum
play the role of ε in (10). If we Taylor expand the metric
around a ¼ 0, we obtain

gαβ ¼ gRNαβ þ hαβ þOða2Þ; ð59Þ

where gRNαβ is the Reissner-Nordström metric (2) and (3),

hϕt ¼ htϕ ¼ aðf − 1Þsin2ðθÞ ¼ ϵ̂ϕ
θ∂θht; ð60Þ

hθt ¼ htθ ¼ 0 ¼ ϵ̂θ
ϕ∂ϕht; ð61Þ

the remaining components being trivial. We recognize that
hαβ is an l ¼ 1 perturbation with jð1Þ ¼ jð2Þ ¼ 0. Since
ϵ̂ ¼ sinðθÞdθ ∧ dϕ, Eqs. (60) and (61) and 0 ¼ hrϕ ¼ hrϕ
imply that

ht ¼ aðf − 1Þ cosðθÞ; hr ¼ 0; ð62Þ

which, inserted in (35), gives

Z ¼ a cosðθÞ 6Mr − 4Q2

r5
≕ Zo

KN: ð63Þ

The nonzero components of the Maxwell vector potential
Aα for the electromagnetic field Fαβ of the Kerr Newman
anti–de Sitter black hole are [Eq. (2.24) in [15]]

At ¼
Q
r
þOða2Þ; Aϕ ¼ −

Qsin2ðθÞ
r

aþOða3Þ; ð64Þ

whose exterior derivative, consistently, gives a jð1Þ¼jð2Þ¼0,
l ¼ 1 odd perturbation of the electromagnetic field with
[see the second equation (29)]

Ao
KN ¼ −

aQ cosðθÞ
r

: ð65Þ

Changing the axis of rotation we can easily guess from Ao
KN

a particular solution of the inhomogeneous Eq. (58) for the
arbitrary S given in (56),

AKN ¼ −
Q
r

ffiffiffiffiffiffi
4π

3

r X3
m¼1

jðmÞSðl¼1;mÞ: ð66Þ

This corresponds to a slowly rotating Kerr Newman (anti)
de Sitter black hole with angular momentum components
jðmÞ, for which

ZKN ¼ 6Mr − 4Q2

r5

ffiffiffiffiffiffi
4π

3

r X3
m¼1

jðmÞSðl¼1;mÞ: ð67Þ

The general solution of (58) is obtained by adding to
the particular solution (66) the general solution of the
homogeneous Eq. (58),

~Da ~DaA
ðl¼1Þ
h −

�
2

r2
þ 4Q2

r4

�
Aðl¼1Þ
h ¼ 0: ð68Þ

We recognize that this is the l ¼ 1 analogue of Eq. (51),
then we introduce

Wðl¼1Þ ≔
Aðl¼1Þ
h

r
ð69Þ

as in the l > 1 case, and, using Eqs. (51) and (52), we find
that (68) is equivalent to

∇α∇αWðl¼1Þ þ
�
2M
r3

−
6Q2

r4
−
2Λ
3

�
Wðl¼1Þ ¼ 0: ð70Þ

The solution of this equation is

rWðl¼1Þ ¼Aðl¼1Þ
h ¼

ffiffiffiffiffiffi
4π

3

r X3
m¼1

AðmÞ
h ðt;rÞSðl¼1;mÞðθ;ϕÞ; ð71Þ
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where each of the AðmÞ
h ðt; rÞ satisfy the 1þ 1wave Eq. (68)

which, introducing a tortoise radial coordinate defined by

r� ¼
Z

r dr0

fðr0Þ ; ð72Þ

is equivalent to

ð∂2
t − ∂2

r� þ VÞAðmÞ
h ¼ 0; V ¼ f

�
2

r2
þ 4Q2

r4

�
: ð73Þ

Adding (71) to (66) gives the general solution to (58) for
the choice (56), and this has to be inserted into (55) to
obtain Z.
Summarizing,
(1) The l ¼ 1 gauge invariant fields are Z and Aðl¼1Þ.

The general solution of the l ¼ 1 LEME equations
are parametrized by the following: (i) three constants
jðmÞ that give S [see Eq. (56)] and the particular
solution AKN of (58) given in (66), and (ii) three

solutions AðmÞ
h ðt; rÞ of (73) which span Aðl¼1Þ

h [see
(71)]. Using these gives

Aðl¼1Þ ¼ Aðl¼1Þ
h þ AKN

¼
ffiffiffiffiffiffi
4π

3

r X3
m¼1

�
AðmÞ
h ðt; rÞ −Q

r
jðmÞ

�

× Sðl¼1;mÞðθ;ϕÞ; ð74Þ

and then Z is obtained using (55), (56), and (74),

Z ¼
ffiffiffiffiffiffi
4π

3

r X3
m¼1

�
4Q
r4

AðmÞ
h ðt; rÞ þ 6Mr − 4Q2

r5
jðmÞ

�

Sðl¼1;mÞðθ;ϕÞ: ð75Þ

Note that the jðmÞ in (74) are well defined: if we
assumed that the coefficients of the harmonics of
Aðl¼1Þ in (74) can be split in two different ways, say

AðmÞ
h ðt; rÞ − jðmÞQ=r ¼ ~AðmÞ

h ðt; rÞ − ~jðmÞQ=r;

this would imply that ð~jðmÞ − jðmÞÞQ=r is a solution
of the homogeneous Eq. (58), which is false unless
~jðmÞ ¼ jðmÞ and thus ~AðmÞ

h ðt; rÞ ¼ AðmÞ
h ðt; rÞ.

(2) In a gauge where hðl¼1Þ
r ¼ 0, we have Z ¼

∂rðhðl¼1Þ
t =r2Þ, and then

hðl¼1Þ
a dxa ¼ dtr2

Z
r
Zdr

¼
ffiffiffiffiffiffi
4π

3

r X3
m¼1

½ðfðrÞ − 1ÞjðmÞ

þ 4Qr2BðmÞðt; rÞ�Sðl¼1;mÞdt; ð76Þ

where the BðmÞ are any three functions of ðt; rÞ such
that ∂rBðmÞ ¼ r−4Aðl¼1;mÞ

h [the ambiguity in the
BðmÞ’s gives a term gðtÞr2dt in hadxa which is pure
gauge].

It is important to note that our results are consistent with the
black hole uniqueness theorems, which state that any
asymptotically flat stationary axisymmetric (electro)vac-
uum black hole is a member of the Kerr-Newman family.
For perturbations around a Schchwarzschild black hole,
A≡ 0 and Q ¼ 0, so the l ¼ 1 Eq. (53) is void, the
remaining equations give Z ¼ 6MSðθ;ϕÞ=r4, and then
hadxa ∝

P
mðfðrÞ − 1ÞjðmÞSðl¼1;mÞðθ; ϕÞ þ gauge terms

[see (76)], which corresponds to a slowly rotating Kerr
black hole, as expected. In the Q ≠ 0 case, however, we
must rule out the existence of time independent solutions of
the homogeneous Eq. (68) [equivalently, Eq. (73)] that
behave properly at the horizon and for large r, to guarantee
that the only time independent l ¼ 1 solution is A ¼ AKN
and Z ¼ ZKN. Assume on the contrary that there is a well
behaved time independent solution AðrÞ of Eq. (73),

fUA ¼ ∂2
r�A ¼ f∂rðf∂rAÞ; U ¼ 2

r2
þ 4Q2

r4
: ð77Þ

Let r ¼ rh be the horizon radius, and then for r≃ rh,
f ¼ 2κðr − rhÞ þOððr − rhÞ2Þ, where κ > 0 is the surface
gravity. Inserting this in (77) gives, for the two-dimensional
local solution space near r ¼ rh,

A ¼ α

�
1þ 1

κr2h

�
1þ 2Q2

r2h

�
ðr − rhÞ þ � � �

	

þ β

�
ln

�
r − rh
rh

�
þ � � �

	
: ð78Þ

If A is well behaved at the horizon, then β ¼ 0. This implies
(without loss of generality we assume that α > 0) that at a
point for ro > rh sufficiently close to rh, both A > 0 and
∂rA > 0 [see (78)]. Thus ∂r�A > 0 at this large negative r�
value r�ðroÞ and integrating Eq. (77) from r�ðroÞ to the
right and noting that U > 0, we learn that A, ∂r�A and ∂2

r�A
are all positive for r� > r�ðroÞ, and so A → ∞ as r� → ∞.
This means that time independent solutions of (73) that are
well behaved at the horizon diverge for large r�. Therefore,
the only acceptable stationary l ¼ 1 solution of the LEME
is then A ¼ AKN and Z ¼ ZKN, as we wanted to prove.

III. NONMODAL LINEAR STABILITY
FOR ODD PERTURBATIONS

From the results of the previous section it follows that,
introducing the field

W ≔ Wðl¼1Þ þW>1 ∈ L2ðS2Þ>0; ð79Þ
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we may recast (49), (52), and (70) as the following system
of equations for the fieldsΦ∈L2ðS2Þ>1 andW∈L2ðS2Þ>0:

∇α∇αΦþ
�
8M
r3

−
6Q2

r4
−
2Λ
3

�
Φ ¼ 4Q

r3
W>1; ð80Þ

∇α∇αWþ
�
2M
r3

−
6Q2

r4
−
2Λ
3

�
W ¼−

Q
r3
ðJ2þ 2ÞΦ: ð81Þ

It also follows that the set L− of odd solutions ðhαβ;F αβÞ of
the LEME (11)–(13) mod gauge equivalence, Eq. (31),
can be parametrized by the three gauge invariant constants
jðmÞ and the gauge invariant fields Φ ∈ L2ðS2Þ>1 and
W ∈ L2ðS2Þ>0, subject to the system of Eqs. (80) and (81),

L− ¼ fðjðmÞ;Φ;WÞjEqs: ð80Þ and ð81Þ holdg: ð82Þ

This parametrization of L− is interesting because it is given
in terms of gauge invariant constants and scalar fields
satisfying wave equations. There is, however, a distinction
between the constants jðmÞ, which are the components of
the infinitesimal angular momentum corresponding to
perturbations within the Kerr-Newman (A)dS family, and
the scalar fields Φ and W, which, although convenient as
potentials to solve the l > 1 LEME, have no direct
physical interpretation.
We will prove in Sec. III A that there are two gauge

invariant, physically meaningful scalar fields Q and F that
are directly associated with the effects of the perturbation
on the curvature and on the strength of the Maxwell field,
and they contain the same information as ðjðmÞ;Φ;WÞ.
These fields accomplish the first objective of the nonmodal
approach.
The second goal of the nonmodal approach is to show

that, if Λ ≥ 0, the chosen fields Q and F are bounded on
the outer static region by constants that depend on the initial
data of the perturbation on a Cauchy surface. This makes
precise the notion of nonmodal linear stability. To prove the
pointwise boundedness we use the system of differential
equations satisfied by Q and F , but we need to constrain
the generality of solutions of the LEME and limit ourselves
to the case where perturbation theory makes sense, which is
when perturbations preserve the asymptotic flatness (if
Λ ¼ 0) or de Sitter character (if Λ > 0) of the background.
No boundedness result is to be expected if we do not
proceed so. Imagine, e.g., that in the Λ ¼ 0 case we take
initial data ðΦ; _ΦÞ and ðW; _WÞ for the system (49)–(52) on
a t slice such thatΦ grows arbitrarily for large r. On the one
hand, there could be no pointwise boundedness result on
the outer static region for such perturbation; on the other
hand, the associated metric perturbation would spoil
asymptotic flatness. Treating it as a perturbation would
be inconsistent since the “smallness” of ε in gαβ þ εhαβ
would be overcome for large r by the growth of hαβ. Thus,

decay properties for large r in the Λ ¼ 0 case (r → rc if
Λ > 0) must be imposed on the initial data.
For simplicity, and to avoid complicated statements

(which would inevitably involve separate conditions for
Λ ¼ 0 and Λ > 0), we will, following [3,16], restrict our
considerations to perturbations compactly supported away
from r ¼ ∞ if Λ ¼ 0 (r ¼ rc if Λ > 0). This restriction
should not be an obstacle to generalize to milder decay
conditions (see, e.g., the proof of Theorem 6 in [3]), and it
serves our purposes of generalizing the results in [3] to odd
perturbations of charged black holes. Of course, the r
extent of the field support will grow with t as the
perturbations evolve.
The scalar fields Q and F might grow high in small

regions without compromising energy conservation. We
will show, following [16], that this is not the case, and that
it is possible to place pointwise bounds on Q and F in the
outer static region, establishing in this way the nonmodal
stability of this region.

A. Measurable effects of the perturbations

Consider the first order perturbation fields

Q ¼ δ

�
1

48
C�
αβγδC

αβγδ

�
; F ¼ δðF�

αβF
αβÞ; ð83Þ

where δ stands for the derivative at ϵ ¼ 0 for a mono
parametric family of solutions of the Einstein-Maxwell
equations, as in Eqs. (10)–(13), the ϵ ¼ 0 solution being
(2)–(4), and a star denotes Hodge dual

F�
αβ ¼

1

2
ϵaβγδFγδ; C�

αβγδ ¼
1

2
ϵaβμνCμν

γδ; ð84Þ

ϵaβμν being the volume form. Since C�
αβγδC

αβγδ ¼
F�
αβF

αβ ¼ 0 in the background, the fields Q and F are
gauge invariant [3] and thus suitable to analyze the effects
of the perturbation in the geometry and the electromagnetic
field. The obvious advantage of scalar fields over higher
rank tensor fields is that for the latter there is no entirely
natural concept of being “large” or “small” in a Lorentzian
manifold, and we need this notion to quantify the strength
of the perturbation.
It follows from Eqs. (29), (44), (50), (69), (74), and (83)

thatF depends on up to two derivatives ofW, whereasQ>1

depends on up to four derivatives of Φ. However, using
repeatedly the LEME (80) and (81) and calculating
separately the l ¼ 1 contributions to F ðl¼1Þ and Qðl¼1Þ
coming from (66) and (67), we can simplify considerably
the resulting expressions and find, with the help of
symbolic manipulation programs [17], that, for solutions
of the LEME, there is a simple relation betweenF andQ on
one side, and Φ, W and the jðmÞ on the other,
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F ¼ 8Q2

r5

ffiffiffiffiffiffi
4π

3

r X
m¼�1;0

jðmÞSðl¼1;mÞ þ
4Q
r3

J2W; ð85Þ

and

Q ¼ 2ðQ2 −MrÞ
r6

�ð3Mr − 2Q2Þ
r3

ffiffiffiffiffiffi
4π

3

r X
m¼�1;0

jðmÞSðl¼1;mÞ

þ
�
J2ðJ2 þ 2Þ

4
Φ −

Q
r
J2W

�	
: ð86Þ

The above equations allow us to prove that Q and F
contain all the gauge invariant information of a given
perturbation, and that they satisfy a coupled system of wave
equations.
Theorem 1. Consider the set of odd solutions

ðhαβ;F αβÞ of the LEME (11)–(13) around a Reissner-
Nordström (A)dS black hole background and the set of
perturbed fields ðF ;QÞ defined in (83):

(i) The map ð½hαβ�;F αβÞ → ðF ;QÞ is injective: it is
possible to reconstruct F αβ and a representative of
½hαβ� from ðF ;QÞ.

(ii) Let

K ¼
�

2r6Q
Q2 −Mr

þ r2F
�
: ð87Þ

The gauge invariant scalar fields F andQ satisfy the
system of wave equations

�
∇α∇αþ

�
8M
r3

−
6Q2

r4
−
2Λ
3

�	
K¼ðJ2þ2ÞF ; ð88Þ

�
∇α∇α þ

�
2M
r3

−
6Q2

r4
−
2Λ
3

�	�
r3

4Q
F
�

¼ −
Q
r3
K:

ð89Þ

(iii) Let ~K and ~F be l ≥ 1 scalar fields satisfying (88)
and (89), and ~Q ¼ ðQ2 −MrÞð ~K − r2 ~F Þ=ð2r6Þ
[cf. Eq. (87)]. There exists an l ≥ 1 solution
ð ~hαβ; ~FαβÞ of the LEME for which Q and F defined

in (83), respectively, agree with ~Q and ~F .
Proof.
(i) Expand all fields in the orthonormal basis of spherical

harmonics Sðl;mÞ, e.g., F ¼ P
ðl;mÞF ðl;mÞSðl;mÞ

(then F ðl¼1Þ ¼ P
3
m¼1F

ðl¼1;mÞSðl¼1;mÞ and F>1 ¼P
ðl>1;mÞF ðl;mÞSðl;mÞ) and similarly for Q, Φ,

and W. Recall that F , Q, W ∈ L2ðS2Þ>0, whereas
Φ ∈ L2ðS2Þ>1. From Eqs. (69), (74), (79), and (85) it
follows that

F ðl¼1Þ ¼ −8
Q
r4

Aðl¼1Þ: ð90Þ

Thus, fromF ðl¼1Þ we obtainAðl¼1Þwhich inserted in
(29) gives the l ¼ 1 piece of the electromagnetic
field perturbation and inserted in (58) gives S. Using
Aðl¼1Þ and S in (55) gives the l ¼ 1 field Z. In any

gauge with hr ¼ 0, Z ¼ ∂rðhðl¼1Þ
t =r2Þ, this implies

that the l ¼ 1 piece of the metric perturbation can be
obtained by integration [see Eq. (76)].
To reconstruct the l>1 pieces of the fields (29) we

proceed as follows: from (85), F>1¼4QJ2W>1=r3,
and therefore F ðl;mÞ ¼ −ð4Q=r3Þlðlþ 1ÞWðl;mÞ
for l>1; i.e., F>1 gives W>1. Combining the l>1
projections of (85) and (86) gives [see (87)]

K>1 ¼ 2r6Q>1

Q2 −Mr
þ r2F>1 ¼ J2ðJ2 þ 2ÞΦ; ð91Þ

from where Φ can be obtained since the operator
J2ðJ2 þ 2Þ is invertible in L2ðS2Þl>1, acting as ðlþ
2Þðlþ 1Þlðl − 1Þ on any l > 1 subspace of L2ðS2Þ
[i.e., ðJ2ðJ2þ 2ÞΦÞðl;mÞ ¼ ðlþ 2Þðlþ 1Þlðl− 1Þ×
Φðl;mÞ].
Once we have W>1 and Φ the l > 1 electromag-

netic perturbation is obtained by inserting A>1 ¼
rW>1 in (29) and the Regge-Wheeler representative
of the l > 1metric perturbation is obtained inserting
Z ¼ r2Φ in Eqs. (44) and (34).

(ii) From (91), using ½J2;∇α� ¼ 0 and the l > 1

Eq. (49)–(52) we find that the projections Q>1

and F>1 satisfy the system of Eqs. (88) and (89),

�
∇α∇α þ

�
8M
r3

−
6Q2

r4
−
2Λ
3

�	
K>1 ¼ ðJ2 þ 2ÞF>1;

ð92Þ

�
∇α∇αþ

�
2M
r3

−
6Q2

r4
−
2Λ
3

�	�
r3

4Q
F>1

�
¼−

Q
r3
K>1:

ð93Þ

The l ¼ 1 piece of K,

Kðl¼1Þ ¼
�
2r6Qðl¼1Þ

Q2 −Mr
þ r2F ðl¼1Þ

�

¼ 12M
r2

ffiffiffiffiffiffi
4π

3

r X
m¼�1;0

jðmÞSðl¼1;mÞ; ð94Þ

together with that of F ,
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F ðl¼1Þ ¼ 8Q2

r5

ffiffiffiffiffiffi
4π

3

r X
m¼�1;0

jðmÞSðl¼1;mÞ −
8Q
r3

Wðl¼1Þ;

ð95Þ

also verify (88) and (89). This can be checked using
Eq. (70) and the fact that the wave operator on
the left of Eq. (88) gives zero when acting on
Sðl¼1;mÞ=r2. Thus, Eqs. (88) and (89) follow.

(iii) Define

~Φ ¼ ½J2ðJ2 þ 2Þ�−1 ~K>1; ~W>1 ¼ r3

4Q
½J2�−1 ~F>1:

ð96Þ

Equations (88) and (89) imply that the fields (96)
satisfy the system of Eqs. (49) and (52), and there-
fore, ~h>1a ¼ ~ϵa

b ~Dbðr2 ~ΦÞ and ~A>1 ¼ r ~W>1 satisfy
the l ≥ 1 LEME [see the paragraph below Eq. (52)].
In view of (85)–(87) and (91), the associated l ≥ 1

solution class ð½ ~hαβ�; FαβÞ, and in particular its

RW representative, has δð 1
48
C�
αβγδC

αβγδÞ ¼ ~Q>1

and δðF�
αβF

αβÞ ¼ ~F>1. ▪
In the Q → 0 limit Eqs. (88) and (89) decouple. The first

one gives the four-dimensional Regge-Wheeler equation
forQ used in [2,3] to prove the nonmodal linear stability of
the Schwarzschild dS black hole, and the second one gives
the Fackerrel-Ipser equation for a test Maxwell field on a
Schwarzschild (A)dS black hole [18,19].

B. Pointwise boundedness of Q and F for Λ ≥ 0

The standard way of solving the l > 1 LEME (49)–(52)
is by projecting this system onto the l subspaces and then
decoupling the resulting pair of fixed l equations by
introducing two Regge-Wheeler fields [1,6]. This is equiv-
alent to introducing the operator

Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 4Q2ðJ2 þ 2Þ

q
; ð97Þ

which is well defined and positive definite in L2ðS2Þ>0, as it
acts on L2ðS2Þl as multiplication times

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 4Q2ðlþ 2Þðl − 1Þ

q
;

and two fields Φn, n ¼ 1, 2 in terms of which

W>1 ¼ ð3M þ ΞÞ
r

Φ1 þ
Q
r
ðJ2 þ 2ÞΦ2; ð98Þ

Φ ¼ 4Q
r

Φ1 þ
ð3M þ ΞÞ

r
Φ2: ð99Þ

This makes the system (49)–(52) equivalent to the Regge-
Wheeler equations, first derived in [6],

ð∂2
t − ∂2

r� þ fUnÞΦn ¼ 0; Φn ∈ L2ðS2Þ>1; n ¼ 1; 2;

ð100Þ

where r� is a tortoise radial coordinate and

Un ¼ −
J2

r2
þ 4Q2

r4
−
3M þ ð−1ÞnΞ

r3
: ð101Þ

In terms of these fields, the l > 1 pieces of Q and F are

Q>1 ¼ 2ðQ2 −MrÞ
r6

�
Q
r

�
ðJ2 þ 2Þ − 3M þ Ξ

r

	
J2Φ1

þ
�
3M þ Ξ

4r
−
Q2

r2

	
J2ðJ2 þ 2ÞΦ2

�
; ð102Þ

F>1 ¼ 4Q
r4

ð3M þ ΞÞJ2Φ1 þ
4Q2

r4
ðJ2 þ 2ÞJ2Φ2: ð103Þ

Up to this point, the considerations in this paper were
insensitive to the value of the cosmological constant: odd
perturbations can always be treated using the gauge
invariant potentials Φ and W and constants jðmÞ, and
Theorem 1 holds irrespective of the value of Λ. In the
rest of this section, however, we will consider the evolution
of initial data for the LEME, for which we need to make a
distinction between the casesΛ < 0 and Λ ≥ 0 due to some
key differences in their causal structure.
In the asymptotically AdS case Λ < 0, f in (3) has

two positive roots 0 < ri < rh (we will restrict for the
moment to the nonextremal case ri ≠ rh), and the hyper-
surfaces they define bound three regions: I (0 < r < ri), II
(ri < r < rh), and III (rh < r). Isometric copies of these
regions are obtained by “Kruskalizing” around the simple
roots ri, rh of r2f. This gives the maximal analytic
extension depicted in Fig. 1, which extends infinitely in
the vertical direction. Note that regions I and III, where
f > 0, are static, whereas f < 0 in region II, which is
therefore nonstatic. Note also that the union of regions II,
II’, III, and III’ fails to be globally hyperbolic due to the
timelike character of the future and past null infinities I�.
This is the peculiar aspect of asymptotically anti–de Sitter
spaces that differentiates it from asymptotically de Sitter or
flat spaces. In the asymptotically AdS case the dynamics of
wavelike equations requires a prescription of boundary
conditions at the conformal timelike boundary I− ∪ Iþ,
which corresponds to r ¼ ∞. Different boundary condi-
tions lead to different dynamics, including unstable and
stable ones [20]. For this reason, from now on, we restrict to
the cases Λ ≥ 0, for which the dynamics is unique and, as
we will show, stable.
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For Λ ¼ 0 and jQj < M, f has again two positive roots
ri < rh that correspond, respectively, to the Cauchy and
black hole horizons. In this case f ¼ ðr − riÞðr − rhÞ=r2
with Q2 ¼ rirh and M ¼ 1

2
ðri þ rhÞ. The outer static

region, region III in Fig. 2, corresponds to r > rh,
whereas the inner static region I is the one defined by
0 < r < ri; the singularity at r ¼ 0 is covered by these
two horizons. Kruskalizing at ri and rh we get further
copies of these regions resulting in the diagram in Fig. 2,
which extends infinitely in the vertical direction. The
union of II, II’, III, and III’ is globally hyperbolic, I and I’
being extensions beyond the Cauchy horizon at r ¼ ri,
which is the future boundary of the maximum Cauchy
development of initial data given at a complete spacelike
hypersurface extending from spacelike infinity in region
III’ to spacelike infinity in region III. In the extreme case
jQj ¼ M, ri ¼ rh and region II collapses. For jQj > M the
spacetime is not a black hole but an (unstable, see [21,22])
naked singularity.

For Λ > 0 we focus on the nonextremal cases, for
which f has three simple positive roots 0 < ri < rh < rc
which correspond to the inner black hole and cosmological
horizons, respectively, and a fourth root at r ¼
−ðri þ rh þ rcÞ,

f ¼ −
ðr − riÞðr − rhÞðr − rcÞðrþ ri þ rh þ rcÞ
r2ðr2i þ r2h þ r2c þ rirh þ rirc þ rhrcÞ

: ð104Þ

Q2, M, and Λ, as well as the relations among them can be
found in terms of ri, rh, and rc by comparison of (104) with
(3). As before, regions separated by the horizons are
numbered in increasing numbers for larger r values.
Since we can Kruskalize around all three horizons and
large r ¼ constant hypersurfaces are spacelike, we get the
diagram in Fig. 3, which extends infinitely in both
directions. There are a number of extremal cases corre-
sponding to ri ¼ rh, rh ¼ rc, etc., and the Carter-Penrose
diagrams for these cases can be found in [23].
In what follows, we will prove the stability of the outer

static region III of Λ ≥ 0 Reissner-Nordström black holes.
To this purpose, we will consider the union of regions II,
II’, III, and III’, which is globally hyperbolic, and study the
evolution of perturbations from data on a Cauchy surface.
Any Cauchy surface has two ends, one at each copy of
spacelike infinity (if Λ ¼ 0) or the rc bifurcation sphere (if

FIG. 2. The Carter-Penrose diagram of (part of) the maximal
analytic extension of the jQj < M Reissner-Nordström black
hole. The union of II, II’, III, and III’ is globally hyperbolic; its
boundary at ri is a Cauchy horizon.

FIG. 1. The Carter-Penrose diagram of (part of) the maximal
analytic extension of the Reissner-Nordström AdS black hole.
The union of II, II’, III, and III’ fails to be globally hyperbolic due
to the timelike character of I− ∪ Iþ, I− ∪ Iþ, which is peculiar
to asymptotically AdS spaces.
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Λ > 0) in regions III and III’. As explained above, we will
restrict our considerations to perturbations with initial data
compactly supported away from these ends. Relevant
perturbations can be more general, as long as they preserve
the asymptotically flat (AdS) character of the background;
however, for the sake of simplicity as well as to allow a
unified treatment of the Λ ¼ 0 and Λ > 0 case we will
assume compact support, as in [16].
Following [16] we write (100) and (101) as

∂2
tΦn þ AnΦn ¼ 0; ð105Þ

where

An ¼ −∂2
r� þ V1 þ V2ð−J2Þ þ nV3Ξ ð106Þ

and

V1¼f

�
4Q2

r4
−
3M
r3

�
; V2¼

f
r2
; nV3¼ð−1Þn f

r3
ð107Þ

are bounded functions on the outer static region III for
Λ ≥ 0. A nontrivial fact, proved in Sec. 6.2.1 of [1], is that
the An, n ¼ 1, 2 are positive definite self-adjoint operators
in the space L2ðR × S2; dr� sinðθÞdθdϕÞ of square inte-
grable functions of region III under this particular measure.
The proof is based on a particular S deformation (defined in
[1]) of the An’s.
The proof of the following theorem is a straightforward

adaptation to Eq. (100) of Theorem 1 in [16] which is
about the Klein-Gordon equation on a Schwarzschild

background. It uses the self-adjointness and positive
character of the An, −J2, and Ξ.
Theorem 2. Assume Φn is a solution of Eq. (100) on

the union of regions II, II’, III, and III’ of the extended
Reissner-Nordström (Fig. 2) or Reissner-Nordström -de
Sitter (Fig. 3) spacetimes, which has compact support on
Cauchy surfaces. There exists a constant C that depends
on the datum of this field at a Cauchy surface, such that
jΦnj < C for all points in the outer static region III.
Proof. The argument in [16] showing that we can

restrict to fields that vanish at the bifurcation sphere
together with its Kruskal time derivative holds here because
the Z2 required isometry exchanging III ↔ III0 is also
available in this case. This implies that we may restrict our
attention to fields in the outer static region decaying toward
the bifurcation sphere as detailed in the appendix in [16].
On a t slice of region III, define the L2 norm of a real

field G as

∥G∥2 ¼ hGjGi

¼
Z
R×S2

G2dr� sinðθÞdθdϕ; dr� ¼ dr
f
: ð108Þ

Note that this is not the volume element induced from the
spacetime metric. The usefulness of the above norm lies in
the Sobolev type inequality, Eq. (5.27) in [24], relating it
with a pointwise boundedness of G on the slice

jGðr�; θ;ϕÞj ≤ Kð∥G∥þ ∥∂2
r�G∥þ ∥J2G∥Þ;

ðr�; θ;ϕÞ ∈ R × S2; ð109Þ

where K is a constant. Applying this to the Regge-Wheeler
fields Φn at a fixed time t gives

jΦnðt; r�; θ;ϕÞj
≤ Kð∥Φnjt∥þ ∥∂2

r�Φnjt∥þ ∥J2Φnjt∥Þ: ð110Þ

As in the appendix in [16], we will follow the strategy of
proving that the L2 norms on the right-hand side of (110)
can be bounded by the energies of related field configu-
rations. Since energy is conserved for solutions of (105),
we get in this way a t-independent upper bound of the right-
hand side of (110) and therefore, a global bound of
jΦnðt; r�; θ;ϕÞj for all ðt; r�; θ;ϕÞ, i.e., of Φn in the outer
static region III.
The conserved (i.e., t-independent) energy associated

with Eq. (105) is

E ¼ 1

2

Z
R×S2

ðð∂tΦnÞ2 þΦnAnΦnÞdr� sinðθÞdθdϕ: ð111Þ

Since E does not depend on t, we may (and will) regard
it as a functional on the initial datum: E ¼ EðΦo

n; _Φo
nÞ,

where Φo
n ¼ Φnjto and _Φo

n ¼ ð∂tΦnÞjto ,

FIG. 3. The Carter-Penrose diagram of (part of) the maximal
analytic extension of a nonextremal (three different horizons)
Reissner-Nordström de Sitter black hole.
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EðΦo
n; _Φo

nÞ ¼
1

2

Z
R×S2

ðð _Φo
nÞ2 þΦo

nAnΦo
nÞdr� sinðθÞdθdϕ:

ð112Þ

From (106)

∥∂2
r�Φnjt∥ ≤ ∥AnΦnjt∥þ ∥V1∥∞∥Φnjt∥þ ∥V2∥∞∥J2Φnjt∥

þ ∥nV3∥∞∥ΞΦnjt∥; ð113Þ

where ∥V1∥∞ is the least upper bound of V1 on the outer
region III, and similarly for the other terms. Combining this
with (110) gives

jΦnðt; r�; θ;ϕÞj ≤ K0ð∥Φnjt∥þ ∥AnΦnjt∥
þ ∥J2Φnjt∥þ ∥ΞΦnjt∥Þ: ð114Þ

We now use the fact that applying to a Cauchy datum
ðΦo

n; _Φo
nÞ an operator that is a function of J2 or An

commutes with time evolution [16], and we also use the
positive definiteness of the An to define A�1=2

n by means of
the spectral theorem. This allows us to estimate each term
on the right-hand side of (114) with the energy of field
configurations related to the one with initial datum
ðΦo

n; _Φo
nÞ (note that the first three equations below are

taken verbatim from the appendix in [16]),

∥Φnjt∥2 ≤ ∥Φnjt∥2 þ ∥A−1
2

n _Φnjt∥2 ¼ 2EðA−1
2

n Φo
n; A

−1
2

n _Φo
nÞ;
ð115Þ

∥AnΦnjt∥2≤∥AnΦnjt∥2þ∥A
1
2
n _Φnjt∥2¼2EðA1

2
nΦo

n;A
1
2
n _Φo

nÞ;
ð116Þ

∥J2Φnjt∥2 ≤ ∥J2Φnjt∥2 þ ∥A−1
2

n J2 _Φnjt∥2

¼ 2EðA−1
2

n J2Φo
n; A

−1
2

n J2 _Φo
nÞ; ð117Þ

∥ΞΦnjt∥2 ≤ ∥ΞΦnjt∥2 þ ∥A−1
2

n Ξ _Φnjt∥2

¼ 2EðA−1
2

n ΞΦo
n; A

−1
2

n Ξ _Φo
nÞ; ð118Þ

and to replace the right-hand side of (114) with a time
independent constant made out of the datum ðΦo

n; _Φo
nÞ, as

desired. ▪
Corollary 3. Let F and Q be the fields (83) associated

with a solution of the LEME. Under the assumptions of the
theorem, in the outer static region III of a Λ ≥ 0 Reissner-
Nordström black hole

F <
F o

r4
; Q <

Qo

r6
; ð119Þ

where F o and Qo are constants that depend on the Cauchy

datum ðjðmÞ; AðmÞ
h ; _AðmÞ

h ;Φo
n; _Φo

nÞ of the perturbation.
Proof. We use that the fields ðJ2 þ 2ÞJ2Φn;

ΞðJ2 þ 2ÞJ2Φ2, and ΞJ2Φ that appear in (102) and
(103) all satisfy Eq. (105) and so, according to the
Theorem, are bounded by a constant. This implies that
F>1 < F>1

o =r4, where the constant F>1
o depends on the

initial l > 1 perturbation data, and similarly Q < Q>1
o =r6.

To see that the l ¼ 1 pieces do not spoil these bounds we
use (95) and the l ¼ 1 piece of (86),

Qðl¼1Þ ¼2ðQ2−MrÞ
r6

�ð3Mr−2Q2Þ
r3

ffiffiffiffiffiffi
4π

3

r X
m¼�1;0

jðmÞSðl¼1;mÞ

þ2Q
r
Wðl¼1Þ

	
: ð120Þ

Each harmonic component AðmÞ
h of Aðl¼1Þ

h ¼ rWðl¼1Þ

[Eq. (71)] satisfies the 1þ 1 wave Eq. (73), which is of
the form of Eq. (1) in [11] with V satisfying the hypothesis
used in that paper, and therefore [see Eq. (19) in the erratum

of [11]], the AðmÞ
h ; m ¼ 1, 2, 3 are bounded, for all t and r�,

by constants that depend on the initial data ðAðmÞ
h ; _AðmÞ

h Þ for
these fields. This givesWðl¼1Þ < const=r which, in view of
(95) and (120), implies F ðl¼1Þ < const=r4 and Qðl¼1Þ <
const=r7, which is consistent with (119).
Theorem 1 (i) together with the above corollary prove

our notion of nonmodal linear stability for the outer static
region of Λ ≥ 0 Reissner-Nordström black holes.

IV. COSMIC CENSORSHIP AND RELATED
INSTABILITIES

The two isometric copies of the region 0 < r < ri
attached to the future of ri are one among infinitely many
different possible extensions of the spacetime beyond ri
(although the only analytic one). For Λ ≥ 0, this extension
spoils the global hyperbolicity of the union of regions II,
II’, III, and III’ by introducing causal curves that end in the
past at the r ¼ 0 singularity. Regions I and I’ are beyond
the maximal Cauchy development of a spacelike surface
extending from spacelike infinity (bifurcation sphere at rc)
in III’ to spacelike infinity (bifurcation sphere at rc) in III in
the Λ ¼ 0 (Λ > 0) case. This is a complete Cauchy surface
if Λ ¼ 0, and the possibility of smoothly extending the
maximal future development of this surface beyond its
Cauchy horizon is a rather disturbing feature of general
relativity, considered to be nongeneric, in a sense yet to be
made precise, and referred to as the strong cosmic censor-
ship conjecture, first proposed by Penrose almost 50 years
ago [25]. The original argument given by Penrose for the
Λ ¼ 0 charged black hole is that a small amount of
radiation originating outside the black hole and coming
into the nonstatic region II (ri < r < rh) is gravitationally
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blueshifted as it propagates inwards parallel to the Cauchy
horizon, in a way such that the energy flux measured
by an observer in free fall toward (the right copy; see
Figs. 2 and 3) region I (0 < r < ri) diverges as r → riþ.
This idea has proved to hold true for electrogravitational
perturbations at the linear level in [26], where it was shown
that for a radially free falling observer with 4-velocity ua

the ðl; mÞ piece of

dΦn

dτ
¼ ua∇aΦn ð121Þ

(and therefore the complete field) diverges for n ¼ 1, 2 as
the observer approaches the Cauchy horizon. Although for
some time it was thought that a positive cosmological
constant introduces a competition of redshift and blueshift
effects that prevents this divergence in the case of nearly
extremal (ri ≲ rh) black holes [27], it was later proved in
[28] that if we take into account the contributions of
scattered outgoing modes, the divergence occurs for any
positive value of Λ allowing for a three horizon structure.
Further evidence of the instability of the Cauchy horizon
are [29] and related works, as well as more recent models
including a scalar field (to avoid Birkhoff’s theorem);
see [30,31].
The Regge-Wheeler-Zerilli potentials Φn in Eq. (121),

whose derivative with respect to proper time is shown to
diverge at the Cauchy horizon in [26] for Λ ¼ 0 and for
Λ > 0 in [28] are, of course, nonobservable, as they are
potentials for the metric and electromagnetic field pertur-
bations, although the square of (121) contributes to the flux
of energy of the perturbation. However, the Φn enter the
harmonic expansion of the l > 1 pieces of Q and F , and
the implications of the combined set of Eqs. (102), (103),
and (121) are immediate: for a radially infalling observer
crossing ri, the rate dr=dτ is clearly nonzero and finite. For
such an observer, d=dτ ¼ uc∇c commutes with the angular
operators J2 and Ξ. This implies that both dF>1=dτ and
dQ>1=dτ will diverge along this geodesic as r → rþi (and
so will diverge dF=dτ and dQ=dτ), suggesting that the
Cauchy horizon is replaced with a curvature singularity. Of
course, this statement needs to be taken with care since as
soon as ri is approached and these quantities start to grow,
the linearized equations become useless and one needs to
study the evolution of the perturbation using other tech-
niques; but in any case the divergence at ri of the linear
fields is a clear indication of strong cosmic censorship.
The extreme case ri ¼ rh has been less studied, although

it was recently shown that for Λ ¼ 0 (case in which the
extreme black holes corresponds to jQj ¼ M ¼ ri ¼ rh)
the transverse derivative ∂Φn=∂r in coordinates (v¼ tþr�,
r, θ, ϕ) (again, for a fixed l component) diverges at r ¼ ri
as v → ∞ along the horizon null generators [32]. The
divergence follows from a set quantities that are shown
from (100) to be conserved along the ri ¼ rh horizon

generators. These are analogous to a similar set of con-
served quantities for the massless scalar wave equation
found in [33], the conservation of which was shown in [34]
to follow from a combination of Newman-Penrose con-
served quantities at null infinity [35] and a conformal
discrete isometry that exchanges the degenerate horizon
and null infinity, the isometry discovered in [36] and used
in [37] to explain the symmetry of the effective potential,
and the consistency of the pointwise bounds for a massless
scalar field in the extreme case.
Perturbations of the extreme Λ ¼ 0 case were studied

nonlinearly in a recent paper by Reiris [38] where it was
shown that small electrovacuum perturbations of initial data
of extreme Reissner-Nordström black holes cannot decay in
time into an extreme Kerr-Newman black hole. The
evidence in [38] is that these nonstationary solutions of
the Einstein-Maxwell equations will settle into a subex-
tremal black hole of the Kerr-Newman family.
As a final comment we mention that, besides the strong

evidence supporting the idea that a slightly perturbed
Reissner-Nordström black hole will develop a curvature
singularity that cuts off the innermost region I (0 < r < ri),
this nonunique extension beyond ri is by itself linearly
unstable under electrogravitational perturbations [22]. The
instability, confined to this region, belongs to the even
sector of the linear perturbations.

V. DISCUSSION

We proved that the odd sector of Einstein-Maxwell
perturbations around a Reissner-Nordström (A)dS black
hole shares with the uncharged Schwarzschild black hole
the property that there are physically meaningful, gauge
invariant scalar fields Q and F encoding the same
information as a gauge class of a metric perturbation
and satisfying a system of four-dimensional wave equations
which are entirely equivalent to the linearized Einstein-
Maxwell equations. For uncharged black holes Q ¼ 0 the
system of equations decouple, leaving the equation found
in [2,3] for the gravitational degrees of freedom, encoded in
Q, and the Fackerrel-Ipser equation for the Maxwell
degrees of freedom F .
Besides the significant reduction of the linearized

Einstein-Maxwell system to scalar field equations, the
resulting system of equations allows us to prove that, for
generic perturbations, Q and F are pointwise bounded in
the outer static region. This gives a strong notion of linear
stability in this region, analogous to that found in [2,3] for
the Schwarzschild black hole.
If we assume that the large t decay at fixed r of solutions

of the Regge-Wheeler equation in the Q ¼ 0 case (known
as Price tails; see [39,40] for Λ > 0) occurs also for the
Q ≠ 0 Regge-Wheeler fields Φn in (105), and note that

Eq. (73) for AðmÞ
h formally agrees with the Regge-Wheeler

Eqs. (100) and (101) for n ¼ 1 and l ¼ 1 [as suggested by
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(98)] and so also decays for large t, we conclude, using the
1-1 correspondence between odd perturbations and the set
of ðQ;F Þ’s, together with Eqs. (85), (86), (98), and (99),
that at large t

F ≃ 8Q2

r5

ffiffiffiffiffiffi
4π

3

r X
m¼�1;0

jðmÞSðl¼1;mÞ; ð122Þ

and

Q≃ 2ðQ2 −MrÞð3Mr − 2Q2Þ
r9

ffiffiffiffiffiffi
4π

3

r X
m¼�1;0

jðmÞSðl¼1;mÞ;

ð123Þ
which corresponds to a deformation within the Kerr-
Newman (Kerr-Newman-de Sitter) family by adding a
small amount of angular momentum. This is consistent

with the picture that the perturbed black hole settles at large
times into a slowly rotating charged black hole.
The divergence of dF=dτ and dQ=dτ for free falling

radial observers as they approach the Cauchy horizon from
region II, proved in the previous section, supports strong
cosmic censorship in its purest form, as Q is a perturbed
curvature scalar. This result, however, has to be taken with
caution, as the linear perturbation scheme becomes less
reliable as linear fields grow.
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