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Abstract. In this article we explore in some detail the free and weakly projective
objects of the variety of  Lukasiewicz implication algebras (the implicative subreducts

of MV-algebras). We review the two already known descriptions of finitely generated

free algebras, giving new insights into their structure and their connection, as well
as providing new proofs of the characterizations. We give a representation theorem

for weakly projective algebras as algebras of certain McNaughton functions restricted

to rational polyhedra and prove that finitely generated weakly projective algebras
coincide with finitely presented ones. We also prove that finite chains are the only

totally ordered weakly projective examples in this variety.

1. Introduction and preliminaries

 Lukasiewicz implication algebras are the {→, 1}-subreducts of MV-algebras

and also constitute the equivalent algebraic semantics for the implicational

fragment of  Lukasiewicz infinite-valued logic [8]. We denote by MV and L the

varieties of MV-algebras and  Lukasiewicz implication algebras, respectively. A

good introduction to MV-algebras may be found in [4] and the basic properties

of  Lukasiewicz implication algebras may be found, for example, in [6, 1]. We

assume some familiarity with both MV-algebras and  Luaksiewicz implication

algebras, but we start this article with a brief summary of the most important

facts about both varieties, which also serves the purpose of setting the appro-

priate notation. Then, in Section 2, we will review the known descriptions of

finitely generated free algebras (see [10] and [7]) and provide new proofs of

them that allow us to better see their connection. In Section 3, based on the

work of Cabrer and Mundici (see [2]) on projective MV-algebras and having a

good understanding of the free objects, we will give a quite simple characteri-

zation of finitely generated weakly projective objects in the variety L as well

as show that they coincide with finitely presented algebras. As a consequence,

every finite algebra is weakly projective and, in particular, free algebras in the

proper subvarieties of L are weakly projective in L (a direct proof of this is

provided in the appendix). In Section 4, we will deal specifically with totally
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ordered algebras. More precisely, we will show that the only totally ordered

weakly projective objects in L are finite chains.

Throughout the article we write N, Z, and Q for the sets of positive in-

tegers, integers, and rational numbers, respectively. We denote by [0, 1] =

〈[0, 1],⊕,¬, 0〉 the standard MV-algebra on the real unit interval, where x ⊕
y := min(1, x + y), ¬x := 1 − x. For each n ∈ N, let Sn be the subalgebra of

[0, 1] with universe Sn = { kn : k ∈ Z, 0 ≤ k ≤ n}. On any MV-algebra A, an

implication may be defined as x→ y := ¬x⊕ y. We denote the {→, 1}-reduct

of A by A→. We also set Ln = S→n for convenience. Moreover, if A is any

MV-algebra and B ⊆ A is an increasing subset of A, then B is closed under

the implication operation of A, so we define a  Lukasiewicz implication alge-

bra B→ = 〈B,→, 1〉. Conversely, if A ∈ L has a least element 0, we define

operations on A given by x ⊕ y := (x→ 0)→ y, ¬x := x→ 0. It is known

that 〈A,⊕,¬, 0〉 is an MV-algebra, which we denote by A0. Observe that

(A0)→ = A. Another important  Lukasiewicz implication algebra is Lω, which

may be defined on the universe Lω = {1 = a0, a = a1, a2, a3, . . . } by setting

ai→aj := amax(0,j−i). Note that Lω is isomorphic to the {→, 1}-reduct of the

radical of Chang’s MV-algebra.

Unlike in the case of MV-algebras, Ln is embeddable in Lm if and only if

n ≤ m. Consequently, the lattice of subvarieties of L is much simpler than the

lattice of subvarieties of MV. It was completely described by Komori in [8]

and consists of the following chain of subvarieties:

T ⊆ V (L1) ⊆ V (L2) ⊆ · · · ⊆ V (Ln) ⊆ · · · ⊆ V (Lω) = L.

Here T stands for the variety of trivial algebras and, in the sequel, we denote

Ln = V (Ln) for n ≥ 1. Observe also that L1 is the variety of Tarski algebras

or implication algebras.

We recall now the notions regarding projectivity. An algebra A in a variety

V is weakly projective if whenever f : B → C is a surjective homomorphism

between algebras B,C ∈ V and g : A → C is a homomorphism, there is a

homomorphism h : A → B such that g = f ◦ h; in other words, the following

diagram commutes:

A

h

~~
g

��
B

f
// C

Remark 1.1. A note is in order to explain why we focus on weakly projec-

tive instead of projective algebras. Recall that in the definition of projective

objects in category theory epimorphisms are considered instead of surjective

homomorphisms. In this article we deal with the category associated to a

variety of algebras L, that is, the category whose objects are the algebras in

L and whose morphisms are homomorphisms between algebras. It is known

that in the category associated with any variety of algebras, monomorphisms
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coincide with injective homomorphisms. However, although every surjective

homomorphism is an epimorphism, the converse relation does not hold in gen-

eral. In L, for example, consider the algebra A = L2
2 and the subalgebra B of

A with universe B = {(1, 1), (1, 12 ), ( 1
2 , 1)}. It is easy to show that the inclu-

sion homomorphism ι : B→ A is a non-surjective epimorphism in L. The key

property here is the fact that homomorphisms in L preserve existent meets.

We claim that the only projective algebra in L is the trivial algebra. In-

deed, let A ∈ L be any non-trivial algebra and consider an algebra B ≤ A2

with universe B = {(x, 1) : x ∈ A} ∪ {(1, x) : x ∈ A}. As in the previous ex-

ample, the inclusion homomorphism ι : B→ A2 is an epimorphism. However

if g : A → A2 is the diagonal homomorphism given by g(a) = (a, a), a ∈ A,

there cannot exist a homomorphism h : A→ B such that g = ι◦h. This shows

that A is not projective in L. It also shows that the usual notion of projec-

tivity is of little use in the variety L. On the contrary, we will see that weakly

projective algebras abound in L and hence constitute much more interesting

objects.

From now on, we will deal exclusively with weakly projective algebras, so

we will henceforth omit the adverb weakly.

Recall that a retract of an algebra A is an algebra B for which there exists

a pair of homomorphisms π : A → B and ι : B → A such that π ◦ ι is the

identity map on B. It follows immediately that π is always surjective and ι is

always injective. Thus B is both a homomorphic image of A and isomorphic

to a subalgebra of A.

The following proposition lists a few easy consequences of the definition of

projective algebra.

Proposition 1.2. Given a variety V, we have:

(a) Free algebras in V are projective.

(b) A ∈ V is projective if and only if it is the retract of a free algebra in V.

(c) If A ∈ V is projective, every retract of A is also projective in V.

2. Free  Lukasiewicz implication algebras

There are two characterizations of finitely generated free  Lukasiewicz impli-

cation algebras in the literature, one given by Rose [10] and another given by

Dı́az Varela [7]. In this section we will review these characterizations, give new

proofs of them as well as give some insight into the connection between the

two. A good understanding of free algebras will allow us to study projectivity

in the next section.

We denote by FreeMV(X) the free MV-algebra over a set X of free gen-

erators. Since  Lukasiewicz implication algebras are the {→, 1}-subreducts of

MV-algebras, FreeL(X) (the free  Lukasiewicz implication algebra on X) is

simply the subalgebra of the reduct FreeMV(X)→ generated by X.
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In this article we will mainly deal with finitely generated free algebras.

Recall that McNaughton’s Theorem (see e.g. [4, Theorem 9.5.1]) character-

izes free MV-algebras. More specifically, the n-generated free MV-algebra

FreeMV(n) is isomorphic to the algebra M([0, 1]n) of McNaughton functions on

the real n-cube [0, 1]n. The generators are the projection functions π1, . . . , πn,

defined by πi(x1, . . . , xn) = xi. In this article, it will be also useful to note

that, given S ⊆ [0, 1]n, the restrictions to S of functions in M([0, 1]n) also con-

stitute an MV-algebra, which we denote by M(S). Moreover, in light of the

facts mentioned in the previous paragraph, the n-generated free  Lukasiewicz

implication algebra may be characterized within the reduct M([0, 1]n)→ as

the implicative subalgebra generated by the projections π1, . . . , πn. We de-

note this implicative subalgebra R([0, 1]n) and we recall the characterization

of the members of R([0, 1]n) given by A. Rose in [10].

Theorem 2.1 ([10]). Given a McNaughton function f ∈ M([0, 1]n), f ∈
R([0, 1]n) if and only if the following conditions hold:

(i) f(λx1 + 1 − λ, . . . , λxn + 1 − λ) = λf(x1, . . . , xn) + 1 − λ, for every

λ ∈ [0, 1].

(ii) There exists ` ∈ {1, . . . , n} such that, for every (x1, . . . , xn) ∈ [0, 1]n,

f(x1, . . . , xn) ≥ x`.

We will now analyze in detail the conditions of the previous theorem and

their implications. While performing this task we will produce a complete

proof of it.

The easiest part is the necessity of condition (ii). Since x→ y ≥ y holds

in any  Lukasiewicz implication algebra, for any nonconstant implicative term

t(x1, . . . , xn), t(x1, . . . , xn) ≥ x` holds in any  Lukasiewicz implication algebra,

if we let x` be the rightmost variable appearing in t.

In order to understand condition (i), we first show the following proposition.

Proposition 2.2. For any λ ∈ [0, 1], the function ϕλ(x) = (1− λ)x+ λ is an

implicative homomorphism from [0, 1]
→

onto its subalgebra [λ, 1]
→

. More-

over, ϕλ is an isomorphism iff λ 6= 1.

Proof. It suffices to check that for any x, y ∈ [0, 1], (1 − λ)(x → y) + λ =

min{1, 1− (1− λ)x+ (1− λ)y} = ((1− λ)x+ λ)→ ((1− λ)y + λ). �

We may now reinterpret condition (i) in Rose’s Theorem as stating that

any implicative function f must be preserved by all endomorphisms ϕ1−λ
with λ ∈ [0, 1], or equivalently, by all endomorphisms ϕλ with λ ∈ [0, 1], that

is, ϕλ(f(x1, . . . , xn)) = f(ϕλ(x1), . . . , ϕλ(xn)).

Remark 2.3. The endomorphisms in Proposition 2.2 are all the endomor-

phisms of [0, 1]
→

. Indeed, if ϕ : [0, 1]
→ → [0, 1]

→
is any nontrivial en-

domorphism, then, letting λ = ϕ(0) 6= 1, ϕ : [0, 1] → [λ, 1]
→
λ is an MV-

homomorphism. But ψ : [λ, 1]
→
λ → [0, 1] given by ψ(x) =

x− λ
1− λ

is also an
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MV-homomorphism. Thus ψ ◦ ϕ is an MV-endomorphism of [0, 1]. Since the

only endomorphism of the MV-algebra [0, 1] is the identity map, it follows

that ψ ◦ ϕ = id, which implies that ϕ(x) = (1− λ)x+ λ = ϕλ(x).

It may be checked by a direct computation that ϕ(1−λ) ◦ϕ(1−µ) = ϕ(1−λµ).

Thus, identifying each endomorphism ϕλ with the real number 1− λ ∈ [0, 1],

it follows that the endomorphism monoid of [0, 1]
→

is isomorphic to the real

unit interval [0, 1] with the standard product of real numbers.

Another important consideration is that condition (i) implies that functions

f ∈ R([0, 1]n) are completely determined by their values on

On := {(x1, . . . , xn) ∈ [0, 1]n : xi = 0 for some i}.

Indeed, let 1 := (1, 1, . . . , 1) and x = (x1, . . . , xn) ∈ [0, 1]n, x 6= 1. Then x is a

convex combination of some x∗ ∈ On and 1, since we may write:

x = (1− λ)x∗ + λ1, (2.1)

λ = min{x1, . . . , xn}, x∗i =
xi − λ
1− λ

, 1 ≤ i ≤ n. (2.2)

From this we get that f(x) = (1 − λ)f(x∗) + λ. In addition, f(1) = 1 also

holds. Let R(On) be the restriction to On of all functions in R([0, 1]n). Clearly

R(On) is a  Lukasiewicz implication algebra isomorphic to R([0, 1]n).

Lemma 2.4. If f ∈ M([0, 1]n) and ` ∈ {1, . . . , n}, then there exists an im-

plicative term u(x1, . . . , xn) such that u[0,1](x) = f(x) ∨ x` for every x ∈ On.

Proof. Let f be any McNaughton function on [0, 1]n. Since the MV-operations

are recoverable from → and 0 (recall that x⊕ y = (x→ 0)→ y, ¬x = x→ 0),

there exists an implicative term t(x1, . . . , xn, xn+1) such that f(x1, . . . , xn) =

t[0,1](x1, . . . , xn, 0). Consider the {∧,→, 1}-term t (x1, . . . , xn,
∧
i xi). Note

that in any MV-algebra the following equations hold:

• x→ (y ∧ z) ≈ (x→ y) ∧ (x→ z),

• (x ∧ y)→ z ≈ (x→ z) ∨ (y→ z),

• x ∨ y ≈ (x→ y)→ y.

These equations imply that there exist implicative terms t1, . . . , tk such that

t (x1, . . . , xn,
∧
i xi) ≈

∧
j tj(x1, . . . , xn). Now consider the implicative term

u(x) =

∨
j

(tj(x)→ x`)

→ x`.



6 D. N. Castaño Algebra univers.

Then, for every x ∈ On, we have

u[0,1](x) =

∧
j

t
[0,1]
j (x)

 ∨ x`
= t[0,1]

(
x,
∧
i

xi

)
∨ x`

= t[0,1](x, 0) ∨ x`
= f(x) ∨ x`.

�

The sufficiency in Rose’s Theorem is now an easy consequence of the last

lemma. Indeed, if a McNaughton function f on [0, 1]n satisfies conditions (i)

and (ii), then u(x) = f(x)∨x` = f(x) for every x ∈ On and, by condition (i),

u(x) = f(x) for every x ∈ [0, 1]n, thus proving that f ∈ R([0, 1]n).

Thus far, in light of Rose’s Theorem, we have that FreeL(n) ∼= R([0, 1]n) ∼=
R(On). We now turn to study the relation between Rose’s Theorem and Dı́az

Varela’s Theorem from [7]. The latter showed that FreeL(n) is isomorphic

to the restriction to On of all McNaughton functions that satisfy condition

(ii). We define the subset M+([0, 1]n) ⊆ M([0, 1]n) as the one consisting

of McNaughton functions that satisfy condition (ii). The subset M+(S) ⊆
M(S) may be defined accordingly for any S ⊆ [0, 1]n. Since M+(S) is an

increasing subset in M(S), it is the universe of a  Lukasiewicz implication

algebra M+(S) = 〈M+(S),→, 1〉. Thus the result in [7] becomes the following.

Theorem 2.5 ([7]). FreeL(n) ∼= M+(On).

Note that, by definition, the members of R(On) are the restrictions to On

of some McNaughton functions that satisfy condition (ii) (the ones that also

satisfy condition (i)). In fact, by Theorem 2.5, R(On) must coincide with the

restrictions to On of all McNaughton functions that satisfy condition (ii). We

give a direct proof of this fact in the following proposition.

Proposition 2.6. R(On) = M+(On).

Proof. The forward inclusion is trivial. Now let f ∈ M([0, 1]n) be a Mc-

Naughton function such that f(x) ≥ x` for every x ∈ [0, 1]n and some fixed

` ∈ {1, . . . , n}. By Lemma 2.4, there exists an implicative term u such

that u[0,1](x) = f(x) ∨ x` = f(x) for every x ∈ On. Thus, since clearly

u[0,1] ∈ R([0, 1]n), it follows that f � On ∈ R(On). �

Remark 2.7. There is a more direct way to prove the last proposition which

we want to delineate here. Let f ∈M([0, 1]n) be a McNaughton function such

that f(x) ≥ x` for every x ∈ [0, 1]n and some fixed ` ∈ {1, . . . , n}. Define

a function g : [0, 1]n → [0, 1] in the following way: g(1) = 1, and if x 6= 1,

we put g(x) = (1 − λ)f(x∗) + λ, with λ and x∗ as in (2.2). It is clear that
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f � On = g � On. Thus, to show that f � On ∈ R(On), we only need to show

that g ∈ R([0, 1]n).

First note that it is intuitively clear and quite straightforward to prove that

g is continuous. Moreover, g satisfies condition (i) in Rose’s Theorem by the

way it was defined and, since g(x) = (1 − λ)f(x∗) + λ ≥ (1 − λ)x∗` + λ = x`,

g also satisfies condition (ii). It remains to show that g is a McNaughton

function on [0, 1]n.

Let p1, . . . , pk be the linear pieces of the McNaughton function f . Fix

x ∈ [0, 1]n, x 6= 1, and let λ = min{x1, . . . , xn} = xs. Then x∗i =
xi − xs
1− xs

and

g(x) = (1−xs)f(x∗)+xs. There exists r ∈ {1, . . . , k} such that f(x∗) = pr(x
∗).

Assume pr(y) = a0 + a1y1 + · · ·+ anyn, a0, a1, . . . , an ∈ Z. Then

g(x) = (1− xs)(a0 +
∑
i

aix
∗
i ) + xs = a0 +

∑
i

aixi + (1− a0 −
∑
i

ai)xs.

Thus, pr,s(y) = a0 +
∑
i aiyi + (1− a0 −

∑
i ai)ys is a linear polynomial with

integer coefficients such that g(x) = pr,s(x). We have thus shown that there

is a finite family of linear polynomials with integer coefficients, namely {pr,s :

1 ≤ r ≤ k, 1 ≤ s ≤ n}, such that for every x ∈ [0, 1]n, there is a polynomial

pr,s such that g(x) = pr,s(x). This proves that g is a McNaughton function.

Example 2.8. To illustrate the last proposition and the subsequent remark,

consider the McNaughton function f : [0, 1]2 → [0, 1] given by f(x, y) = x⊕ x
which clearly belongs to M+([0, 1]2) but not to R([0, 1]2). We write f explicitly

using linear polynomials with integer coefficients on O2 and obtain

f(x, 0) =

{
2x if 0 ≤ x ≤ 1

2 ,

1 if 1
2 ≤ x ≤ 1,

f(0, y) = 0.

Following the construction in the remark, we get

g(x, y) =


x if (x, y) ∈ A1,

2x− y if (x, y) ∈ A2,

1 if (x, y) ∈ A3,

where the regions A1, A2 and A3 are depicted in Figure 1. This McNaughton

function satisfies conditions (i) and (ii) in Rose’s Theorem and, therefore, is

the interpretation on [0, 1] of an implicative term. We may find the corre-

sponding implicative term from the original MV-term f(x, y) = x ⊕ x ap-

plying the procedure described in the proof of Lemma 2.4. We first write

f(x, y) = x⊕ x = ¬x→ x = (x→ 0)→ x. Then we replace 0 by x∧ y, produc-

ing f̃(x, y) = (x→(x∧y))→x and then we rewrite this expression as a meet of

implicative terms. In this case, f̃(x, y) = ((x→x)∧(x→y))→x = (x→y)→x

is already the desired implicative term.

To end this section on free algebras, we summarize the different character-

izations of free  Lukasiewicz implication algebras in the following theorem.
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1

1

1
2

A1

A2 A3

Figure 1. Decomposition of [0, 1]2 in Example 2.8

Theorem 2.9. FreeL(n) ∼= R([0, 1]n) ∼= R(On) = M+(On).

3. Projective and finitely presented  Lukasiewicz implication alge-

bras

A study of projectivity of MV-algebras may be found in [2]. In this article we

study projective algebras in the variety L as well as their relation to projective

MV-algebras. Remember that we are omitting the adverb weakly everywhere.

We start with a universal characterization of finitely-generated projective

algebras as certain subalgebras of free algebras.

Theorem 3.1. Let V be a variety. An n-generated algebra A is projective in

V if and only if A is isomorphic to a subalgebra of FreeV(n) generated by n

elements {t1, . . . , tn} such that ti(t1, . . . , tn) = ti for each i ∈ {1, . . . , n}.

Proof. Let A be a projective algebra in V generated by elements a1, . . . , an ∈
A. Let x1, . . . , xn be the free generators of FreeV(n). Thus there exists a

surjective homomorphism π : FreeV(n) → A such that π(xi) = ai. Hence,

there exists an embedding ι : A→ FreeV(n) such that π◦ι = idA (identity map

on A). It follows that A ∼= ι(A) and ι(A) is a subalgebra of FreeV(n) generated

by {ti := ι(ai) : 1 ≤ i ≤ n}. Now observe that ι(π(xi)) = ι(ai) = ti and also

ti(t1, . . . , tn) = ti(ι(π(x1)), . . . , ι(π(xn))) = ι(π(ti(x1, . . . , xn)) = ι(π(ti)) =

ι(π(ι(π(xi)))) = ι(π(xi)) = ti, since π ◦ ι = idA.

Conversely, let S be the subalgebra of FreeV(n) generated by {t1, . . . , tn}
with the condition stated in the theorem. Let π : FreeV(n)→ S be the surjec-

tive homomorphism defined by π(xi) = ti. Then π(ti) = π(ti(x1, . . . , xn)) =

ti(π(x1), . . . , π(xn)) = ti(t1, . . . , tn) = ti. Moreover, for any term t, we have

that π(t(t1, . . . , tn)) = t(π(t1), . . . , π(tn)) = t(t1, . . . , tn). This shows that π is

a retraction of FreeV(n) onto S proving that S is projective. �
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This theorem, together with the representation of free  Lukasiewicz im-

plication algebras as algebras of McNaughton functions, allows us to give a

characterization of finitely generated projective  Lukasiewicz implication alge-

bras as algebras of McNaughton functions on certain polyhedra in the real

cube. We recall some definitions from [2]. A Z-retraction of [0, 1]n is a map

η : [0, 1]n → [0, 1]n such that η = (f1, . . . , fn), where f1, . . . , fn ∈ M([0, 1]n),

and η ◦ η = η. We say that P ⊆ [0, 1]n is a Z-retract of [0, 1]n if P = η([0, 1]n)

for some Z-retraction of [0, 1]n. We now define the corresponding notions suit-

able for the case we are interested in. A Z-retraction η = (f1, . . . , fn) is an

implicative Z-retraction if f1, . . . , fn ∈ R([0, 1]n). Analogously, P ⊆ [0, 1]n

is an implicative Z-retract of [0, 1]n if P = η([0, 1]n) for some implicative Z-

retraction of [0, 1]n.

Theorem 3.2. A  Lukasiewicz implication algebra A is an n-generated projec-

tive algebra if and only if A ∼= R(P ) for some implicative Z-retract of [0, 1]n.

Proof. By Theorem 3.1, it is enough to show that, given f1, . . . , fn ∈ R([0, 1]n)

such that fi(f1, . . . , fn) = fi, i = 1, . . . , n, the subalgebra A of R([0, 1]n)

generated by f1, . . . , fn is isomorphic to R(P ), where P = η([0, 1]n), η =

(f1, . . . , fn). To prove this, consider the following surjective homomorphisms:

• ψ1 : R([0, 1]n) → A given by ψ1(πi) = fi, where π1, . . . , πn are the

projection maps (free generators),

• ψ2 : R([0, 1]n)→ R(P ) given by ψ2(f) = f � P , the restriction of f to

P .

Now observe that ψ1(f) = 1 iff f(f1, . . . , fn) = 1 iff f � P = 1 iff ψ2(f) = 1.

Thus, kerψ1 = kerψ2, so A ∼= R(P ). �

In order to give a simpler characterization of n-generated projective alge-

bras, we need to study the structure of implicative Z-retracts of [0, 1]n. We

will find that their structure is quite simple and, as a by-product, we will show

that finitely generated projective algebras coincide with finitely presented ones

(recall that an algebra is finitely presented if it is isomorphic to a quotient of

a finitely generated free algebra via a finitely generated congruence). Be-

fore pursuing this task, we prove that the known characterization of finitely

presented MV-algebras extends straightforwardly to  Lukasiewicz implication

algebras. Recall that, given a subset S ⊆ M([0, 1]n), the one-set of S is the

set {x ∈ [0, 1]n : f(x) = 1 for every f ∈ S}.

Theorem 3.3. A  Lukasiewicz implication algebra A is finitely presented if

and only if A ∼= R(P ) for some one-set P of a finite subset of R([0, 1]n).

Proof. It enough to show that, given a finite subset {f1, . . . , fk} ⊆ R([0, 1]n),

the quotient algebra R([0, 1]n)/F , where F is the implicative filter generated

by {f1, . . . , fk}, is isomorphic to the algebra R(P ), where P is the one-set of

{f1, . . . , fk}.
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Indeed, consider the homomorphism ψ : R([0, 1]n)→ R(P ) given by ψ(f) =

f � P . Note that kerψ = {f ∈ R([0, 1]n) : f(x) = 1 for every x ∈ P}.
Now observe that the definition of filters in MV-algebras is equivalent to the

definition of implicative filters. Thus, if F denotes the filter generated by

{f1, . . . , fk} in R([0, 1]n) and G denotes the filter generated by the same func-

tions in the MV-algebra M([0, 1]n), then F = G∩R([0, 1]n). For MV-algebras,

it is known that G = {f ∈ M([0, 1]n) : f(x) = 1 for every x ∈ P}. Hence,

F = {f ∈ R([0, 1]n) : f(x) = 1 for every x ∈ P} = kerψ. This concludes the

proof. �

In order to describe the structure of implicative Z-retracts of [0, 1]n, we

recall some more definitions and results from [2]. A rational polyhedron is

the pointset union of finitely many simplexes with rational vertices. A set

X ⊆ [0, 1]n is star-shaped if there exists an element p ∈ X (called a pole of

X) such that, for every y ∈ X, the linear segment [p, y] is contained in X.

We also denote by conv(X) the convex hull generated by a set X and by

[X, 1] the set of convex combinations of points in X ⊆ [0, 1]n and the vertex

1 = (1, 1, . . . , 1) ∈ [0, 1]n, that is, [X, 1] = {(1− λ)x+ λ1 : x ∈ X,λ ∈ [0, 1]}.

Lemma 3.4 ([2]).

(a) If η : [0, 1]n → [0, 1]n is given by η = (f1, . . . , fn) where f1, . . . , fn ∈
M([0, 1]n), then η([0, 1]n) is a rational polyhedron. In particular, every

(implicative) Z-retract of [0, 1]n is a rational polyhedron.

(b) If P ⊆ [0, 1]n is a star-shaped rational polyhedron with a pole p such that

pi ∈ {0, 1} for each i = 1, . . . , n, then P is a Z-retract of [0, 1]n.

Recall that given x ∈ Qn, the least common denominator of the coordinates

of x is called the denominator of x and is denoted by den(x). The homo-

geneous coordinates of x are then defined as the integer vector den(x)(x, 1) ∈
Zn+1. Moreover, recall that a rational simplex (a simplex whose vertices have

rational coordinates) is unimodular if the set of homogeneous coordinates of

its vertices may be extended to a basis of the free abelian group Zn+1.

Lemma 3.5. If S is a unimodular rational simplex contained in On, then

S′ = conv(S ∪ {1}) = [S, 1] is a unimodular rational simplex contained in

[0, 1]n.

Proof. Since S is convex and S ⊆ On, there exists j ∈ {1, . . . , n} such that

S is contained in the hyperplane xj = 0. Without loss of generality we may

assume j = 1. Let v1, . . . , vk be the vertices of S. Then v1, . . . , vk, 1 are affine

independent and thus S′ = conv(S ∪ {1}) = conv({v1, . . . , vk, 1}) is a rational

simplex.

Now let ṽ1, . . . , ṽk be the corresponding homogeneous coordinates of the

vertices of S. Since S is unimodular, {ṽ1, . . . , ṽk}may be extended to a basis of

the free abelian group Zn+1, or, equivalently, ifM denotes the k×(n+1) matrix

whose rows are the vectors ṽ1, . . . , ṽk, the greatest common divisor of the k-

minors of M is 1. Now observe that the vertices of S′ are 1, v1, . . . , vk, whose
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homogeneous coordinates are 1̃, ṽ1, . . . , ṽk, where 1̃ = (1, 1, . . . , 1) ∈ Zn+1. Let

M ′ be the (k + 1) × (n + 1) matrix whose rows are the vectors 1̃, ṽ1, . . . , ṽk.

The matrix M ′ has the following shape: M ′ =

[
1 1

0 A

]
. Observe that the

(k+ 1)-minors of M ′ that include the first column coincide with the k-minors

of M that do not include the first column. Also note that the k-minors of M

that include the first column are zero. Then the greatest common divisor of

all (k + 1)-minors of M ′ must be 1. Thus {1̃, ṽ1, . . . , ṽk} may be extended to

a basis of Zn+1 and S′ is unimodular. �

The following lemma characterizes the implicative Z-retracts of [0, 1]n. Note

that the vertex 1 = (1, 1, . . . , 1) belongs to any implicative Z-retract of [0, 1]n

since any f ∈ R([0, 1]n) satisfies f(1) = 1. Note also that the endomorphisms

ϕλ from Proposition 2.2 extend naturally to endomorphisms ϕλ : [0, 1]n →
[0, 1]n given by ϕλ(x) = (ϕλ(x1), . . . , ϕλ(xn)) = (1− λ)x+ λ1.

Lemma 3.6. For P ⊆ [0, 1]n, the following are equivalent:

(i) P is an implicative Z-retract of [0, 1]n.

(ii) P is the one-set of a finite subset of R([0, 1]n).

(iii) P = {1} or P = [Q, 1] for some rational polyhedron Q ⊆ On.

Proof. (i) ⇒ (ii) Assume P = η([0, 1]n) for some implicative Z-retraction

η : [0, 1]n → [0, 1]n. Put η = (f1, . . . , fn) for some f1, . . . , fn ∈ R([0, 1]n).

Since η ◦ η = η, P = {x ∈ [0, 1]n : η(x) = x}. Hence P = {x ∈ [0, 1]n : fi(x) =

xi, 1 ≤ i ≤ n}. Defining gi(x) = fi(x)→ xi and hi(x) = xi→ fi(x), it follows

that P is the one-set of the finite set {g1, . . . , gn, h1, . . . , hn}.
(ii)⇒ (iii) Let P be the one-set of {f1, . . . , fk} ⊆ R([0, 1]n). Given x ∈ P

and 1 ≤ i ≤ k, we have that fi(ϕλ(x)) = ϕλ(fi(x)) = ϕλ(1) = 1. This shows

that the line segment [x, 1] is contained in P .

Now let x ∈ P , x 6= 1. As in the proof of Proposition 2.6, note that we

may write x = (1− λ)x∗ + λ1 for some x∗ ∈ On, setting λ = min{x1, . . . , xn},

x∗i =
xi − λ
1− λ

. Thus, for 1 ≤ i ≤ k, 1 = fi(x) = (1−λ)fi(x
∗)+λ, so fi(x

∗) = 1.

This shows that x∗ ∈ P .

Consequently, if P 6= {1}, P = [Q, 1] for the rational polyhedron Q =

P ∩On.

(iii) ⇒ (i) The proof follows that of Theorem 1.4 in [2]. Let Q be any

rational polyhedron contained in On and put P = [Q, 1]. P is a rational

polyhedron and is star-shaped with a pole in 1. We want to show that P is

an implicative Z-retract of [0, 1]n. By Lemma 3.4 we know that there is a

Z-retraction η of [0, 1]n such that η([0, 1]n) = P . However, we need to look

closer at the way in which η is constructed in the proof of this lemma in order

to check that η may be taken to be an implicative Z-retraction.

Following the proof in [2], let ∆ be a unimodular triangulation of On such

that Q =
⋃
{S ∈ ∆ : S ⊆ Q}. By Lemma 3.5, for every S ∈ ∆, S′ = [S, 1] is

a unimodular simplex contained in [0, 1]n. Moreover, ∆′ = {[S, 1] : S ∈ ∆} is
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a unimodular triangulation of [0, 1]n such that P =
⋃
{[S, 1] : S ∈ ∆, S ⊆ Q}.

For each simplex S′ ∈ ∆′, let ext(S′) be the set of vertices of S′. Then there

exists a unique affine linear map ηS′ : S
′ → [0, 1]n with integer coefficients

determined by

ηS′(v) =

{
v if v ∈ ext(S′) ∩ P,
1 if v ∈ ext(S′) \ P.

Let η =
⋃
{ηS′ : S′ ∈ ∆′}. The fact that η is a Z-retraction of [0, 1]n whose

range is P is shown in detail in [2]. Here we will show that η is, in this

particular case, an implicative Z-retraction.

Let S′ = [S, 1] ∈ ∆′, ext(S′) \ P = {v1, . . . , vm} and ext(S′) ∩ P =

{w1, . . . , wk}. Then, if x =
∑
i αivi +

∑
j βjwj is a convex combination of

the vertices of S′, then, since ηS′ is affine linear,

ηS′(x) =
∑
i

αiηS′(vi) +
∑
j

βjηS′(wj) =
∑
i

αi1 +
∑
j

βjwj .

Thus

ηS′(x) ≥
∑
i

αivi +
∑
j

βjwj = x,

where ≤ stands for the product partial ordering on [0, 1]n. This shows that

η(x) ≥ x for every x ∈ [0, 1]n. Hence, if η = (f1, . . . , fn), fi(x) ≥ xi for every

x ∈ [0, 1]n, 1 ≤ i ≤ n. This way condition (ii) in Rose’s Theorem is met.

It remains to check condition (i) in Rose’s Theorem. Using the same nota-

tion as in the previous paragraph, note that ϕλ(x) ∈ S′ for every λ ∈ [0, 1].

Thus

η(ϕλ(x)) = ηS′(ϕλ(x)) = ηS′((1− λ)x+ λ1) = (1− λ)ηS′(x) + ληS′(1)

= (1− λ)ηS′(x) + λ1 = ϕλ(ηS′(x)) = ϕλ(η(x)).

This shows that ϕλ(fi(x)) = fi(ϕλ(x)) for every x ∈ [0, 1]n, 1 ≤ i ≤ n. Thus

we have shown that the components of η belong to R([0, 1]n). �

Using the last lemma we can simplify the representation of R(P ).

Lemma 3.7. R(P ) ∼= R(P ∩On) = M+(P ∩On) for any implicative Z-retract

P 6= {1} in [0, 1]n.

Proof. The equality R(P ∩ On) = M+(P ∩ On) follows directly from Propo-

sition 2.6. To show that R(P ) ∼= R(P ∩ On), it is enough to show that the

restriction homomorphism ψ : R(P ) → R(P ∩ On) is a bijection. Indeed,

surjectivity is straightforward. In addition, from Lemma 3.6, we know that

P = [P ∩On, 1]. Thus condition (i) from Rose’s Theorem guarantees that any

f ∈ R(P ) is completely determined by its values on P ∩On. This shows that

ψ is injective. �

Putting together Theorem 3.2, Theorem 3.3, Lemma 3.6, and Lemma 3.7,

we get the following summary theorem. (For the sake of this theorem, consider

M+(∅) = R(∅) = trivial algebra.)
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Theorem 3.8. The following are equivalent:

(i) A is an n-generated projective  Lukasiewicz implication algebra,

(ii) A is an n-generated finitely presented  Lukasiewicz implication algebra.

(iii) A ∼= R(P ) for some implicative Z-retract P of [0, 1]n.

(iv) A ∼= M+(Q) = R(Q) for some rational polyhedron Q ⊆ On.

Remark 3.9. An interesting consequence of this theorem is the fact that all

finite  Lukasiewicz implication algebras are projective. In particular, since free

algebras in the proper subvarieties of L are finite, they are projective and,

thus, retractions of free algebras in L. We show in the Appendix an explicit

retraction from FreeL(n) onto FreeLk
(n).

Moreover, since the subvarieties of L are all generated by their finite mem-

bers and all finite algebras are projective, it is easy to show that every sub-

quasivariety of L is a variety. This had already been shown in [3]. Note also

that the logical counterpart of this result is the fact that the implicative frag-

ment of  Lukasiewicz logic is hereditarily structurally complete. The structural

completeness of this logic had already been proven in [5].

Finally, to close this section we will show that the implicative reducts of all

projective MV-algebras are projective in L. This may be proved, in the finitely

generated case, as a consequence of our characterization given in Theorem 3.8

and the corresponding theorem of Cabrer and Munidici in [2]. However, we

give here a very simple direct proof that encompasses also the non-finitely

generated case.

Lemma 3.10. For any set of free generators X, FreeMV(X)→ is projective

in L.

Proof. Consider a set Y = X ∪ {y} such that y 6∈ X and let A be the sub-

algebra of FreeL(Y ) with universe [y) (increasing set generated by y). We

can define a homomorphism of MV-algebras ι : FreeMV(X) → Ay by putting

ι(x) = x ∨ y for every x ∈ X. Note that ι : FreeMV(X)→ → FreeL(Y ) is a

homomorphism of  Lukasiewicz implication algebras. Now we define a homo-

morphism π : FreeL(Y )→ FreeMV(X)→ by setting π(x) = x for every x ∈ X
and π(y) = 0. It immediately follows that π ◦ ι = id. Thus FreeMV(X)→ is a

retract of a free algebra in L, so it is projective in L. �

Proposition 3.11. If A is a projective MV-algebra, then A→ is projective in

L.

Proof. Let A be a projective MV-algebra. Then A is a retract of FreeMV(X)

for some set of free generators X, that is, there are homomorphisms ι : A →
FreeMV(X) and π : FreeMV(X) → A such that π ◦ ι = id. Both maps are

homomorphisms between the corresponding {→, 1}-reducts. Hence A→ is a

retract of the projective algebra FreeMV(X)→, so it is also projective. �

It is interesting to note that the converse of the last proposition is not true.

If A ∈ L has a least element 0, it may be the case that A is projective in
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L but A0 is not projective in MV. For example, finite chains with three or

more elements are not MV-projective, but we have already seen that they are

projective as  Lukasiewicz implication algebras.

4. Projective chains

In this section we characterize totally ordered projective  Lukasiewicz im-

plication algebras. In fact, we prove that the only projective chains are finite

chains. It is interesting to note that, for the finitely generated case, this is a

simple corollary of Theorem 3.8. Indeed, if A is a nontrivial n-generated pro-

jective algebra in L, then A ∼= R(Q) for some rational polyhedron Q ⊆ On. If

Q has more than one element, then it is easy to see that R(Q) is not totally

ordered. On the other hand, if Q = {a} consists of one (rational) point in On,

then R(Q) is a finite chain. In what follows, we prove the same result in the

general case.

We start by showing that the infinite chain Lω is not projective.

Lemma 4.1. In any MV-algebra, for any n ∈ N, if an→b = a, then b = an+1.

Proof. We use induction on n. If a→ b = a, then a2 = a ∗ (a→ b) = a∧ b = b.

This shows the case n = 1. Now assume an+1→b = a. Then an→ (a→b) = a,

so, by the induction hypothesis, a→ b = an+1. Thus an+2 = a ∗ (a→ b) =

a ∧ b = b. �

Corollary 4.2. Given an MV-algebra A, every subalgebra of A→ isomorphic

to Lω has universe {1, a, a2, a3, . . . } for some a ∈ A, a 6= 1.

Proof. Suppose S = {a0 = 1, a1, a2, . . . } is the universe of a subalgebra of A→

isomorphic to Lω, that is, we may assume that an → an+m = am for every

n,m ∈ N∪{0}. We show by induction on n that an = an1 for every n ≥ 1. The

case n = 1 is obvious. Assuming an = an1 , note that an1→an+1 = an→an+1 =

a1. Thus, by the previous lemma, an+1 = an+1
1 . �

Lemma 4.3. In the MV-algebra [0, 1], for each n ∈ N, a→ an+1 = an if and

only if a ≥ 1− 1
n+1 .

Proof. Let a ∈ [0, 1]. Note that a→ an+1 = na − n + 1 if a ≥ 1 − 1
n+1 and

a→ an+1 = 1 − a otherwise. Also an = na − n + 1 if a ≥ 1 − 1
n and an = 0

otherwise. The lemma is now straightforward. �

Theorem 4.4. The {→, 1}-reduct of any free MV-algebra has no subalgebra

isomorphic to Lω.

Proof. Assume S ≤ FreeMV(X)→ and S ∼= Lω. By Corollary 4.2, S =

{1, t, t2, t3, . . . } for some t ∈ FreeMV(X). Since t depends on a finite number of

variables, we may assume, without loss of generality, that X = {x1, . . . , xm}.
Note that t(x)→ t(x)n+1 = t(x)n for every n ∈ N. By the previous lemma,

t[0,1](a) = 1 for every a ∈ [0, 1]m. Thus t(x) = 1, which is a contradiction. �
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Figure 2. Proof of Lemma 4.6

Corollary 4.5. Lω is not projective.

Proof. Since FreeL(X) ≤ FreeMV(X)→, if FreeL(X) had a subalgebra iso-

morphic to Lω, FreeMV(X)→ would too, which is impossible. Thus Lω cannot

be a retract of a free algebra in L, that is, it is not projective. �

We show now a stronger result than Theorem 4.4: no infinite chain may be

a subalgebra of the {→, 1}-reduct of a free MV-algebra. Thus, the only totally

ordered projective  Lukasiewicz implication algebras are the finite chains. We

will need several lemmas. We write [0, 1]Q := [0, 1] ∩Q for short.

Lemma 4.6. Given r ∈ [0, 1]Q, there exist MV-terms α(x), β(x) such that for

every a ∈ [0, 1]:

• α[0,1](a) ≤ β[0,1](a)⇐⇒ a ≤ r,
• α[0,1](a) ≥ β[0,1](a)⇐⇒ a ≥ r.

Proof. If r = 1, we may consider α(x) = x and β(x) = 1. Also, if r = 0,

we let α(x) = x and β(x) = 0. Assume 0 < r < 1 and write r = m
n with

gcd(m,n) = 1. Let k ∈ Z large enough so that 0 < m
n −

1
nk <

m
n + 1

nk < 1 and

define the following McNaughton functions on [0, 1]:

f(x) =


0 if 0 ≤ x ≤ m

n ,

nkx−mk if m
n ≤ x ≤

m
n + 1

nk ,

1 if m
n + 1

nk ≤ x ≤ 1,

g(x) =


1 if 0 ≤ x ≤ m

n −
1
nk ,

−nkx+mk if m
n −

1
nk ≤ x ≤

m
n ,

0 if m
n ≤ x ≤ 1.

Clearly the MV-terms corresponding to f and g have the desired property,

see Figure 2. �

Recall from Proposition 2.2 that [0, 1]
→ ∼= [b, 1]

→
for any b ∈ [0, 1). We

also showed that ϕb : [0, 1]→ [b, 1] given by ϕ(x) = (1−b)x+b is an implicative

isomorphism. Note also that, since [b, 1]
→

has least element b, the interval

[b, 1] has a natural structure of MV-algebra, which we denote by [b, 1]
→
b .
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Lemma 4.7. Given r ∈ [0, 1]Q, there are implicative terms α(x, y), β(x, y)

such that for 0 ≤ b ≤ a ≤ 1:

• α[0,1](a, b) ≤ β[0,1](a, b)⇐⇒ b ≤ a ≤ b+ r(1− b),
• α[0,1](a, b) ≥ β[0,1](a, b)⇐⇒ b+ r(1− b) ≤ a ≤ 1.

Proof. Let α′(x) and β′(x) be the MV-terms from Lemma 4.6 corresponding to

r. Let α(x, y) and β(x, y) be implicative terms such that MV |= α(x, 0) = α′(x)

and MV |= β(x, 0) = β′(x). (These terms may be produced by writing α′(x)

and β′(x) in the language {→, 0} and then replacing every 0 by the variable

y.) Let B = [b, 1]
→
b , which is isomorphic to [0, 1] via the isomorphism ϕb(x).

Let a∗ ∈ [0, 1] be such that ϕb(a
∗) = a. Then

α[0,1](a, b) ≤ β[0,1](a, b)⇐⇒ α[b,1]→(a, b) ≤ β[b,1]→(a, b)

⇐⇒ αB(a, b) ≤ βB(a, b)

⇐⇒ αB(ϕb(a
∗), ϕb(0)) ≤ βB(ϕb(a

∗), ϕb(0))

⇐⇒ ϕb(α
[0,1](a∗, 0)) ≤ ϕb(β[0,1](a∗, 0))

⇐⇒ α[0,1](a∗, 0) ≤ β[0,1](a∗, 0)

⇐⇒ α[0,1](a∗) ≤ β[0,1]
(a∗)

⇐⇒ a∗ ≤ r
⇐⇒ ϕb(a

∗) ≤ ϕb(r)
⇐⇒ a ≤ b+ r(1− b).

The other equivalence is completely analogous. �

Recall that if κ is a (possibly infinite) cardinal, a McNaughton function

over the κ-cube is a function f : [0, 1]κ → [0, 1] which depends on finitely

many variables xi1 , . . . , xin and such that f(xi1 , . . . , xin) is a McNaughton

function over the n-cube. We denote the algebra of McNaughton functions on

the κ-cube by M([0, 1]κ).

Lemma 4.8. Let A be a totally ordered subalgebra of M([0, 1]κ)→. Given

s, t ∈ A such that 1 6= t ≤ s, there is r ∈ [0, 1]Q such that s = t+ r(1− t).

Proof. Consider the following subsets of [0, 1]Q: I = {r ∈ [0, 1]Q : t+r(1−t) ≤
s} and J = {r ∈ [0, 1]Q : s ≤ t+ r(1− t)}. Both sets are nonempty and every

element in I is less than or equal to every element in J .

We claim that I ∪ J = [0, 1]Q. Indeed, fix r ∈ [0, 1]Q and let α(x, y) and

β(x, y) be the corresponding implicative terms from the previous lemma. Then

α(s, t), β(s, t) ∈ A, so either α(s, t) ≤ β(s, t) or otherwise α(s, t) ≥ β(s, t).

Hence, the previous lemma asserts that either r ∈ I or r ∈ J .

Put r = sup I = inf J . We will show that s = t + r(1 − t). By way

of contradiction, assume that s(a) 6= t(a) + r(1 − t(a)) for some a ∈ [0, 1]κ.

Suppose first that s(a) > t(a) + r(1− t(a)). Then r <
s(a)− t(a)

1− t(a)
(note that
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t(a) < 1). Choose r′ ∈ Q such that r < r′ <
s(a)− t(a)

1− t(a)
. Then t(a) + r(1 −

t(a)) < t(a) + r′(1 − t(a)) < s(a). Hence r′ 6∈ J , so r′ ∈ I, which contradicts

the fact that r < r′. The case s(a) < t(a) + r(1− t(a)) is analogous.

We have proved that s = t + r(1 − t) for some r ∈ [0, 1]. Now observe

that, since t 6= 1, there is a ∈ [0, 1]κQ such that t(a) 6= 1 (recall that t has a

finite number of linear pieces that depend on finitely many variables). Then

r =
s(a)− t(a)

1− t(a)
∈ Q. �

Theorem 4.9. Every totally ordered subalgebra of M([0, 1]κ)→ is finite.

Proof. Let A be a totally ordered subalgebra of M([0, 1]κ)→. Fix t ∈ A. We

claim that At = {s ∈ A : s ≥ t} is a finite chain. Indeed, if t = 1 there

is nothing to show. Suppose t 6= 1 and t depends on variables xi1 , . . . , xin .

There is a ∈ [0, 1]κQ such that t(a) 6= 1. We can assume that ai = 0 for

every i 6∈ {i1, . . . , in}. Let {b1, . . . , bk} be the set of rational numbers in [0, 1]

whose denominator is a divisor of den(ai1 , . . . , ain). It follows that, for every

s ∈ M([0, 1]κ), s(a) ∈ {b1, . . . , bk}. If s ∈ A and t ≤ s, by the previous

lemma, there is r ∈ [0, 1]Q such that s = t + r(1 − t). In particular, s(a) =

t(a) + r(1− t(a)) ∈ {b1, . . . , bk}. Hence r ∈ { bi−t(a)1−t(a) : 1 ≤ i ≤ k}, that is, there

is only a finite number of possible values for r. Consequently, At is a finite

chain.

We have thus proved that A is a totally ordered  Lukasiewicz implication

algebra such that for every t ∈ A the segment [t, 1] in A is a finite chain.

There are only two possibilities: either A itself is a finite chain, or A ∼= Lω.

However, Theorem 4.4 rules out the second option. �

Corollary 4.10. If A is a totally ordered  Lukasiewicz implication algebra,

then A is projective if and only if A is finite.

Appendix A. Appendix: An explicit retraction from FreeL(n) onto

FreeLk
(n)

As stated in Remark 3.9, every finite algebra in L is projective and, conse-

quently, a retract of a free algebra. Now, given a finite algebra A, in order to

find an explicit retraction from the free algebra to A, we would have to find a

presentation of A, the correspondent implicative Z-retract and its implicative

Z-retraction. Another way to find this retraction that involves a different kind

of calculations would be the following. First write A as a homomorphic image

of some FreeLk
(n), the free algebra in some proper subvariety Lk. Applying

Proposition 2.6 in [3] this surjective homomorphism is a retraction and the

corresponding embedding is easly constructible. Thus it only remains to find

an explicit retraction from FreeL(n) onto FreeLk
(n). We will provide this in

this appendix.
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d
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Figure 3. Proof of Lemma A.3

Let Onk = {x ∈ On ∩Qn : den(x) ≤ k} (recall the definition of den(x) given

before Lemma 3.5). Dı́az Varela proved in [7] that FreeLk
(n) ∼= M+(Onk ),

based on the fact that Lk is the {→, 1}-subreduct of the subvariety of MV-

algebras MVk = V (S1,S2, . . . ,Sk) and the characterization of free algebras

in MV-subvarieties given by Panti in [9], which states that FreeMVk
(n) ∼=

M({x ∈ [0, 1]nQ : den(x) ≤ k}). This characterization of free algebras in Lk
may be also derived as we did in Section 2 for the free algebras in L.

We will prove in a constructive way that M+(Onk ) is a retract of M+(On).

We need some lemmas concerning properties of the MV-algebra [0, 1] and

McNaughton functions.

Lemma A.1. In the MV-algebra [0, 1], for a, b ∈ [0, 1]:

(1) bm ≥ a if and only if a = 0 or b ≥ 1− 1−a
m ;

(2) if k−1
k ≤ a < 1, then 〈{1, a, a2, . . . , ak},→, 1〉 is a subalgebra of [0, 1]

→

isomorphic to Lk.

Proof. (1) follows easily from the fact that bm = max{0,mb−m+1}. To prove

(2), note that using Lemma 4.3 several times it follows that ar→ am = am−r

for 0 ≤ r ≤ m ≤ k. �

Item (2) in the last lemma has the following interesting corollary.

Corollary A.2. If a nonconstant McNaughton function f : [0, 1]n → [0, 1]

satisfies the condition f(x) ≥ k−1
k for every x ∈ [0, 1]n, then the algebra

〈{1, f, f2, . . . , fk},→, 1〉 is a subalgebra of M([0, 1]n)→ isomorphic to Lk.

Lemma A.3. Let a ∈ [0, 1]Q, a = m
d , d = den(a) and r ∈ Z, 0 ≤ r ≤ d. Given

ε > 0, there is a McNaughton function f : [0, 1] → [0, 1] such that f(a) = r
d ,

f(x) ≥ r
d for every x ∈ [0, 1], and f(x) = 1 whenever |x− a| ≥ ε.

Proof. Similarly as in the proof of Lemma 4.6, it is easy to find a v-shaped

McNaughton function with the desired properties with its vertex at (a, rd ) as

shown in Figure 3. �

We need some elementary lemmas concerning the decomposition of fractions

in [0, 1].

Lemma A.4. Let a, b1, b2 ∈ N such that gcd(b1, b2) = 1.
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(a) There are unique q, r1, r2 ∈ Z, 0 ≤ ri < bi, such that a
b1b2

= q + r1
b1

+ r2
b2
.

(b) If a < b1b2, then q = 0 or q = −1, so a
b1b2

= r1
b1
⊕ r2

b2
or a

b1b2
= r1

b1
∗ r2b2 .

(c) If 1− 1
b1
− 1

b2
< a

b1b2
< 1, then q = 0 and a

b1b2
= r1

b1
⊕ r2

b2
.

Proof. Part (a) is elementary. To prove (b), note that if a < b1b2, then 0 <

q + r1
b1

+ r2
b2
< 1, so − r1b1 −

r2
b2
< q < 1− r1

b1
− r2

b2
. This proves that −2 < q < 1.

Finally, for (c), just observe that if q = −1, then q + r1
b1

+ r2
b2
≤ −1 + b1−1

b1
+

b2−1
b2

= 1− 1
b1
− 1

b2
. �

Corollary A.5. Let a, b1, . . . , bn ∈ N, a < b = b1 . . . bn, gcd(bi, bj) = 1 for

i 6= j.

(a) There are unique q, r1, . . . , rn ∈ Z, 0 ≤ ri < bi, such that a
b = q + r1

b1
+

· · ·+ rn
bn

.

(b) There is a term t(x1, . . . , xn) = x1 ◦ x2 ◦ · · · ◦ xn (associating to the left),

where each ◦ stands for ⊕ or ∗, such that a
b = t

(
r1
b1
, . . . , rnbn

)
.

(c) Given i ∈ {1, . . . , n}, there is a term t(x1, . . . , xn−1) = x1 ◦ · · · ◦ xn−1
(associating to the left), where each ◦ stands for ⊕ or ∗, such that b−1

b =
ri
bi
⊕ t
(
r1
b1
, . . . , ri−1

bi−1
, ri+1

bi+1
, . . . , rnbn

)
.

Proof. Parts (a) and (b) come from applying the last lemma several times, and

uniqueness in (a) is an easy exercise. To show part (c), we use item (c) in the

previous lemma for the fraction b−1
b = b−1

bib∗
where b∗ = b1 . . . bi−1bi+1 . . . bn,

to obtain a decomposition b−1
b = si

bi
⊕ s

b∗ . By (a) and (b), there is a term t in

the language {⊕, ∗} such that b−1
b = si

bi
⊕ t
(
s1
b1
, . . . , si−1

bi−1
, si+1

bi+1
, . . . , snbn

)
, where

0 ≤ sj < bj , 1 ≤ j ≤ n. Finally, by the way in which the decomposition is

generated and the fact that in each step the  Lukasiewicz sum or product gives

a result different from 0 or 1, it is clear that si
bi
⊕t
(
s1
b1
, . . . , si−1

bi−1
, si+1

bi+1
, . . . , snbn

)
=

s1
b1

+ · · · + sn
bn
− p, where p is the number of occurrences of the  Lukasiewicz

product in the term t. Using now the uniqueness part of item (a), it follows

that si = ri for 1 ≤ i ≤ n. �

Given x = (x1, . . . , xn) ∈ [0, 1]n, we denote ‖x‖ = max{|x1|, . . . , |xn|}.

Lemma A.6. Let a ∈ [0, 1]nQ, d = den(a). Given ε > 0, there is a McNaughton

function f : [0, 1]n → [0, 1] such that f(a) = d−1
d , f(x) ≥ d−1

d for every x ∈
[0, 1]n, and f(x) = 1 whenever ‖x − a‖ ≥ ε. Moreover, f(x)m ≥ xi for every

x ∈ [0, 1]n if
(
d−1
d

)m ≥ ai, 0 ≤ m ≤ d.

Proof. Put a = (a1, a2, . . . , an), ai = mi

d , 0 ≤ mi ≤ d, 1 ≤ i ≤ n. Note that,

if di = den(ai), then d = den(a) = lcm(d1, . . . , dn). An elementary exercise

proves that there are b1, . . . , bn ∈ N such that d = b1 . . . bn, gcd(bi, bj) = 1

for i 6= j and bi divides di for 1 ≤ i ≤ n. Now, by Corollary A.5, there are

r1, . . . , rn ∈ Z, 0 ≤ ri < bi, and terms t1, . . . , tn in the language {⊕, ∗} such

that
d− 1

d
=

d− 1

b1 . . . bn
=
ri
bi
⊕ ti

(
r1
b1
, . . . ,

ri−1
bi−1

,
ri+1

bi+1
, . . . ,

rn
bn

)
.
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Since bi divides di, we may write ri
bi

= si
di

for suitable si ∈ Z, 0 ≤ si < di,

1 ≤ i ≤ n. Using Lemma A.3, for each 1 ≤ i ≤ n there is a McNaughton

function fi : [0, 1]→ [0, 1] such that:

• fi(ai) = si
di

= ri
bi

,

• fi(x) ≥ si
di

= ri
bi

for every x ∈ [0, 1],

• fi(x) = 1 whenever |x− ai| ≥ ε.

Using the same lemma once again, for each 1 ≤ i ≤ n, there is a McNaughton

function gi : [0, 1]→ [0, 1] such that:

• gi(ai) = 0,

• gi(x) = 1 whenever |x− ai| ≥ ε.

We now define the following McNaughton function on [0, 1]n:

f(x1, x2, . . . , xn) =

n∨
i=1

(fi(xi)⊕ ti(f1(x1), . . . , fi−1(xi−1), fi+1(xi+1), . . . , fn(xn))) ∨
n∨
i=1

gi(xi).

We now check that f has the desired properties.

• f(a) = d−1
d . Straightforward.

• f(x) ≥ d−1
d for each x ∈ [0, 1]n.

Indeed, given x = (x1, . . . , xn) ∈ [0, 1]n,

f(x) ≥ f1(x1)⊕ t1(f2(x2), . . . , fn(xn)) ≥ r1
b1
⊕ t1

(
r2
b2
, . . . ,

rn
bn

)
=
d− 1

d

since ⊕ and ∗ are increasing in each argument.

• f(x)m ≥ xi for every x ∈ [0, 1]n if
(
d−1
d

)m ≥ ai.
Assume

(
d−1
d

)m ≥ ai for some index i, 0 ≤ m ≤ d. Then, by

Lemma A.1, d−1
d ≥ 1 − 1−ai

m , so m ≤ d(1 − ai) = d − mi. Observe

that:

f(x) ≥ fi(xi)⊕ ti(f1(x1), . . . , fi−1(xi−1), fi+1(xi+1), . . . , fn(xn))

≥ fi(xi)⊕ ti
(
r1
b1
, . . . ,

ri−1
bi−1

,
ri+1

ri+1
, . . . ,

rn
bn

)
= fi(xi)⊕

(
d− 1

d
− ri
bi

)
=

(
fi(xi) +

(
d− 1

d
− ri
bi

))
∧ 1

≥ 1− 1− xi
d−mi

.

The last inequality follows from the fact that

fi(xi) ≥ 1− 1− xi
d−mi

−
(
d− 1

d
− ri
bi

)
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for every xi ∈ [0, 1] such that fi(xi) 6= 1 (recall that fi(xi) was defined

in Lemma A.3 as a v-shaped McNaughton function and the slope of

the right hand side in the last equality is 1
d−mi

).

By Lemma A.1 it follows that f(x)d−mi ≥ xi for every x ∈ [0, 1]n.

Therefore, since m ≤ d−mi, we have that f(x)m ≥ f(x)d−mi ≥ xi.
• f(x) = 1 whenever ‖x− a‖ ≥ ε.

Indeed, if ‖x−a‖ ≥ ε, there is some index j such that |xj−aj | ≥ ε,
so f(x) ≥ gj(xj) = 1.

�

We are now ready to make the retraction explicit.

Theorem A.7. M+(Onk ) is a retract of M+(On).

Proof. It is clear that π : M+(On)→M+(Onk ), defined by restriction to Onk of

the functions in M+(On), is a homomorphism. We look for a homomorphism

ι : M+(Onk )→M+(On) such that π ◦ ι = idM+(On
k ).

Since Onk is finite, there is some ε > 0 so that for every pair a1, a2 ∈ Onk
the sets {x ∈ [0, 1]n : ‖x − a1‖ < ε} and {x ∈ [0, 1]n : ‖x − a2‖ < ε} are

disjoint. For this value of ε, we apply the previous lemma for each a ∈ Onk
and produce the corresponding McNaughton functions fa. From now on we

write da instead of den(a). Clearly, since fa(a) = da−1
da

, fa(a)m = da−m
da

for 0 ≤ m ≤ da. Moreover, note that since fa(x) ≥ da−1
da

, by Lemma A.2,

〈{1, fa, f2a , . . . , fdaa },→, 1〉 is a subuniverse of M([0, 1]n)→ isomorphic to Lda .

Given g ∈M+(Onk ), put g(a) = da−ma

da
, 0 ≤ ma ≤ da, for each a ∈ Onk . We

define

ι(g)(x) =
∧
a∈On

k

fa(x)ma .

We claim that ι(g) ∈ M+(On). Indeed, since g ∈ M+(Onk ) there is an index

` ∈ {1, . . . , n} such that g(x) ≥ x` for every x ∈ Onk . Therefore, given a ∈ Onk ,

g(a) = da−ma

da
=
(
da−1
da

)ma

≥ a`. Hence, we know that fa(x)ma ≥ x` for every

x ∈ [0, 1]n. Since this holds for every a ∈ Onk , it follows that ι(g)(x) ≥ x` for

every x ∈ On, so ι(g) ∈M+(On).

We have just defined a map ι : M+(Onk ) → M+(On). We now show that ι

is a homomorphism of  Lukasiewicz implication algebras. Indeed, given g, g′ ∈
M+(Onk ), assume that g(a) = da−ma

da
and g′(a) =

da−m′a
da

for every a ∈ Onk .

Then

ι(g)(x)→ ι(g′)(x) =
∧
a∈On

k

fa(x)ma →
∧
b∈On

k

fb(x)m
′
b

=
∧
b∈On

k

∨
a∈On

k

(
fa(x)ma → fb(x)m

′
b

)
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Now note that, if a 6= b, fa(x) = 1 for every x such that fb(x) 6= 1. Then

ι(g)(x)→ ι(g′)(x) =
∧
b∈On

k

(
fb(x)mb → fb(x)m

′
b

)
.

Finally, since 〈{1, fb, f2b , . . . , f
db
b },→, 1〉 is a subalgebra of M+([0, 1]n) isomor-

phic to Ldb and db−mb

db
→ db−m′b

db
=

db−max{m′b−mb,0}
db

, we conclude that

ι(g)(x)→ ι(g′)(x) =
∧
b∈On

k

fb(x)max{m′b−mb,0} = ι(g→ g′)(x).

We have thus a homomorphism ι : M+(Onk ) →M+(On) that clearly satisfies

the condition π◦ι = idM+(On
k ). Consequently, M+(Onk ) is a retract of M+(On).

�
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