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A General Approach to Model Movement
in (Highly) Fragmented Patch Networks
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Landscape heterogeneity can often be represented as a series of discrete habitat or
resource patches surrounded by a matrix of non-habitat. Understanding how animals
move in such networks of patches is important formany theoretical and applied questions.
The probability of going from one patch to another is affected in a non-trivial way by the
characteristics and location of other patches in the network. Nearby patches can compete
as possible destinations, and a particular patch can be shadowed by neighboring patches.
We present a way to account for the effects of the spatial configuration of patches in
models of space use where individuals alternate between spending time in a patch and
moving to other patches in the network. The approach is based on the original derivation
of Ovaskainen and Cornell (J Appl Probab 40:557–580, 2003) for a diffusion model
that considered all possible ways in which an individual leaving a particular patch can
eventually reach another patch before dying or leaving the patch network. By replacing
the theoretical results of Ovaskainen and Cornell by other appropriate functions, we
provide generality and thus make their approach useful in contexts where diffusion is
not a good approximation of movement. Furthermore, we provide ways to estimate
time spent in the non-habitat matrix when going from patch to patch and implement a
method to incorporate the effect of the history of previous visits on future patch use.
We present an MCMC way to fit these models to data and illustrate the approach with
both simulated data and data from sheep moving among seasonally flooded meadows in
northern Patagonia.
Supplementary materials accompanying this paper appear online.
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Figure 1. Spatial effects on the probabilities of going from patch to patch (represented as circles). The left panel
shows the probabilities of reaching next each patch in the network when an animal is leaving the small black patch
located at the center of the plot. The right panel shows how those probabilites change when the position of one of
the patches is moved. Numbers below each patch give the probabilities of reaching that patch assuming no other
patches are present. Numbers above patches are probabilities after considering the effects of other patches in the
network. Probabilities were calculated assuming diffusion in the non-habitat matrix (Eq. 1) and setting a = 0.1.

1. INTRODUCTION

Landscape heterogeneity can often be represented as a series of discrete habitat or
resource patches surrounded by a matrix of non-habitat (Hanski 1999a; Hanski and
Ovaskainen 2000; Urban and Keitt 2001). Understanding how animals move in such net-
works of patches is important for many theoretical and applied questions. At the individual
level, space use by many animals is usually characterized by an alternation between more
or less directed movement among patches, and more tortuous and smaller-scale movements
within patches (e.g., Morales et al. 2010; McClintock et al. 2012). Within populations,
pollen flow, for example, is non-randomly structured because groups of mother trees and
donor trees are located in spatially well-defined modules (Fortuna et al. 2008; Gómez and
Perfectti 2012). Similarly, patterns of seed dispersal by birds are the consequence of animals
moving among plants and perches (Morales and Carlo 2006;Morales et al. 2013; Carlo et al.
2007). Metapopulation studies have shown that local population densities, gene flow and
patch (re)colonization probabilities in fragmented landscapes are greatly affected by the
exchange of individuals among patches (Benton and Bowler 2012; Hanski 1999b). Further-
more, the restoration of ecosystem services many times depend on establishing connections
between habitat patches (Montoya et al. 2012).

Modelingmovementwithin a patch network is not a simple task. Besides themany factors
that can affect how animals move in a landscape, the probability that an individual goes from
one patch to another is affected in a non-trivial way by the characteristics and location of
other patches in the network. Nearby patches can compete as possible destinations, and
a particular patch can be “shadowed” by neighboring patches (see Fig. 1, and figure 4 in
Ovaskainen and Cornell 2003). These effects are the result of how patches are located in
space, that is, of the so-called spatial configuration (Forman and Godron 1981) of the patch
network. If we can take into account the effect of the spatial configuration of the network,
we will have better predictive power when attempting to apply what we learn from studying
movement in a particular patch network to a different network, or when considering adding
or removing patches to an existing network. This would be especially important when
assessing connectivity in other patch networks or in modified versions of the original one
due to management or restoration.
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Earlier attempts to quantifymovement among habitat patches relied on capture–recapture
or tag recovery data and estimated transition probabilities for all pairs of sites (e.g., Schwarz
et al. 1993; Brownie et al. 1993). These approaches have improved notably in their capacity
to handle individual and landscape heterogeneity, turning them into very useful and power-
ful tools (see, for example, Royle and Young 2008; Borchers and Efford 2008; Fuller et al.
2016). Another set of very useful tools was developed around the estimation of gene flow
(Sork et al. 1999; Coulon et al. 2004;Waples andGaggiotti 2006; Chapuis and Estoup 2007).
Furthermore, lots ofmetrics have been developed to characterize and estimate connectivity in
landscapes (reviewed in Calabrese and Fagan 2004; Belisle 2005; Saura and Pascual-Hortal
2007), but these are mostly concerned with an overall metric of the ease with which species
can move through the network of patches. Network approaches to landscape connectivity
are also useful for identifying modularity (clusters of patches) and nestedness (hierarchies
of patch use), or they aim at describing the importance of particular patches for overall con-
nectivity (Urban and Keitt 2001; Rayfield et al. 2011; Palmer et al. 2011). Other approaches
have relied on assumptions about movement costs or habitat preference in the landscape in
order to predict connectivity (e.g., LaPoint et al. 2013; Pullinger and Johnson 2010; Koen
et al. 2014; McRae and Beier 2007). In this paper, we are not concerned with network-
level measures, but with the patch-to-patch probabilities by which an individual leaving one
patch will next encounter another patch. As far as we are aware, there is no general way
to assess how the size and location of patches in a network will affect such probabilities
(but see Ovaskainen 2008). That is, there is no easy way to account for the competition and
shadowing among patches shown in Fig. 1. As a result, these effects are usually ignored.

Beyond the effects of the spatial location of patches, it is increasingly being recognized
that most animals can adapt their space use patterns based on previous experiences at par-
ticular patches (e.g., Fagan et al. 2013; Merkle et al. 2014). Thus, to model movement in
a network of patches we should also consider the potential importance of previous visits
to a patch as a factor affecting the probability of its use in the future. Here we present a
statistical framework aimed at taking into account the effect of the spatial structure of a
patch network on how animals move from patch to patch. We follow the approach used by
Ovaskainen and Cornell (2003) for the derivation of the formula for diffusion in highly frag-
mented landscapes but replace some of their analytic results with general statistical (i.e., not
derived from theory) functions whose parameters can be estimated from data. Our approach
includes diffusion as a special case at a particular parameter limit. We also derive functions
to model time spent in the non-habitat matrix and to account for the effect of memory on
the patch-to-patch movement decisions.

2. MODELING FRAMEWORK

2.1. ASSUMPTIONS

Our approach depends on the following assumptions:

• The animals are moving in a network which consists of a finite number n of disjoint
circular habitat patches surrounded by a non-habitat matrix. Patches are character-
ized by their radius ri (i in 1, . . . , n) and possibly other attributes such as resource
abundance. The centroid-to-centroid distance between patches i and j is denoted by
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di, j . The network of patches forms a “highly fragmented landscape” in the sense that
each patch is much smaller than the distances between patches, that is ri � di, j∀i, j
(Ovaskainen and Hanski 2004).

• We assume that the animals spend a variable amount of time within a patch before
they decide to leave it. This can be a function of habitat quality, patch size or any
other attributes of the patch such as resource abundance, predation risk, density of
conspecifics. In contrast to Ovaskainen and Cornell (2003), we do not explicitly model
movement inside the patches, and for this manuscript, we will not consider time spent
within patches. Extending our models to include time in patch is straightforward for
the cases in which it does not affect the probability of going from one patch to another
nor the time taken to do so.

• Given that an individual has decided to leave patch i , it will go next to patch j with
probability Pi, j and it will spend on average a total of Gi | j time in the non-habitat
matrix as it goes from patch i to patch j . The quantity Gi | j is conditional on the
animal reaching patch j before it visits any other patch, dies or emigrates from the
patch network.

• Once an individual has left a patch, it can either go to another patch, die or leave the
patch network. That is, we set Pi,i = 0 as we do not consider the possibility of the
animal returning to the same patch it left once it got into the non-habitat matrix.

• Mortality occurs mainly in the non-habitat matrix and is taken into account, together
with the possibility of the animal leaving the patch network, by the fact that
∑

j �=i Pi, j < 1. In cases where no mortality or emigration occurs during the dura-
tion of the study (e.g., GPS tracking of long-lived animals), we can normalize P so
that

∑
j �=i Pi, j = 1.

These assumptions may sound overly restrictive, but they contain enough realism to
capture the main problem that we want to address. Also, they apply to many ecological
situations such as movement within a metapopulation, foraging in patchy environments and
general connectivity in a habitat patch network. An important limitation though is that we
are so far ignoring the possible effects of habitat heterogeneity in the non-habitat matrix.
For a comparison of diffusion results between a realistic description of a landscape and its
approximation based on circular patches, see Zheng et al. (2009).

2.2. DERIVATION OF PATCH-TO-PATCH PROBABILITIES AND TIME SPENT IN THE

NON-HABITAT MATRIX

We start by considering a matrixH holding the probabilities Hi, j by which an animal that
is currently at the location of patch i would ever (before dying or emigrating) move to patch
j , assuming that the animal ignores any other patches in the network. That is, assuming that
the animal moves as if the landscape consisted of only the non-habitat matrix and patch j .
The elements of H are a function of the distance between patches di, j , but can also depend
on other attributes such as patch size (A), quality (Hi, j = f (di, j , A j , . . .)). As we define the
probabilities Hi, j for the hypothetical case where no other patches than j would be present,
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they do not depend on the locations or the size of those other patches. In essence, H depends
on how the animal moves while in the non-habitat matrix. For some types of movement, it
will be possible to obtain solutions for these probabilities. Ovaskainen and Cornell (2003,
equation 4.1) showed that if movement is modeled as a simple diffusion, then

Hi, j = Ko
(
αm

[
r j + di, j

])

Ko
(
αmr j

) (1)

where Ko is the modified Bessel function of second kind and zero order, r j is the radius
of the destination patch, and di, j is the distance from the starting point i to the centroid of

patch j . The constant αm is equal to
√

cm
am

, with cm and am being mortality and diffusion

rate in the non-habitat matrix, respectively.
From H, we want to obtain the probabilities Pi, j of visiting next patch j given that the

individual has just left patch i . If we assume that Pi, j depends only on the animal just
leaving patch i but not on the full history of previous movements, we can write Hi, j as a
combination of these Pi, j (Ovaskainen and Cornell 2003):

Hi, j = Pi, j +
n∑

k �=i or j

Pi,k Hk, j (2)

where the summation is over all patches different than i or j . As we condition on actually
emigrating from a patch, we set Hi, j = 0 for all i = j . For example, if the network is
comprised of just three patches, an individual leaving from patch 1 can eventually reach
patch 2 by either going directly there (P1,2), or going first to patch 3 and eventually going
from patch 3 to patch 2 (P1,3H3,2). From Eq. (2), we can use a linear solver to obtain these
probabilities of going next to a particular patch. These quantities can then be connected to
movement or capture–recapture data. For the cases where individuals can die or leave the
patch network during the course of the study period, we can set the probability of an animal
dying or emigrating from the network given that it has just left patch i as 1 − ∑

k �=i Pi,k .
For example, for a three-patch network, we have:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
0 1 H3,2 0 0 0 0 0 0
0 H2,3 1 0 0 0 0 0 0
0 0 0 1 0 H3,1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 H1,3 0 1 0 0 0
0 0 0 0 0 0 1 H2,1 0
0 0 0 0 0 0 H1,2 1 0
0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
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⎥
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⎦

×
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⎥
⎥
⎦

=
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⎥
⎥
⎥
⎥
⎥
⎥
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Given the eventual movement probabilities Hi, j , we can use this equation to solve the
probabilities Pi, j by which the animal goes next to a particular patch. These probabilities
are used in the likelihood function as detailed in Parameter estimation section below.

We also want to consider the time spent in the non-habitat matrix while going from one
patch to another. To do so, we fist consider a landscape consisting of patch j only, and define
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Ui, j , the expected time the animal spends in the matrix when moving to patch j given that
the animal started moving at location i and will eventually reach patch j . For an animal
moving in a patch network, we define Gi | j as the mean time spent in the non-habitat matrix
given that the animal moves from patch i to j before dying or hitting any other patch. We
can decompose the product between the probability of the animal moving eventually from
patch i to j and the expected time the animal spends in the non-habitat matrix during this
movement as follows:

Hi, jUi, j = Pi, j Gi | j +
∑

k �=i or j

Pi,k Hk, j
(
Gi |k +Uk, j

)
. (3)

Again, if the network is comprised of just three patches, an individual leaving from patch
1 can eventually reach patch 2 by either going directly there (P1,2) and spendingG1|2 time in
the non-habitat matrix, or going first to patch 3 and eventually from patch 3 to patch 2. This
happens with probability P1,3H3,2, and the expected time for it is G1|3 +U3,2. To solve for
the expected travel times between patches, we first solve for all the Pi, j using a linear solver
on Eq. (2) as before. Then, we arrange them in a vector p and set H

[
p ◦ g

] = h ◦ u − Up
(where ◦ is the Hadamard product, the element-by-element product of vectors) and solve
for the product p ◦ g from where we can obtain g, a vector with all the Gi | j .

2.3. GENERAL FUNCTIONS FOR H AND U

The main idea behind the work we present here is that Eq. (1), which was derived ana-
lytically for the case of diffusion, can be replaced with other functions in order to capture
“statistically” the properties of other types of movement. For example, more flexible depen-
dencies on distance and patch size can be taken into account by setting

Hi, j = Ko
([
a1r j

]q1 + [
a2di, j

]q2)

Ko
([
a1r j

]q1) (4)

where a1 and a2 can be considered scale parameters and q1 and q2 control the shape of
the curve (all these parameters have to be > 0). The flexibility of Eq. (4) is illustrated
in Fig. 2a showing how q1 and q2 control the shape of the decay of the probability of
hitting a patch as a function of the distance to it. The case of simple diffusion is recovered
when both parameters are set equal to 1, and a1 = a2. We want to emphasize that Eq. (4)
has no theoretical foundation and that other functional forms could be employed based on
theoretical or practical considerations.

For the time traveling from patch to patch, we set Ui, j as a power law of distance with
rate being a linear function of the size of patch j :

Ui, j = (
1 + b1r j

) (
b2di, j

)q3 (5)

but some other function could be used as long as it ensures that expected travel times
are always positive. For diffusion, Ui, j does not have a closed-form general solution, but
numerical results suggest that it increases linearly with di, j for moderate to large distances
(see examples in the first column of Fig. 4).
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Figure 2. Examples of changes in probability of reaching a patch (a) and time taken to reach it (b) as a function
of distance to it. In all cases, the diameter of the target patch is 0.01 units and a1 = a2 = 0.5, b1 = 0.2, and
b2 = 0.15. Solid black line corresponds to a2 and q2 equal to 1, and q3 = 1. Dashed line for q2 and q3 = 0.5,
and q3 = 0.8, dotted line q2 = 2 and q3 = 0.5, and gray line to q1 = 2, q2 = 3, and q3 = 1.3.

2.4. THE EFFECT OF MEMORY IN PATCH CHOICE

So far we have considered cases where Pi, j does not depend on what the individual
experienced before. In fact, that is why the expression in Eq. (2) above is valid. However,
most animals are capable of using their past experiences to adapt their patterns of space use
(e.g., Fagan et al. 2013; Merkle et al. 2014). We can modify the probability of going to a
patch based on the visiting history by adding weights to all the Pi, j once we have solved
for them. For example, we could have

wi j = exp(αn j ) (6)

where n j is the number of previous visits to patch j , and α is a parameter controlling the
effect of previous visits. If α > 0, those patches visited before will have more weight and
will be more likely to be visited next, but if α < 0, the animal will avoid previously visited
patches. Another option would be to setw j = exp(αo j ), where o j is an indicator of whether
patch j was visited or not in the past (thus ignoring the total number of visits). Any other
formulation could be used as long as the resulting weights are non-negative numbers. To
obtain the patch-to-patch transition probabilities conditioned on the weights (Z ), we may
define, for example, Zi, j = aiw j Pi, j , where ai = 1/(

∑
j w j Pi, j ) is a scaling constant to

normalize the total probability to one. In this case, the relative probability (compared to the
case without considering history) of moving from i to j instead of moving from i to k would
be w j/wk .

2.5. PARAMETER ESTIMATION

We consider the case where available data consist of sequences of the identities of the
visited patches (z) and sequences of the times spent in the non-habitat matrix while going
from one patch to another (m). These sequences run from τ = 1, . . . , T . The identity of the
τ -th patch visited is held in zτ , and the time spent while going from zτ to zτ+1 is held in
mτ+1. Under some conditions as in the simulation study presented below, it is possible that
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an animal “goes missing” because it either dies or it leaves the patch network. For a network
of n patches, the event of an animal goingmissing is recorded as if the animalwent to “patch”
n+1. The first and last patch visited by an individual are not associatedwith time spent in the
non-habitat matrix. The joint probability of yτ+1 = [

zτ+1,mτ+1
]
is given by the product

of a multinomial and a gamma distribution: MN (P[zτ , zτ+1]) � (s, s/G[zτ , zτ+1]). The
gamma distribution is used to allow variability in time spent in the non-habitat matrix.

The values of all Pi, j and Gi | j are obtained by solving Eqs. (2) and (3) as explained
above, parameterized according to Eqs. (4) and (5), and including Eq. (6) in the case where
memory effects are considered. Thus, we aim to estimate parameters a1, a2, q1 and q2
in Eq. (4) that control how patch radii and the distance among patches affect movement
probabilities. Parameters b1, b2, q3 in Eq. (5) are estimated to obtain the expected time
spent in the non-habitat matrix via Eq. (3). The shape parameter for the gamma distribution
(s) is a free parameter that is also estimated. When memory effects are included, we also
estimate the parameter α in Eq. (6) that controls how the number of previous visits to patches
affects movement probabilities.

We fitted our models to animal trajectory data on a patch network in the Bayesian frame-
work, using adaptive Metropolis–Hastings MCMC (Brooks et al. 2011) to sample the pos-
terior distribution. The dimension of the matrix H grows with the square of the number
of patches and contains a lot of zeros. To better handle these matrices, we used the sparse
matrix tools from the Matrix package (Bates and Maechler 2010). For a particular com-
bination of parameters, the following steps are performed to obtain the likelihood. First,
Eqs. (4) and (5) are computed based on patch radii and the distance among patch centroids.
With these values, the sparse matrices H and H ◦ U are built. The function solve from
the Matrix package was used to obtain the patch-to-patch movement probabilities (Pi, j )
and the expected time spent going from one patch to another one (Gi | j ). A check is made to
ensure that no Pi, j < 0 and that row sums of P are≤ 1. Depending on whether we allow for
animals to leave the patch network (emigrating or dying), the patch-to-patch transition prob-
ability matrix will have an extra column where for each row i , we compute 1− ∑n

j=1 Pi, j .
For the case of long-lived animals tracked with GPS, it is possible to exclude the possibility
of individuals dying or leaving the patch network, and hence, we set Pi, j = Pi, j/

∑n
k=1 Pi,k .

If the effect of memory is considered, this transition probability matrix is then updated based
onweights, which are a function of previous visits to patches, to obtain aZmatrix as detailed
above.

For the MCMC algorithm, we initiated three chains at random parameter combinations
(sampled from their priors). Parameters were updated one at a time using normal proposal
distributions whose variance was updated every 50 iterations in order to achieve about 23%
acceptance rate. Following this first adaptive phase, parameters were updated together using
a multivariate normal with covariance calculated from the most recent half of the previous
iterations. After this second adaptive phase was concluded, the chains were updated using
a multivariate normal proposal distribution with the covariance fixed to the value estimated
from the second phase. Convergence of the chains was assessed using Gelman and Rubin’s
diagnostics (Gelman and Rubin 1992) as implemented in the Coda package (Plummer et al.
2006).
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3. SIMULATION EXPERIMENT

We performed a simulation study to test the capacity our approach to recover general
properties of movement (Eq. 4) regardless of the particular patch network where data were
collected. The simulation illustrates the case of individuals moving in the non-habitat matrix
following correlated random walks (CRW) subject to mortality risk, and movement not
affected by memory.

3.1. SETUP

We simulated patch networks consisting of circular patches (with radii sampled from a
uniform distribution with minimum of 0.0002 and a maximum of 0.25) where patches were
placed randomly in space but constrained to be within a 10 by 10 square, and at least 1 unit
apart from the edge of other patches (i.e., at least twice as the maximum patch diameter).
We run simulations on 100 replicated patch networks of 10, 30 and 50 patches.

For each patch network, we simulated the movement of 30 individuals which each started
at the edge of a randomly chosen patch and followed a correlated random walk with initial
movement direction orthogonal to the edge of the patch. Step length was sampled from a
Weibull distributionwith shape=2 and scale=0.1 (mean=0.089). Turning angles followed
a vonMises distributionwithmean 0 and concentration parameter κ set to represent different
degrees of directional persistence 0 (no persistence), 5 (moderate persistence) and 50 (high
persistence).

Movement speedwas set to 0.1 time units per distance unit.Whenever a simulated animal
got to a distance ≤0.01 from the edge of a patch different from the most recently visited
one, it moved there. That is, we assume that once an animal leaves a patch, it does not
want to return to it immediately. Time spent within a patch was drawn from an exponential
distribution with a mean of 10 time units. This was done for completeness, but here we
concentrate on how animals move from patch to patch and we do not consider time spent
in patches when analyzing the simulated data.

When a simulated animal left a patch, a random point of exit from the perimeter of
the patch was chosen and the animal resumed moving within the non-habitat matrix with
initial direction orthogonal to the edge of the patch. Movement stopped once the animal
died, which occurred with probability of 0.00001 per move. From the realized movement
trajectory, we obtained a time series with the sequence of the identities of the visited patches
and a sequence of times moving between patches. With these data, we fitted Eqs. (4) and
(5) using MCMC as described in Parameter estimation above.

To contrast the results of the approach proposed here with one where the effects of
the spatial configuration of the patch network are not taken into account, we fitted a model
where the probability of going frompatch i to patch j depended only on the distance between
patches and on the size of the target patch. For this, we just set Pi, j = Hi, j , where Hi, j was
calculated from Eq. (4) and where we set Hi,i = 0. We also contrasted the proposed general
formulation with the original one obtained for simple diffusion (results for this latter case
are reported in Appendix A).
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To compare the estimates of Eq. (4) obtained from the observed movements in the patch
networks with the probability of reaching a patch when there are no competing patches,
we simulated 10,000 random walkers that started moving at increasing distances from a
single patch of radius = 0.1. We used the same CRW parameters and mortality rate as in
the previous section, and we recorded the frequency of successful patch arrivals at different
starting distances and different degrees of directional persistence (governed by parameter
κ). We consider that our approach is successful if Eqs. (4) and (5) fitted to the patch-to-
patch movement data are able to capture the patterns of probabilities of reaching a patch,
and the expected time to do so, obtained from these CRW simulations. The R code used for
simulations and for data analysis can be found in supplement 1.

3.2. RESULTS

Applying the proposed method to simulated data showed that it is possible to recover
general movement properties from patch-to-patch movement data even though transition
probabilities among patches depend on the particular spatial configuration of the network
studied (solid lines in Fig. 3). In contrast, ignoring the effect of the spatial configuration of
the patch network (dashed lines in Fig. 3) resulted in overestimation at short distances and
underestimations at larger ones. Furthermore, when the spatial configuration of the network
was not taken into account, estimates changed visibly when data came from different patch
networks (compare dashed lines in the top panels of Fig. 3 which correspond to replicated
patch networks of 10 patches, with those of the bottom ones corresponding to networks
of 50 patches). As expected, using the equations for simple diffusion from Ovaskainen
and Cornell worked well when there was no directional persistence in the CRW, but this
model underpredicted transition probabilities for κ > 0 (results are shown in figure A.1 in
Appendix A).

Our method was also capable of recovering the general pattern of increase in travel time
in the matrix with distance to a patch (solid lines in Fig. 4). Again, ignoring the effect of
the spatial configuration of the patch network resulted in poor and more variable estimates
(dashed lines in Fig. 4).

4. CASE STUDY OF SHEEP MOVEMENT

To showcase the application of the methods presented here, we apply them to data from
six Merino sheep from Patagonia. The sheep data illustrate the application of our approach
where there is no mortality or emigration, and where past experiences are suspected of
playing an important role in patch use. The R code used for data analysis can be found in
supplement 1.

4.1. SHEEP DATA

Sheep movement data were collected at Fortín Chacabuco Ranch (~40◦58’S, 71◦08’W)
located in Los Lagos department and belonging to the pre-mountain range ecological area
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Figure 3. Estimated decay with distance in the probability of finding a patch (Hi, j ) for individuals performing
a CRW in the matrix. Our approach (solid gray lines) captures the general shape of the decay much better than
one ignoring the effects of the spatial configuration of the patch network (dashed lines). Black dots show the
true function H(d) estimated from the frequency of successful arrivals of 10,000 simulated random walkers that
started at increasing distances from a patch of 0.1 units in diameter. From left to right, panels show results for
increasing directional persistence (κ = 0, 5 and 50 respectively). From top to bottom, panels show results from
patch networks of 10, 30 and 50 patches.

of the Argentinean Patagonia (Cabrera 1976). The landscape is characterized by mountain
chains and hills, crossed by several rivers and water streams. The weather is cold, with mean
annual temperatures of 10 ◦C and annual precipitations that range from 300 to 700 mm,
concentrated during the cold season (May–August). Vegetation corresponds to the Sub-
Andean district (León et al. 1998), composed by grasslands (dominated by Pappostipa
speciosa in lower lands and by Festuca pallescens in upper lands), and mallines of different
extensions. The farm covers approximately 4300 ha and consists of several paddocks of
different sizes ranging from 4 ha to up to 1000 ha.

For this example, we used data from 6Merino ewes equipped with GPS collars (CatLog-
B, Perthold Engineering, link, USA) programmed to register locations every 5 min, from
January 26 to March 31, 2015. The total area of the paddock was 994 ha, and included 7
distinct seasonally floodedmeadows, with areas of 16.46, 40.37, 2.38, 4.67, 10.74, 3.24, and
5.54 ha, respectively. These meadows, which are called “mallines” in Patagonia (mallín for
singular) offer the highest quality forage, and it is important for management to understand
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Figure 4. Average time in matrix needed to reach a patch (Ui, j ) as a function of distance to it for animals
performing CRW. Our approach (solid gray lines) captures the general increase with distance than one ignoring
the effects of the spatial configuration of the patch network (dashed lines). Black dots show the true function
U (d) estimated from average time taken for successful arrivals of 10,000 simulated random walkers that started
at increasing distances from a patch of 0.1 units in diameter. From left to right, panels show results for increasing
directional persistence (κ = 0, 5 and 50 respectively). From top to bottom, panels show results from patch networks
of 10, 30 and 50 patches.

how animals use these patches (diVirgilio and Morales 2016). The data correspond to a
grazing period after weaning, and it was the first time that the flock used this particular
paddock. That is, the area was unknown to them and we expect to see the effect of previous
visits to patches to unfold over time (Fig. 5).

4.2. DATA PREPARATION

We constructed a shape file with polygons that contained each mallín and then pro-
jected them in UTM 19S. This file was converted into a spatial polygon data frame
including a variable that contained the identity of each mallín, using the function
SpatialPoligonDataFrame from the R package sp (Pebesma and Bivand 2005).
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Figure 5. Examples of how a trajectory on a map was simplified to “patch-to-patch” movements. a Trajectory of
an ewe recorded every 5 min for a week and overlaid on satellite image. b Same trajectory over a map where all
mallines were identified, and the rest of the area is considered as “matrix.” Finally, c further simplification where
the mallines are reduced to circles and the movement trajectory to transitions between habitat patches.

To consider the possibility that a point is outside patch boundaries due to GPS errors or
movements around the edges, we generated a buffer of 5 meters around each patch using the
function gBuffer from R package rgeos (Bivand and Rundel 2012). We projected the
GPS in UTM 19S and then transformed it into a spatial points data frame that included the
date and time in POSIX format for each location. This transformation was made using the
function SpatialPointsDataFrame from the sp package. Then, we used the function
over from the same package to determine which locations were included inside each patch
and its buffer and which corresponded to displacements between patches. We then use the
function rle to obtain the sequence of mallines visited for each individual each day. From
that sequence, we extracted the initial and the final time of the points inside each visited
mallín, and the initial and final time of time spent between mallines. We used the function
difftime to account the time spent in each patch and the time moving from one patch to
the other in minutes.

4.3. MODELS FOR SHEEP MOVEMENT AMONG PATCHES

For the sheep patch-to-patch movement data, we fitted three alternative models: (i) one
where the probability of going from one patch to another was a function of distance between
patches and the size of the target patch (using Eq. 4); (ii) one including distance and sizes of
patches as in the previous one but also considering the number of previous visits to a patch
(using Eq. 6 for weights), and (iii) one where the probabilities of going to a particular patch
depended on distance, size, and the number of previous visits but where the effect of the
spatial configuration of the network was taken into account using Eq. (2).

4.4. RESULTS

Sheep quickly adapted to the new paddock and established a pattern of use of mallines
with a clear effect of previous visits in the transition probabilities among patches. The effect
of the spatial configuration and the history of previous visits are summarized in Fig. 6
which shows, for day 45 (i.e., after animals had time to build a memory or the paddock), the
probabilities that an ewe that is currently leaving mallín number 2 will go next to any of the
other patches in the paddock. The spatial configuration of the network leaves the probability
of most mallines almost unchanged, but it increases that of the second nearest one and
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Figure 6. Example of changes in the probability of choosing a particular meadow when the spatial configuration
of the patch network and the history of previous visits are considered. Open symbols show probabilities for six
meadows based on their size and distance to current location for an ewe currently leaving meadow number 2. Black
circles show how these probabilities change once the effect of the spatial configuration is taken into account, and
the gray circles show how probabilities increase or decrease once the history of previous 50 visits is taken into
account.

decreases the probability of the fourth (see difference between black and open circles).
However, previous visits to patches result in substantial increases in the probabilities of a
visit to the second and third nearest mallines in detriment of the probabilities of all other
patches (gray dots in Fig. 6).

To further examine the consequences of different modeling options, we compared the fre-
quency with which different models predicted the exact next patch (mallín) used by sheep in
the time series of patch-to-patch movements. To validate the models with independent data,
we calculated the average success rate of amodel by fitting themodel to all but one sheep and
making predictions with the fitted model for the data corresponding to the sheep left out. We
repeated this procedure for all six sheep and averaged the success rate across all sheep. The
simplest model with only patch size and distance (no spatial effects nor memory) had a fre-
quency of success of 20.76% (credible interval=9.38, 32). Themodelwith spatial effects but
nomemory had an average success rate very similar but better than that of the simplestmodel
(21.11%, ci = 9.38, 32.69), and the full model increased this to 26.6 % (ci = 14.63, 40.38).

Even though there is considerable overlap between the ability of the models to predict the
exact patch to be visited next, the estimates for parameter α are clearly positive (posterior
mean = 0.63, ci = 0.54,0.71), implying that previous visits to a meadow increase the
probability of future visits to it. We can also check for the effect of memory on patch-to-
patch transition probabilities by looking at expected patterns of patch use in models with
and without memory (Fig. 7). The model without memory resulted in sheep quickly visiting
all available meadows in the paddock, which contrasted with the predictions from the model
including the effect of previous visits and with what was observed in the data (Fig. 7).

5. DISCUSSION

We have presented a way to account for the effects of the spatial configuration of patches
in models of space use where individuals alternate between spending time in a patch and
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Figure 7. Mallín (patch) use by six ewes after being released in a new paddock. Dots show how each individual
increased the number of patches used as they moved from patch to patch.Gray lines are the 95% credible intervals
for a model without memory, and black lines for a model with memory. Each panel corresponds to one of the six
ewes tracked.

moving to other patches in the network. The approach is based on the original derivation
of Ovaskainen and Cornell (2003) for a diffusion model that considered all possible ways
in which an individual leaving a particular patch can eventually reach another patch before
dying or leaving the patch network (Eq. 2). Replacing the theoretical results of Ovaskainen
and Cornell by other “appropriate” functions can provide generality and thus make their
approach useful in contexts where diffusion is not a good approximation of movement.
Furthermore, we provide ways to estimate time spent in the matrix when going from patch
to patch and implement a method to incorporate the effect of the history of previous visits
on future patch use.

The way we modeled the probability of eventually reaching a patch as a function of
distance to it and its radius (Eq. 4) could be replaced by other functions. Also, one could use
model selection techniques to decide, for example, whether it is justified to have different
scalings for patch radius and distance (i.e., if q1 �= q2).

The analysis of simulated movement in a network of habitat patches (Fig. 3) illustrates
how the proposed approach is capable of recovering general properties of movement that
are independent of the particular network of patches where data were collected. That is, we
obtain a function describing how the size of a patch and the distance to it affect the probability
of reaching such patch if it were the only patch in the landscape. This is important because
it means that parameter estimates are much less contingent to the spatial properties of the
landscape where the data were collected. In contrast, naive analyses where only distance and
size of patches are taken into account severely underestimate the probabilities of reaching
patches located far (dotted lines in Fig. 3). This result is similar to the findings of Saura
and Pascual-Hortal (2007) regarding the importance of “stepping stones” when considering
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landscape connectivity. Furthermore, estimates that do not consider the spatial configuration
of the patch network are very sensitive to the particular data used (dashed lines in Fig. 3).

The expected time spent in the non-habitat matrix while going from one patch to another
was also captured well by our approach (solid lines in Fig. 4)). The estimation of time
in the matrix using a naive approach varied a lot between replicated data and in general,
underestimated how time in the matrix grew with distance among patches (dashed lines
in Fig. 4). In general, the matrix is considered risky for animals so that underestimating
the expected time spent in it and how this is affected by the particular structure of a patch
network could be quite relevant for metapopulation dynamics (Fahrig 2002; Hanski et al.
2006).

An important assumption for deriving Eq. (2) is that the effects of distance among patches
override any potential effect of the point of exit from the patch (it does not matter where
exactly the animal leaves a patch). This is the main reason why the approach is proposed for
what Hanski (1998) has called “highly fragmented landscapes” where the distance among
patches is much larger than the size of patches. However, the bias introduced when this
assumption is not met might be much smaller than that obtained when the spatial configu-
ration of the network is ignored (see, for example, figure A.2 in Appendix A).

For a practical application, the user must also consider whether it is safe to ignore the
potential effects of habitat heterogeneity while the animals move between patches, and if
animals are allowed to return to the patch they just left once they get into the non-habitat
matrix. Furthermore, it is relevant to consider the computational issues that arisewhen a large
number of patches is involved (the dimension of the H matrix grows with the square of the
number of patches). When dealing with landscapes with many patches (say several hundred
or more), it might be more efficient to consider an approach based on simulating movement
and to estimate parameters using approximate Bayesian computation (Grimm and Berger
2016; Fasiolo et al. 2016; Vaart et al. 2015). Furthermore, such simulation-based approaches
could be used when the shapes of patches deviate substantially from approximately circular
or when there is relevant heterogeneity in the matrix (e.g., Revilla and Wiegand 2008).

The analyses of the sheep data showed that for this particular dataset, there were little
differences between a naive approach and ours (open dots vs solid black dots in Fig. 6),
but they highlight the importance of including the history of previous visits in models of
space use. Further refinements to this model could be made by considering the time spent
since last visit to a patch. For example, we could set the weights in Eq. (6) to be negative
just after a visit to a patch and then to increase with time to become positive. Besides how
we formulate these models, it is quite likely that all of the animals that we are able to track
exhibit some capacity to use previous experiences to improve their performance. Several
modeling efforts have been aimed at representing how previous visits to a particular place
affect the chances of future visits (e.g., Dalziel et al. 2008; Boyer and Walsh 2010; Merkle
et al. 2014; Avgar et al. 2015; Riotte-Lambert et al. 2015). Our example here shows how
these effects can be taken into account after considering the spatial configuration of the
patch network.

Advances in tracking technology and remote sensing are allowing us to obtain increas-
ingly detailed data on landscapes and the movement of a variety of organisms (Kays et al.
2015). While the techniques to deal with such detailed data to model movement are been
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developed fast (e.g., Hooten et al. 2017), many spatiotemporal ecological processes can
be conceptualized as involving the movement of animals within a network of patches. By
considering such movements within a network of patches, we have proposed a way to deal
with the effects of the spatial configuration of the network. In our approach, we also consider
how past experience can modify the probabilities of going from one patch to another. We
believe that being able to model such effects will contribute to a better understanding of the
connection between landscape ecology, behavior and population dynamics (Morales et al.
2010; Matthiopoulos et al. 2015).
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