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Abstract
In this paper we show that enhanced optical transmission through a 1D
periodic slit array comprising real metallic cylinders is possible for
s-polarization when the array is near a dielectric interface. We investigate the
behaviour of this structure under s-polarized illumination, in which case
surface plasmons are not excited. Numerical results show that the transmitted
intensity appears as a periodic function of the slit depth, for propagating as
well as for evanescent incidence, suggesting that this behaviour is related to
the excitation of waveguide modes in the slits. In particular, the coupling of
evanescent to propagating electromagnetic waves is investigated. It is shown
that s-polarized evanescent waves generated at the interface can be
transformed into propagating waves if the optical width of the slits allows
propagation of the first waveguide mode. As the interface approaches the
array, the transmitted intensity increases for evanescent incidence.

Keywords: grating-waveguide structures, resonances, anomaly, enhanced
transmission

1. Introduction

Since the report of extraordinary optical transmission (EOT),
first published by Ebbesen et al [1], many works have been
devoted to deeply understand the origin of such a phenomenon,
and the physics involved in the excitation of resonant
modes in periodic structures. In particular, 1D structures
formed by an array of metallic cylinders have been widely
studied [2–7]. The mechanisms identified as responsible for
the field enhancement are (i) the excitation of surface waves or
eigenmodes of the structure, and (ii) Fabry–Perot resonances in
subwavelength slits. Surface waves are electromagnetic fields
that propagate parallel to the interface and whose amplitudes
are exponentially decaying in the normal direction [8, 9],
and which can be found in metal–dielectric interfaces, in
which case they are identified as surface plasmons [10–12],
as well as in dielectric–dielectric interfaces [13] or recently,
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spoof plasmons in a perfect conductor [14]. Waveguide or
Fabry–Perot resonances, on the other hand, are originated by
constructive interference of multiple reflections into each nano-
or micro-cavity, and a periodic array of narrow slits (grating)
acts as an amplifier of these individual resonances [2, 3, 8].

The resonant coupling between the incident radiation and
the different eigenmodes supported by the structure gives
rise to a large variety of electromagnetic effects, some of
which have already concrete technological applications in
near-field microscopy [15, 16], imaging [17, 18], medical
diagnostics [19, 20], optical communications and computing.
Most of the studies involving metallic structures are based on
the excitation of surface plasmon polaritons, which can only
be excited in 1D structures if illuminated by a p-polarized
wave [17, 18, 21–24]. However, Moreno et al recently showed
that extraordinary optical transmission is possible even for s-
polarization [25].

In a previous paper we reported numerical evidence of an
efficient coupling between the incident evanescent wave and
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the far-field transmitted wave in structures formed by an array
of rectangular metallic wires near a dielectric interface [26].
This coupling was helped by the excitation of surface plasmon
polaritons.

In this paper we show that it is possible to get
enhanced optical transmission through metallic subwavelength
slits for s-polarized illumination, in the absence of surface
plasmons. We investigate the possibility of transforming
an evanescent s-polarized plane wave into a far-field
transmitted wave by means of a 1D metallic array. At
present, the evanescent-to-propagating wave conversion for
s-polarization has technological interest in solid state light-
emitting diodes (LEDs). It was recently shown that the
influence of spatial effects induces self-sustained oscillations
of the total laser output and a sudden change of the linear
polarization can be self-stimulated (for instance, from s- to p-
polarization) [27–29]. In these devices, the relative refractive
index between the external LEDs face and air is larger than 1
and, due to the existence of a critical angle, only a narrow light
cone emerges from the LED. The internally reflected light is
reabsorbed by active layers or electrodes, thus diminishing its
efficiency. Then, it would be interesting to have a structure that
can couple light to the far field regardless of the polarization
mode.

We use the modal method to solve the diffraction problem
from a periodic array of rectangular wires [26]. This
method is particularly suitable for rectangular geometries of
the scatterers, and has been successfully applied in many
diffraction and scattering problems [30–32]. We also consider
a structure formed by a finite array of metallic circular
cylinders, and the solution of this scattering problem is found
using an integral method based on the extinction theorem [33].
The dependence of the transmitted intensity on the thickness
of the wires, on the width of the slits, on the distance to the
dielectric interface and on the angle of incidence are studied.
Finally, the conclusions are given.

2. Configuration and methods of resolution

In this section we explain the configurations of the problems
considered in this paper and summarize the methods employed
for their resolutions.

2.1. Infinite array: modal approach

We consider an infinitely periodic array of rectangular metallic
wires near a dielectric interface (see figure 1(a)). The interface
plane at y = 0 separates two isotropic dielectric non-magnetic
media (μ = 1). The lower region (region 1) has a permittivity
ε1; the periodic array is immersed in air (ε0 = 1), and is at
a distance e from the interface. The period of the structure
is d and the metallic wires have a rectangular cross section
of side h and a complex dielectric constant ε2. The system
is illuminated from y < 0 by a plane wave of wavelength
λ0 in vacuum, forming an angle θ1 with the y axis. Since
we consider an incidence wavevector contained in the main
section of the structure (the (x, y) plane), the vectorial problem
can be separated into two scalar problems corresponding to
the polarization modes: s (electric field perpendicular to the
incidence plane) and p (electric field parallel to the incidence
plane). The diffraction problem is solved separately for
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Figure 1. Geometries of the systems considered: different metallic
arrays near a dielectric interface. (a) Infinite periodic array of
rectangular wires; (b) finite array of circular cylinders.

each polarization mode using the modal method for highly
conducting wire gratings [31], extended to allow additional
dielectric interfaces.

The method consists in dividing the spatial domain into
regions, and expanding the fields in each region into its own
eigenfunctions. In this case, the four regions are separated by
the horizontal interfaces at y = 0, y = e, and y = e + h.
In the region y � 0 we have the incident plane wave and the
reflected field and in y � e + h we have the transmitted field.
The outgoing fields (reflected and transmitted) are represented
by sums of outgoing plane waves with unknown complex
amplitudes. In the layer between the interface and the array
(0 � y � e), the field is represented by a combination of up
and down plane waves, and inside the slits (e � y � e + h),
the fields are expanded in terms of eigenfunctions that take
into account the surface impedance boundary condition (SIBC)
on the lateral walls of each slit [31]. The fields are matched
at the horizontal interfaces by imposing the continuity of the
tangential components in the open sections, and by applying
the SIBC in the metallic regions. The resulting equations
are projected in convenient bases, which leads to a system
of coupled equations that can be put in matrix form, which
has to be solved for the unknown reflected and transmitted
amplitudes. More details on this formulation are given in [26].

2.2. Finite array: integral method

We consider a finite array of N metallic cylinders of radius r
and circular cross section bounded by a contour C, distributed
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periodically with period d (see figure 1(b)). As in the previous
configuration, the array is immersed in vacuum, and is near a
dielectric interface whose surface profile is described by the
function y = D. In this case, the distance e between the
cylinders and the interface is measured from the centre of
the cylinders. A Gaussian incident beam of half-width W is
considered, which can simulate a plane wave by setting W
sufficiently large.

To compute the near and far field, we implemented a
rigorous method based on the extinction theorem (ET) for
multiply connected domains [34]. The advantage that these
methods have over other approaches stems from their complete
generality regardless of the geometry of the scattering surface
or its constitutive parameters, which makes them very suitable
for simulating scattering processes.

In what follows we summarize the ET method applied to
2D systems, as is the case of the present study.

For systems with translation symmetry (2D geometries),
the expressions for the scattered field in each medium are:
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for j = 2, . . . , M, (3)

where φ
( j)
α (r) represents the complex amplitudes of the electric

(α = s) or the magnetic (α = p) field in the host medium
( j = 0), in the incident medium (y � 0, j = 1), or within
any of the N scatterers ( j = 2, . . . , M); dl ′ is a differential
element of line over the contour C j or D. The superscript (+)

in D(+) denotes that the integration is done over the contour D
for the integration variable r′ approaching this boundary from
the host medium ( j = 0), the normal vector n′ points towards
the interior of this medium. D− denotes that the variable r′
approaches D from the incident medium ( j = 1) and the
normal vector n′ points towards the interior of this medium.
In similar form C(+)

j represents the cross section contour of the
j th scatterer when r′ tends to C j from the host medium, and
in this case n′ points towards the interior of the j th medium.
Conversely, C(−)

j represents the cross section contour of the
j th scatterer when r′ tends to C j from the interior of the j th
medium, and n′ points outwards of the j th medium. H (1)

0 is the
first class zero-order Hankel function.

In 2D problems, the boundary conditions reduce to two
separate pairs of equations, for s and p modes:
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with j = 1, 2, . . . , M and η j (s) = μ j/μ0, η j (p) = ε j/ε0.
Equations (4) and (5) do not couple polarization modes, which
implies that in a 2D system there is no cross-polarization.

To compute the far field in the forward direction, we obtain
the expression for the transmitted far field from the previous
equations making use of the asymptotic expression for the
Hankel function when |r − r′| → ∞:
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where kt is the propagation vector, defined by

kt = √
ε0k0(sin θt , 0, cos θt), (7)

and θt is the observation angle. The incident field appears in
implicit form in the scattering equations.

3. Results

In figure 2 we show maps of total transmitted intensity as a
function of the incidence angle θ1. The structure is illuminated
from the dielectric medium by a plane wave of wavelength
λ0 = 717 nm (the refraction index of silver at this wavelength
is ν = 0.146 + i4.64). Rectangular silver wires of thickness
h are ordered in a periodic array of period d = 1.13λ0; the
array is located at a distance e = 0.25λ0 from the interface that
separates the vacuum from the incidence medium (ε1 = 2.25).
Two wire widths are considered: c = 0.56λ0 (figures 2(a)
and (b)) and c = 0.7λ0 (figures 2(c) and (d)). For these two
cases, the slit widths are a = 0.577λ0 and a = 0.438λ0,
respectively.

In general, for a parallel plate perfectly conducting
waveguide, the first mode allowed for s-polarization (in the x
direction) is such that a = λ0/2. Then, for a < λ0/2 there are
no modes propagating through the slits, and no transmission
should be expected. On the other hand, there is no limitation
in the slit width for the propagation of p-waves within the
waveguide, and therefore some transmission could be expected
even for very narrow slits for this polarization.

Figures 2(a) and (c) correspond to s-polarization and
figures 2(b) and (d) to p-polarization. The critical angle for
this dielectric interface is θc = 41.8◦, which implies that
for θ1 > θc the wave that arrives at the metallic array is an
evanescent wave. In all four maps a clear vertical line exactly at
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Figure 2. Maps of total transmitted intensity as a function of the incidence angle θ1 and of h/λ0 for a periodic array of silver wires.
d = 814 nm, e = 179.25 nm, ε1 = 2.25, λ0 = 717 nm and ν2 = 0.146 + i4.64. (a) c = 400 nm and s-polarization; (b) c = 400 nm and
p-polarization; (c) c = 500 nm and s-polarization; (d) c = 500 nm and p-polarization.

θ1 = θc can be appreciated, and it is also possible to distinguish
two vertical lines at θ1 = 4.6◦ and 30.4◦, which correspond to
the incidence angles at which the +1 order disappears and the
−2 order appears, respectively. In most cases the transmitted
intensity is significantly higher for θ1 < θc, i.e. when the wave
incident on the array is propagating.

In figures 2(a) and (b), however, there are certain values
of h/λ0 for which there is quite an important transmission
rate for evanescent incidence as well. For s-polarization,
the maximum transmission for evanescent incidence is about
30% of the incoming power, whereas for p-polarization the
transmission reaches up to 70% (see figure 2(b)). The
difference between both polarization modes is due to the
excitation of a surface plasmon polariton (SPP) that enhances
the transmission in the p-case [26]. Even though for s-
polarization SPPs are not excited, several transmission maxima
are obtained (see figure 2(a)). These maxima appear nearly
equally spaced in h/λ0, with a period w ≈ 0.8. For other
thicknesses, the transmission is negligible. This periodicity in
h/λ0 led us to think that the intensification of the transmitted
efficiency is caused by geometrical eigenmodes, like Fabry–
Perot resonances, excited in the slits.

The results shown in figures 2(c) and (d) correspond to the
same system but for a larger wire width c = 0.7λ0 (smaller
slit width a = 0.438λ0). For the s-case almost no transmission
at the evanescent zone is observed, and for h/λ0 > 1.5 the
transmission is practically null for any incident angle. For the
p-case, on the other hand, the map is qualitatively similar to
figure 2(b).

To understand the behaviour of the transmission coeffi-
cient shown in figure 2(a), we assume that a Fabry–Perot reso-
nance (FPR) happens within the slits. Therefore, if a FPR takes
place, the wavelength of the electromagnetic field inside the slit
should satisfy h/λ∗ = m/2, with m = 1, 2, 3, . . .. Here λ∗ is
the resonant Fabry–Perot wavelength and it can be expressed
as λ∗ = λ0/νeff with νeff being the effective refractive index
inside the slit. This function νeff depends on a/λ0 and is given
by [35, 36]

ν
(n)
eff = βn/k0, (8)

where βn is the propagation constant of the nth mode along the
slit. In figure 3 the evolution of the effective index for the first
and second guided modes for the parameters of figures 2(a)
and (c) (s-polarization) are shown. For a = 0.577λ0, the
effective refraction index is νeff 1 = 0.632 + i0.0031. For
a = 0.438λ0, the effective index is νeff 1 = 0.149 + i0.027,
i.e. the first mode of the electromagnetic field is significantly
damped and for large h/λ0 no transmitted electromagnetic
field can be expected throughout the slit, just as observed in
figure 2(c).

To further investigate the origin of the evanescent-to-
propagating coupling in the s-case, we performed calculations
of the total transmitted efficiency as a function of the slit width
a, shown in the maps of figure 4 for the same system of figure 2
but for a fixed thickness h = 0.5λ0, and for two values of the
array-to-interface distance e. It is clear from these maps that
no transmission is found for slit widths smaller than 0.46λ0

for all incidence angles. For a > 0.46λ0, transmission is
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Figure 3. Effective refraction index of the first and second modes
within the slits as a function of the slit width-to-wavelength ratio
a/λ0, for the same parameters of figures 2(a) and (c) (s-polarization).

found for propagating incidence, i.e. for θ1 < θc, but for
evanescent incidence the transmitted intensity depends on the
distance between the metallic array and the interface. Whereas
for e = 0.25λ0 there is almost no evanescent coupling for
0.46 < a/λ0 < 0.92 (figure 4(a)), this coupling becomes
very significant for e = 0.014λ0, for all a > 0.46λ0, even for
very large incidence angles (figure 4(b)). It is also interesting
to notice that, in figure 4(a), an increase in the evanescent-
to-propagating coupling is found for a ∼ 0.98λ0. For this
value of the slit width, the second waveguide mode within
the slit becomes propagating, as can be observed in figure 3.
This increases the coupling and consequently produces larger
transmission to the far field. For instance, for a = 1.06λ0, a
40% coupling is obtained for θ1 ≈ 50◦.

When the array is very close to the dielectric interface,
the only existence of a single mode within the slits guarantees
the coupling of evanescent to propagating waves (figure 4(b)).
Each slit behaves like an evanescent electromagnetic field
source located at the top of the array, and then a set of periodic
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Figure 4. Maps of total transmitted intensity as a function of the incidence angle θ1 and of the slit width a/λ0 for a periodic array of
rectangular silver wires under s-polarized illumination, d = 814 nm, h = 358 nm, ε1 = 2.25, λ0 = 717 nm and ν2 = 0.146 + i4.64.
(a) e = 179.25 nm; (b) e = 10 nm.

sources is obtained at y = e + h. The sources are coupled
by means of the periodicity of the system, i.e. if κ̂ = κ/k0 =
sin θ x̂ is the normalized propagation constant of the evanescent
field along the periodic system (|κ̂| > 1), and �K = (2π/d) x̂
is the momentum provided by the periodic array, then the
propagation constant κ can be coupled to the periodicity of
the system via a suitable momentum �K . The family of κn

diffracted in the x̂ direction is given by

κn = κ + nK . (9)

Dividing equation (9) by k0 and defining κ̂n = κn/k0 we get

κ̂n = κ̂ + n
λ0

d
. (10)

If we identify κ̂n with sin θ0n (angle of the nth diffracted order),
equation (10) takes the form

sin θ0n = √
ε1 sin θ1 + n

λ0

d
, (11)

and these orders are propagating orders if (cos θ0n)
2 = ε0 −

(sin θ0n)
2 < 1, regardless of the incident wave polarization.

Then, the evanescent wave generated at the periodic array is
diffracted and transmitted in certain particular directions.

The mechanism responsible for the enhanced transmission
observed for angles of incidence θ1 > θc in figure 2(a) is
exactly the same as that for propagating incidence: excitation
of FPRs, and coupling of the damped vertical propagation
constant and the periodic array (the array is close enough to
the interface). Under this condition, a FPR can be stimulated
and the near field is enhanced.

In the previous examples we have shown that, when an
evanescent wave impinges on a periodic array of wires, it
can be coupled to a propagating wave and transmitted to the
far field. This effect is a result of two mechanisms that act
simultaneously in this structure. The first one is produced
by the periodicity of the array, which allows for transmitted
diffraction orders in certain particular directions. This fact
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Figure 5. Maps of electric near-field intensity for an array of 21 silver circular wires illuminated by a s-polarized Gaussian beam of
half-width W = 16λ0, r = 100 nm, d = 300 nm, e = 110 nm (see figure 1(b)), ε1 = 2.25, λ0 = 400 nm. (a) Intensity map (the inset shows
the angular distribution of the far-field intensity); (b) detail of the map in (a) near the central cylinder.

enables certain channels in which light can propagate to the
far field. The second one is the excitation of FPRs within
the slits between adjacent wires. This mechanism produces an
intensification of the field within the slits, and consequently can
help the coupling, enhancing the transmitted diffraction orders.
However, if this second phenomenon is not present, i.e., if no
Fabry–Perot resonances are excited in the slits, the propagation
channels opened by the periodicity cannot be exploited since
there is no enhancement of the field within the slits, producing
a very weak field at the further boundary of the array. This is
the case of the example shown in figure 5, where we show the
intensity map of electric near field (log scale) for a finite array
of circular wires. In this system, the geometrical characteristics
responsible for the enhancement and the coupling in the infinite
system of rectangular wires are no longer present: the infinite
structure is now finite (it has 21 cylinders), and the rectangular
slits that generate the FPRs now have a different shape, not
favourable for the excitation of such resonances. In figure 5
we consider an array of 21 circular silver wires illuminated by
a Gaussian beam of half-width W = 16λ0, λ0 = 400 nm.
The parameters of the array are: d = 0.75λ0, r = 0.25λ0,
e = 0.275λ0 (see figure 1(b)), θ1 = 45◦ > θc.

For these parameters, the smaller size of the cavity
between adjacent wires is a = 0.25λ0 and only the −1
diffraction order can propagate. The dielectric–air interface
is at y = 0 and the incident beam impinges on the interface
from y < 0. Propagating transmitted waves over the array
(for y > e + r ) can be observed for negative observation
angles (the zeroth diffraction order is not allowed). Figure 5(b)
shows a detail of the intensity map of figure 5(a) around the
central wire. It is possible to observe the skin effect and the
evanescent electric field through the apertures. The evanescent
electromagnetic field propagates through each cavity up to the
top of the array, and a set of coherent evanescent sources are
obtained. In this way, the coupling mechanism of evanescent
to propagating waves is stimulated. It can be observed
that, even though the infinite characteristic of the structure is
well simulated by just 21 cylinders, i.e. the corresponding
transmitted orders are generated, they carry almost no power,
since the second mechanism, related to the enhancement of

the field within the slits helped by FPRs, is not present for
this geometry. The inset in figure 5(a) shows the angular
distribution of intensity for the far field. An intensity peak can
be observed around θobs = −15.8◦, which corresponds to the
propagating -1 order. The conversion efficiency in this case is
poor and no FPR are excited, T (θ = 45◦) ≈ 0.1%, as expected
for this geometry.

4. Summary and discussion

We have shown that an evanescent electromagnetic wave
generated at a dielectric interface can be coupled to a
propagating wave by means of a periodic array of metallic
wires. In particular, for subwavelength cavities between the
wires, evanescent-to-propagating transmission can be achieved
even for an incident s-polarized wave. In particular, the
enhanced transmission observed in rectangular cavities has
been explained in terms of the excitation of Fabry–Perot
resonances within the slits, and taking into account the
effective refraction index inside the slits. In general, it was
found that, when the first mode is propagating, a significant
rate of evanescent-to-propagating coupling is obtained, even
for very thick wires. Moreover, the efficiency of the coupling
increases when the array is closer to the dielectric interface.
Even though the existence of this coupling is a consequence
of the vicinity of the metallic array to the dielectric interface,
regardless of the wires’ cross section, we have shown that the
coupling efficiency is highly dependent on the wires’ geometry,
since it is based on Fabry–Perot resonances.
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