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Abstract – We consider an atom (represented by a two-level system) moving in front of a dielectric
plate, and study how traces of dissipation and decoherence (both effects induced by vacuum field
fluctuations) can be found in the corrections to the unitary geometric phase accumulated by the
atom. We consider the particle to follow a classical, macroscopically-fixed trajectory and integrate
over the vacuum field and the microscopic degrees of freedom of both the plate and the particle
in order to calculate friction effects. We compute analytically and numerically the non-unitary
geometric phase for the moving qubit under the presence of the quantum vacuum field and the
dielectric mirror. We find a velocity dependence in the correction to the unitary geometric phase
due to quantum frictional effects. We also show in which cases decoherence effects could, in
principle, be controlled in order to perform a measurement of the geometric phase using standard
procedures as Ramsey-like interferometry.

Copyright c© EPLA, 2017

Introduction. – A system can retain the information
of its motion when it undergoes a cyclic evolution in the
form of a geometric phase, which was first put forward by
Pancharatman in optics [1] and later studied explicitly by
Berry in a general quantal system [2]. Since the work of
Berry, the notion of geometric phases has been shown to
have important consequences for quantum systems. Berry
demonstrated that quantum systems could acquire phases
that are geometric in Nature. He showed that, besides
the usual dynamical phase, an additional phase related
to the geometry of the space state is generated during
an adiabatic evolution. Since then, great progress has
been achieved in this field. Due to its global properties,
the geometric phase is propitious to construct fault tol-
erant quantum gates. In this line of work, many phys-
ical systems have been investigated to realise geometric
quantum computation, such as NMR (Nuclear Magnetic
Resonance) [3], Josephson junction [4], ion trap [5] and
semiconductor quantum dots [6]. The quantum compu-
tation scheme for the geometric phase has been proposed
based on the Abelian or non-Abelian geometric concepts,
and the geometric phase has been shown to be robust

(a)E-mail: lombardo@df.uba.ar

against faults in the presence of some kind of external noise
due to the geometric nature of the Berry phase [7–9]. It
was therefore seen that interactions play an important role
in the realisation of some specific operations. As the gates
operate slowly compared to the dynamical time scale, they
become vulnerable to open system effects and parameters
fluctuations that may lead to a loss of coherence. Con-
sequently, the study of the geometric phase was soon ex-
tended to open quantum systems. Following this idea,
many authors have analysed the correction to the uni-
tary geometric phase under the influence of an external
environment using different approaches (see [10–13] and
references therein). In this case, the evolution of an open
quantum system is eventually plagued by non-unitary fea-
tures like decoherence and dissipation. Decoherence, in
particular, is a quantum effect whereby the system loses
its ability to exhibit coherent behaviour.

On the other hand, quantum fluctuations present in
the vacuum are responsible for non-classical effects that
can be experimentally detected [14] and give rise to nu-
merous fascinating physical effects, in particular on sub-
micrometer scales. Some of these phenomena have been
extensively studied and carefully measured, thus demon-
strating their relevance for both fundamental physics and
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future technologies [15,16]. Over the past few years, an in-
creasing attention has been paid to the Casimir forces and
moving atoms [17] and the interaction between a particle
and a (perfect or imperfect) mirror [18–24], and also there
have been works explaining how the non-additive vacuum
phases may arise from the dynamical atomic motion [25].
In this framework, it is of great interest to calculate the
frictional force exerted over the particle by the surface, me-
diated by the vacuum field fluctuations. As in the case of
the quantum friction between two plates [26–28], there is
still no total agreement about the nature of this frictional
force. However, frictional and normal (Casimir) forces are
not the only effects of the vacuum quantum fluctuations.
These fluctuations can behave as an environment for a
given quantum system, and due to this interaction, some
traces of the quantumness of the system can be destroyed
via decoherence and consequently, a degradation of pure
states into mixtures takes place. In the particular case
of the vacuum field, it can not be switched off. There-
fore, any particle (whether charged or with non-vanishing
dipole moment) will unavoidably interact with the elec-
tromagnetic field fluctuations. The effects of the electro-
magnetic field over the coherence of the quantum state
of a particle, and the way in which this effect is modi-
fied by the presence of a conducting plate, may be studied
by means of interference experiments [29,30]. Recently, in
ref. [31], the decoherence process on the internal degree of
freedom of a moving particle with constant velocity (par-
allel to a dielectric mirror) has been studied. The loss of
quantum coherence of the particle’s dipolar moment be-
comes relevant in any interferometry experiment, where
the depolarisation of the atom could be macroscopically
observed by means of the Ramsey fringes [32,33].

In this framework, we propose to track evidence of vac-
uum fluctuations on the geometric phase acquired by a
neutral particle moving in front of an imperfect mirror.
By measuring the interference pattern of the particle, it
could be possible to find a dependence of the correction
to the unitary geometric phase upon the velocity of the
particle. The pattern obtained in this model can be an in-
direct prove of the existence of a quantum frictional force.
We shall consider a neutral particle coupled to a vacuum
field, which is also in contact with a dielectric plate. The
particle’s trajectory will be, along this paper, kept as an
externally-fixed variable. We shall consider a toy model to
analyze the plausibility of this novel idea. In our model,
the particle will move at a constant velocity v (in units of
c = 1, v is dimensionless), as is the most popular scenario
in the literature [18,19]. As we are interested in the dy-
namics of the internal degree of freedom of the particle,
we will consider the neutral particle as a two-level quan-
tum system (a qubit, as in many models used to represent
a real atom), coupled to the vacuum field. We will also
use a simple model for the microscopic degrees of freedom
of the mirror, as we have done in a previous work [34]: a
set of uncoupled harmonic oscillators, each of them also
interacting locally with the vacuum field. Despite this

x2

x1

x3=0

+

a

v

g

Fig. 1: (Colour online) We present a simple diagram of the
system under consideration. The vacuum field is a massless
scalar field φ(x) and the internal degrees of freedom of the
plate are ψ(x). The internal degrees of freedom of the particle
will be considered as a two-level system σz.

freedom from complexity, the model admits the calcula-
tion of some relevant quantities without much further as-
sumptions. In order to consider how the relative motion
between the particle and the plate affects the geometric
phase acquired we shall follow the procedure presented in
previous works [31,34].

Dissipative quantum friction. – In the current sec-
tion, we shall assume the vacuum field to be a massless
scalar field φ(x), interacting with both the particle and the
internal degrees of freedom of the plate which are repre-
sented by ψ(x) [34]. The particle moves in a macroscopic,
externally-fixed, uni-dimensional trajectory parallel to the
plate, schematized as in fig. 1. The distance a between
the particle and the plate is kept constant by an external
source. The particle also has an internal degree of freedom
that we shall call σz in order to model a two-level system.

We may write the classical action for the system as

S[φ,ψ,σz ] = Svac
0 [φ] + Spl

0 [ψ] + Sat
0 [σz ] + Svac-pl

int [φ,ψ]
+ Sat-vac

int [φ,σz ], (1)

where the action for the free vacuum field, is given by
Svac

0 [φ] = − 1
2

∫
dxφ(x)[∂µ∂µ − iε]φ(x). After integrat-

ing out the degrees of freedom of the plate, we get an
effective interaction potential V (x, x′) for the vacuum
field, similarly to what has been done in [35]. This
procedure results in a new action defined as S[σz ,φ] =
Seff[φ] + Sat

0 [σz ] + Sat-vac
int [σz ,φ], with Seff[φ] = S0[φ] +∫

dxdx′φ(x)V (x, x′)φ(x′).
As it has been previously considered in the litera-

ture [31], the internal degree of freedom of the particle
interacts with the vacuum field through a given cur-
rent j(x). The interaction term can then be written as
Sat-vac

int [σz ,φ] = i
∫

dxφ(x)j(x). In [31] it has been de-
rived the in-out effective action for the particle, which is
the action obtained after functionally integrating over the
vacuum field and over the internal degrees of freedom of
the dielectric plate (polarisation degrees of freedom) ψ(x).
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The reason to evaluate the in-out effective action is that
this is related to the vacuum persistence amplitude, and
the presence of an imaginary part signals the excitation
of internal degrees of freedom on the mirror. Since this
is due to the constant-velocity motion of the particle, it
reflects the existence of non-contact friction [31,34,35].

We shall now consider the internal degrees of freedom
of the plate to be an infinite set of uncoupled harmonic os-
cillators of frequency Ω (the set of harmonic oscillators is
characterized by a spectral density with one predominant
phononic mode). Each of these oscillators are interacting
locally in position with the vacuum field through a cou-
pling constant λ. The internal degree of freedom of the
particle is a two-level system σz, also interacting linearly
and locally with the vacuum field through a coupling con-
stant g. In the case studied in ref. [31] the internal degree
of freedom of the moving particle has been considered as
a harmonic oscillator with natural frequency ω0. In that
case, the imaginary part of the effective action (up to sec-
ond order in the coupling constants) is given by the fol-
lowing expression:

ImΓI ≈ Tvπλ2γ0

32Ω̃ω̃0

e− 2
v

√
(ω̃0+Ω̃)2−v2Ω̃2

(ω̃0 + Ω̃)2 − v2Ω̃2
, (2)

where T is the total time of flight of the particle; Ω̃ = Ωa
and ω̃0 = ω0a are the dimensionless frequencies (as we
have defined above, a is the distance between the particle
and the plate). We have also set the dissipative constant
γ0 ≡ g2. As we mentioned above, this imaginary part
of the effective action implies the excitation of internal
degrees of freedom on the mirror which in turn impacts
on the particle through the vacuum field [36]. Due to
the exponential in eq. (2), dissipative effects are strongly
suppressed as v → 0. This exponential vanishing of the
dissipation effects has already been found, using differ-
ent approaches, in previous works [18,19]. It is important
to note that the coupling constant g is the analogue to
the electric dipole moment d appearing in more realistic
models, since it accounts for the interaction between the
particle’s polarisability and the electromagnetic (vacuum)
field. In this sense, the results presented here correspond
to the d2 contribution to the friction. Lastly, let us recall
that the λ2 accounts for the interaction between the in-
ternal degrees of freedom of the mirror which completes
the composite environment for the moving particle [31]. It
is worthy to stress that, even though ours is a toy model
for the realistic problem in which the electromagnetic field
shoud be considered, in ref. [37] the Casimir friction phe-
nomenon in a system consisting of two flat, infinite, and
parallel graphene sheets, which are coupled to the vac-
uum electromagnetic field has been considered. In fact,
the transverse contribution to the imaginary part of the
effective action in [37] is qualitatively (as a function of v)
similar to the one shown in eq. (2).

The in-out effective action cannot be applied in a
straightforward way to the derivation of the equations of

motion, since they would become neither real nor causal.
As is well known, in order to get the correct effective equa-
tions of motion and fluctuation effects, one should com-
pute the in-in, Schwinger-Keldysh, or closed time path
effective action (CTPEA) [38], which also has information
on the stochastic dynamics, like decoherence and dissipa-
tive effects in a non-equilibrium scenario. By using the
expression in eq. (2), we can evaluate the decoherence fac-
tor induced by the composite environment over a two-level
system. Herein, we shall consider the lowest energy labels
of such oscillator in order to simulate the behaviour of a
two-level system (we consider that the energy gap ∆ be-
tween the excited and ground states of the two-level sys-
tem is set as ∆ ∼ ω0). Then, we can evaluate the imag-
inary part of the influence action [38] for the two-level
system, in the non-resonant case Ω ' ω0, from eq. (79) in
ref. [31]. The result is given by

ImSIF ≈ γ0T

2

(
1 +

2
3
v2 +

λ2

Ω̃3
v
e− 2aΩ

v

√
1−v2

1 − v2

)
, (3)

here, γ0 is dimensionless.
It is important to note that the non-resonant case is not

the most decoherent case. As has been shown in ref. [31],
the resonant case (for the harmonic oscillator internal de-
gree of freedom) is the more effective case inducing loss
of quantum coherence. Nevertheless, we use the non-
resonant case in order to obtain an analytic expression
for the decoherence factor and, consequently, for the cor-
rections on the geometric phase. If one is able to find a
velocity v dependence in the correction to the phase, it
would be an indication of the effect of quantum friction.

Following standard procedures [39], it is possible to esti-
mate the decoherence time using eq. (3) when ImSIF(t =
tD) ≈ 1 after evaluating in classical configurations. We
shall evaluate the decoherence factor using this procedure.
The induced decoherence will modify the atom evolution
in general and particularly, it will produce corrections on
the unitary geometric phase of the atom states. These cor-
rections will have two different sources: a correction raised
by the interaction with the vacuum field and another one
rooted in the interaction with the dielectric plate. These
effects will be presented in the following section.

Non-unitary geometric phase. – We shall consider
that the main qubit system (internal degree of freedom
of the moving particle), can be represented by a bare
Hamiltonian of the form Hsys = ∆σz, which simply rep-
resents a cyclic evolution with period τ = 2π/∆ if iso-
lated; and we shall consider the effect of decoherence
over this qubit. For simplicity, we are only considering a
dephasing spin-bath interaction, neglecting relaxation ef-
fects and limiting the relevance of the initial state (see
discussion below). We take a product initial state for
the spin-bath system as ρ(0) = |ϕ0〉〈ϕ0| ⊗ |ε(0)〉〈ε(0)|,
where |ϕ0〉 = cos(θ/2)|0〉+ sin(θ/2)|1〉 and |ε(0)〉 is a gen-
eral initial state of the composite bath. To compute the
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global phase gained during the evolution, one can use Pan-
charatnam’s definition [1], which has a gauge-dependent
part (i.e., a dynamical phase Φd = π cos θ and a gauge-
independent part, commonly known as geometric phase
(GP) Φg = π(1 + cos θ).

It is commonly known that, when coupled to a bath,
the reduced density matrix for the particle system satisfies
a master equation where non-unitary effects are included
through noise and dissipation coeffients. For simplicity, we
will assume that the model considered describes a purely
decoherent mechanism. Therefore, the coupling to the
bath affects the system such that its reduced density ma-
trix at a time t is [11]

ρr(t) = cos2 θt|00〉 + sin2 θt|11〉
+ sin θt cos θte

−i∆t|01〉 + sin θt cos θte
i∆t|10〉,

where we have defined

sin θt =
2(ε+ − cos2 θ

2 )
√

|r(t)|2 sin2 θ + 4(ε+ − cos2 θ
2 )2

, (4)

cos θt =
|r(t)| sin θ√

|r(t)|2 sin2 θ + 4(ε+ − cos2 θ
2 )2

, (5)

that encode the effect of the environment through the de-
coherence factor r(t). Non-diagonal terms decay with r.
The eigenvalues of the above reduced density matrix are
easily calculated, yielding:

ε±(t) =
1
2

± 1
2

√
cos2 θ + |r(t)|2 sin2 θ. (6)

The phase Φ acquired by the open system after a period
τ is defined in the kinematical approach [10] as

Φ = arg

[
∑

k

√
εk(τ)εk(0)〈Ψk(0)|Ψk(τ)〉

×e−
∫ τ
0 dt〈Ψk(t)| ∂

∂t |Ψk(t)〉

]
, (7)

where |Ψk(t)〉 and εk(τ) are, respectively, the instanta-
neous eigenvectors and eigenvalues of ρr(t). Here, k refers
to the two modes (+ and −) of the one qubit model we are
dealing with. In order to estimate the geometric phase,
we only need to consider the eigenvector |Ψ+(t)〉 since
ε−(0) = 0. Therefore, in this case, the + mode is the
only contribution to the GP. By inserting eqs. (4)–(6) into
definition (7), one can straighfordwarly reach the final for-
mula for the GP

Φ = ∆
∫ τ

0
dt cos2 θt. (8)

The central result of eq. (8) is the geometric phase, that
reduces to the known results in the limit of an unitary evo-
lution [10]. At this point, we are left with the definition of

Fig. 2: (Colour online) Decoherence factor r(t) for different
values of the velocity v. As we can see, the bigger the veloc-
ity of the two-state particle, the bigger the decoherence rate.
Parameters used: λ̃ = 5, γ0 = 0.05 and Ω̃ = 0.03.

Fig. 3: (Colour online) Decoherence factor for a time ∆t = π as
a function of the velocity v for different values of λ̃. Parameters
used: γ0 = 0.05 and Ω̃ = 0.03.

the decoherence factor r(t) in order to proceed to the com-
putation of the GP. It is possible to evaluate the decoher-
ence factor from eq. (3) since r(t) = exp[−ImSIF(t)] [39],
where we will set the dimensionless coupling constant to
the dielectric plate λ̃2 = λ2/Ω3.

In fig. 2 we present the behaviour of the decoherence fac-
tor as a function of time (in units of ∆) for different values
of the velocity parameter. It is possible to note that as the
particle completes one cycle of evolution, the decoherence
is more destructive the more velocity the particle has. In
two periods time, decoherence is strong enough in most
cases, even for v , 1.

Besides the typical correction to the unitary phase due
to the vacuum field (which is just proportional to the dis-
sipative constant γ0 and here there is an extra-dependence
with v2), there is also a term proportional to the quadratic
power of the coupling between the vacuum field and the
dielectric mirror (O(λ2)). In this latter contribution there
is also a dependence on the velocity of the atom (v). As
expected, this contribution becomes less important when
v → 0 and grows for large values of v. In fig. 3 we show
the decoherence factor for a fixed time ∆t = π for dif-
ferent values of the interaction coupling constant λ. We
can see that even if this interaction is low, at half a pe-
riod of isolated evolution, decoherence is non-negligible
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Fig. 4: (Colour online) Geometric phase normalised by the
unitary geometric phase φg = π(1+cos θ), (Φ/Φg) as a function
of θ and v, considering a fixed time τ = 2π/∆. Parameters
used: λ̃ = 15, γ0 = 0.05 and Ω̃ = 0.03.

Fig. 5: (Colour online) Geometric phase normalised with the
unitary phase φg = π(1+cos θ) (evaluated at one period of the
isolated evolution τ = 2π/∆) as a function of time, for differ-
ent values of the velocity v and the coupling constant λ̃. The
straight (red) line is the behaviour with time of the geomet-
ric phase when the system is isolated from the environment.
The effect of the environment on the geometric phase can be
clearly seen for bigger values of λ̃ and takes longer (more than
a single period of the unitary evolution) for smaller couplings.
Parameters used: θ = 0.1π, γ0 = 0.1, and Ω̃ = 0.03.

even for small velocities of the particle. Then, we see that
in this problem setting it is important to consider both
features: the velocity the particle is travelling and the time
it takes to traverse, in addition to the parameters involved
in the noise decoherence factor.

In fig. 4 we plot the ratio between the total geometric
phase from eq. (8) and the unitary phase Φg = π(1 +
cos θ), as a function of the initial angle θ and the tangential
velocity v for fixed parameters of λ̃, Ω̃, γ0, and time τ =
2π/∆ (period of the isolated evolution). Therein, we can
see that for small values of the initial angle (i.e., a spin
very similar to | ↑〉) and very low values of the velocity,
the GP obtained for this system is very similar to the one
obtained for an isolated quantum system (i.e., a spin-1/2
particle evolving freely). The bigger difference between
the open GP and the isolated one is seen for bigger angles
and bigger values of v.

The GP can be also analyzed as a function of time, for
different values of the coupling constants λ̃ and γ0 as well
as the velocity v. In fig. 5 we plot the GP as a function of

Fig. 6: (Colour online) Normalised geometric phase Φ/Φg for
different initial angles θ as a function of the velocity v for a
lower parameter λ̃. Parameters used: λ̃ = 1, γ0 = 0.05 and
Ω̃ = 0.03.

Fig. 7: (Colour online) Normalised geometric phase Φ/Φg for
different initial angles θ as a function of the velocity v for a
bigger parameter λ̃. Parameters used: λ̃ = 5, γ0 = 0.5 and
Ω̃ = 0.03.

time normalized with the unitary phase φg = π(1 + cos θ)
(evaluated at τ = 2π/∆) for different values of the velocity
v and the coupling constant λ̃. The straight (red) line is
the evolution with time of the GP when the system is
isolated from the environment (evolves freely). The effect
of the environment on the GP can be clearly seen for bigger
values of λ̃ and takes longer (more than a single period of
the unitary evolution τ) for smaller couplings.

In figs. 6 and 7 we show the dependence of the ratio
between the total and the unitary geometric phase as a
function of the tangential velocity of the particle for fixed
initial angles θ. We can see that very small angles of the
initial state of the particle, do not really suffer the dif-
ference between a lower or bigger value of the coupling
constant λ. In those cases, what really matters is the cou-
pling constant γ0 and the velocity of the particle. All other
angles are affected by the couplings constants γ0 and λ, be-
ing more considerable when the velocity is greater. Once
more, we note that the correction is relevant for bigger val-
ues of v. It is important to remark that the mere presence
of a velocity contribution to the phase, is an indication of
the friction effect over the quantum degree of freedom of
the atom. In this sense, the measurement of the geometric
phase could, in principle, be an alternative way to find out
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Fig. 8: (Colour online) Comparison between the geometric
phase Φ (eq. (8)) (solid curves) and the analytical approxi-
mation Φapprox (dotted curves) obtained in eq. (9) for differ-
ent initial angles θ. Parameters used: λ̃ = 5, γ0 = 0.5 and
Ω̃ = 0.03.

quantum friction in a laboratory, even though the veloc-
ities considered in experiments are still far away from a
relativistic case with v → 1.

Finally, we can perform a series expansion in γ0 and λ
(up to first non-trivial orders) in eq. (8) in order to obtain
an analytical expression of the correction to the unitary
geometric phase. The result for the geometric phase is
then given by

Φapprox ≈ π(1 + cos θ) +
π2

3
γ0 cos θ sin2 θ

×
[
3 + 2v2 + 2vλ̃2(1 − v2)e− 2Ω̃

v

√
1−v2

]
. (9)

In the particular case in which the coupling between the
atom and the dielectric plate is switched off, λ = 0, the
correction to the unitary phase is given by δΦ ∼ π2γ0(1 +
2/3v2) cos θ sin2 θ which agrees with the result obtained for
a two-level system coupled to an environment composed
by an infinite set of harmonic oscillators at equilibrium
with T = 0 [11]. However, it is enhanced by the factor
1 + 2/3v2. This situation corresponds to the case where
the atom is only coupled to the vacuum field. Up to the
lowest perturbative order, the same result can be obtained
in the limiting case of v → 0.

In fig. 8 we plot the ratio between the geometric phase
from eq. (8) and the result in eq. (9) as a function of the
velocity of the qubit v for different values of the coupling
constant λ̃ and initial angles θ. Given a same value of the
coupling constant γ0, we can see that for a small angle
θ = 0.1π, there is still a noticeable difference between the
behaviour of the GP for different values of λ̃. In the case
of θ = 0.1π and λ̃ = 15, we can even note that the approx-
imate expression of the GP does not hold any longer. For
θ = 0.45π and λ̃ = 5, the approximate expression holds
for small values of the velocity parameter v. For a small
angle and a low value of λ̃, the exact and approximate
expressions are very similar for all values of the velocity.

Conclusions. – We have considered a simple model
to study the effects of quantum vacuum fluctuations on

a particle moving parallel to an imperfect mirror. In the
model, the vacuum field is taken as a massless scalar field
coupled to the microscopic degrees of freedom of the mir-
ror and the internal degree of freedom of the particle. The
plate is formed by uncoupled unidimensional harmonic os-
cillators, each of them interacting locally in position with
the vacuum field. The macroscopic trajectory of the par-
ticle is externally fixed, and its internal degree of freedom
is considered as a two-level system, also coupled to the
scalar field. Using previous results for the dissipative and
decoherence effects reported in refs. [31,34], we have esti-
mated the decoherence factor when the internal degree of
freedom of the particle moving with parallel velocity v is
a two-state system. Once obtained an expression for the
decoherence factor, it was possible to calculate the cor-
rections to the geometric phase acquired by the atom, in-
duced by the interaction with the composite environment.

In our analysis of the decoherence factor we have shown
its functional dependence on different parameters involved
in the model, such as: the coupling constant between the
quantum system and the quantum field (γ0), the coupling
constant between the vacuum field and the imperfect mir-
ror (λ) and the velocity of the quantum particle v. We
have shown that all these parameters contribute to a major
decoherence rate in different ways. Furthermore, we have
computed the geometric phase acquired by the spin 1/2 in
an open evolution. We have observed that the more inter-
action between the vacuum field and the plate, the more
corrected results the phase acquires. This means that the
phase of the quantum particle is different to the one the
particle would have acquired if it had evolved freely. By
measuring the correction to the unitary geometric phase,
one can get an insight of the dependence of the phase on
the parameters modified. In this way, we have seen that
the bigger the velocity of the particle, the more correction
to the phase. It is also noticeable that the effect of noise
is bigger for initial states near the equator of the Bloch
sphere.

Finally, we have obtained an approximate analytical ex-
pression for the phase acquired (in a power expansion in
the coupling constants) and compared this result to the
exact geometric phase. In this case, we have seen that
the expression gives an accurate result in the case of small
values of the coupling constants (as expected), as well as
small angles.

We expect that, in a Ramsey-like interference exper-
iment, the parameters of our model could be chosen in
a way that would maximize the decoherence effects. It
is possible to choose its characteristic frequency close to
the resonance with the plate. In addition, with a nonva-
nishing relative velocity, we expect decoherence effects to
be observed by means of the attenuation of the contrast
in the Ramsey fringes, after eliminating the dynamical
phase by spin-echo techniques. By increasing the deco-
herence effect, the unitary geometric phase results in a
major correction. In this way, as quantum friction has
not been measured in labs yet, we expect that an indirect
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evidence could be obtained from measuring the environ-
mental induced corrections to the geometric phase. The
dependence of the correction on the velocity v would be
an indirect way to measure quantum friction.
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