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Abstract Franciscana dolphins are the most impacted small
cetacean in the Southwestern Atlantic Ocean, classified as
Vulnerable A3d by IUCN. Essential (Fe, Mo, Mn, Cr, Ni,
Co) and non-essential (Ag, Pb, Sn) trace elements (TEs) were
measured in liver, kidney, and brain samples of by-catch
Franciscana dolphins that were living in estuarine (n = 21)
and marine (n = 21) habitats (1) to assess whether TEs posed
a threat and (2) to evaluate the suitability of TEs for discrim-
inating ecological populations of this species in Argentinean
waters. Essential TEs showed little variation in tissues from
both groups in agreement with levels reported for other ceta-
ceans and suggesting that these concentrations correspond to
normal physiological levels. Non-essential TEs were higher in
estuarine juveniles and adults dolphins than in marine speci-
mens. These results suggest anthropogenic sources associated
with estuarine area and that Franciscana dolphins are good
sentinels of the impact of the environment. The difference in
the concentrations of TEs beetwen ecological populations ap-
peared to be related to distinct exposures in both geographical
areas, and it is suggested that Ag and Sn concentrations in
adults are good chemical tracers of anthropogenic input of
TEs. These results provide additional information for im-
proved management and regulatory policy.
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Introduction

An understanding of population and stock structure is impor-
tant for effective management and protection of cetaceans.
Genetic studies provide information that can be used to dis-
criminate among stocks but not variation due to anthropogenic
impacts on local habitats and their effects on health. As a
result, chemical tracers, such as carbon and nitrogen stable
isotopes, trace elements, fatty acids, and organic pollutants
are increasingly used in ecological studies to examine trophic
relationships, habitat use, and migratory patterns of wildlife
(Bustamante et al. 2006; Crawford et al. 2008; Lailson-Brito
et al. 2011; Alonso et al. 2012).

Trace elements (TEs) may enter into the environment from
both natural and anthropogenic sources (Zhou et al. 2001),
and cetaceans are considered good sentinels of environmental
contamination of these elements due to their long lifespan and
their position at the top of the marine trophic webs
(Moore 2008; Lailson-Brito et al. 2009; Aubail et al. 2013).
The major source of TEs for cetaceans is through their diet
(Bilandzic et al. 2012; Aubail et al. 2013) including both es-
sential (with biological function and homeostatic regulation)
and non-essential (with unknown physiologic function and
toxic) TEs (O’Hara and O’Shea 2001). Therefore, TEs may
be potential Bchemical tracers^ of the habitat or of the feeding
zone of predators. However, other biological factors such as
sex and age (Vanderklift and Ponsard 2003) should be consid-
ered when comparing different stocks or populations.

Franciscana dolphin (Pontoporia blainvillei) (Gervais and
d’Orbigny 1844) is a small, endemic marine mammal that
inhabits the Southwestern Atlantic Ocean. Its geographical
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distribution ranges from Itaúnas (18° 25′ S, 30° 42′W, Brazil;
Siciliano 1994) to Golfo Nuevo (42° 35′ S, 64° 48′ W,
Argentina; Bastida et al. 2007). The International Union for
Conservation of Nature (IUCN) has classified the species as
Vulnerable A3d throughout its geographical range (Reeves
et al. 2012), being the most anthropogenically impacted small
cetacean in the Southwestern Atlantic Ocean (Secchi and
Wang 2002). Due to their coastal and estuarine habitats,
Franciscana dolphins inhabit areas with intense human activ-
ity, which poses several threats to their conservation.

The range for this species was divided into four
Franciscana Management Areas (FMAs): two in southeastern
Brazil (FMA I and II), one in southern Brazil and Uruguay
(FMA III), and the other one in Argentina (FMA IV) (Secchi
et al. 2003; Fig. 1). This species does not migrate long dis-
tances and presents site fidelity (Bordino et al. 2008; Cremer
and Simoes-Lopes 2008). Recently, information has been ob-
tained on home range (Bordino et al. 2008), population genet-
ics (Mendez et al. 2008; 2010; Cunha et al. 2014; Gariboldi
et al. 2015; Negri et al. 2016) and toxicology (Polizzi et al.
2013) indicating at least three different stocks within FMA IV.
In this area, two main ecosystems occur the La Plata River
estuary and the marine coast (Fig. 1). The estuarine area is
influenced by urban and industrial activities in Argentina
and Uruguay, and effluents are discharged into the river with
little or no treatment (Carsen et al. 2003). In contrast, the
marine coastal area is little by the contaminated estuarine wa-
ters, and although many tourist resorts are located in this area,
they produce a minor environmental impact on the coast. The
goals of this study were (1) to investigate if TEs pose a health
threat assess to Franciscana dolphins and (2) to evaluate the
suitability of TEs for differentiating ecological populations of
this species in Argentinean waters.

Materials and methods

Study area and sampling

Franciscana dolphins were collected from two coastal areas of
Buenos Aires Province between 2008 and 2011 (Fig. 1):

(1) The estuarine area, which is formed by the estuary of the
La Plata river, being an environment with great impact
(Carsen et al. 2003, Schenone et al. 2007). The cities
where estuarine dolphins (n = 21) were collected were
Río Salado and San Clemente del Tuyú.

(2) The marine coastal area, which represents a low impact-
ed environment to the south of the estuarine zone.
Marine dolphins (n = 21) were collected from different
cities along the coast: Mar de Ajó, Mar Chiquita, Mar del
Plata, Necochea, and Claromecó.

Dolphins were incidentally captured in artisanal fishing
nets, being entangled for a period less than 10 h before sam-
pling. The quality of the carcass was evaluated according to
Geraci and Lounsbury (2005). Total length, weight, and sex
were determined for the specimen. Samples of the liver, kid-
ney and brain were collected, immediately frozen in liquid
nitrogen and stored at −80 °C until analysis.

Body condition index, age determination, and fine scale
adjustments

All analyses were performed with specimens caught inciden-
tally by the artisanal fishery, so it was started with the premise
that individuals were healthy and with normal body condition
(Rodríguez et al. 2002; Denuncio 2012). To assess the body
condition, the Relative Index of Body Condition
(Kn = recorded body weight/estimated body weight) of Le
Cren (1951) was calculated. The estimated weight was obtain-
ed from the length vs weight curve of this species in
Argentinean waters, using the following equation previously
reported by Rodríguez et al. (2002). The fat index was deter-
mined by Denuncio (2012) in the same specimens analyzed
here, indicating a normal body condition (average:
31.87 ± 6.24 %).

Age was determined by Denuncio et al. (2013) using den-
tine and cementum dental layers to determine growth layer
groups (GLGs). Each GLG was considered 1 year (Pinedo
and Hohn 2000). Kasuya and Brownell (1979) and Harrison
et al. (1981) found that peak calving for Franciscana dolphins
in Uruguay occurs during November. In Argentinean waters,
calving occurs from early October to early February with a
peak in November (Denuncio et al. 2013). On the basis of this

Fig. 1 Marine and estuarine geographic areas in Argentinean continental
shelf and the management areas of the whole geographic distribution of
Franciscana dolphin (Pontoporia blainvillei) in South America
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information, we used mid-November as the mean birth date
for calves to estimate the fine scale age (by month).

Franciscana dolphins were divided into four age classes:

(1) Fetus: dolphins found in the womb
(2) Calves: suckling (only milk in stomachs), mix diet (milk

and solid prey), and weaned (only solid prey) dolphins
with age less than 1 year (Kasuya and Brownell 1979,
Rodríguez et al. 2002; Denuncio et al. 2013)

(3) Juveniles (sexually immature): 1–3.5 years old (Kasuya
and Brownell 1979, Panebianco et al. 2012a)

(4) Adults (sexually mature): 3.5 years onwards (Kasuya
and Brownell 1979)

Trace element determination

Lyophilized liver, kidney, and brain triplicate samples were
weighed to the nearest 0.1 mg and subjected to microwave-
assisted digestion in Teflon™ vessels with 2 ml HNO3 (65%),
1 ml H2O2 (30 %), and 5 ml of 18.2 MΩ cm deionized water.
After cooling, samples were diluted to 50 ml with deionized
water in a volumetric flask. Fe, Cr, Mn, Co, Ni, Mo, Ag, Sn,
and Pb levels were determined by inductively coupled plasma
mass spectroscopy (ICP-MS, PerkinElmer, Sciex, DCR 2).
An internal standard (103Rh, CertiPUR®, Merck) was added
to each sample and calibration standard solutions were used.
Quality control and quality assurance included field blanks,
method blanks, and certified reference materials (CRMs:
NIST 1566b, NIST 2976, DOLT-3, and NIST 1577c).
Measured CRMs and the instrumental detection limits for
each element are listed in Table 1. Average recovery of
CRMs for each element was 90 ± 5 % (range 85–100 %).
The concentrations (μg g−1 dry weight) of elements were
expressed as the median ± standard error. However, for

comparison with concentrations of TEs previously reported
and expressed in wet weight, conversion factors were used
based on Yang and Miyazaki (2003).

Statistical analysis

In previous reports for Franciscana dolphins (Lailson-Brito
et al. 2002; Kunito et al. 2004; Dorneles et al. 2007; Seixas
et al. 2009a; Panebianco et al. 2011, 2012b), no significant
differences in concentrations of TEs were found between male
and female dolphins; therefore, the data was analyzed together
without differentiation of sex. Data were tested for a normal
distribution using Kolmogorov-Smirnov’s test, and homosce-
dasticity of data was checked by Levene’s test. After that,
differences between groups in juveniles and adult dolphins
were performed using Mann-Whitney test. Correlations be-
tween TEs and estimated age were carried out using the
non-parametric Spearman test. Level of significance was set
at p < 0.05. Statistical analysis in the fetus and calf age classes
were not statistical analyzed due to the small sample size. TEs
data were subjected to principal component analysis (PCA) to
evaluate the suitability of TEs for discriminating ecological
populat ions. All analyses were conducted using
STATISTICA® 6.0 (Statsoft, Inc.).

Results

Biometric measurements of the specimens and TE concentra-
tions in the differents tissues are presented on Tables 2 and 3,
respectively. All carcass were in good condition (code 2) and
the Kn value for estuarine dolphins was 0.91 ± 0.15, while for
marine dolphins it was 1.03 ± 0.14. These values were not
statistically different (p = 0.94).

Table 1 Precision and accuracy measured on certified reference materials and instrumental detection limits (IDL) for each trace element. Data are
expressed in μg g−1 dry weight

Element IDL NIST 1566b NIST 2976 DOLT-3 NIST 1577c

Certified
value

Measured
value

Certified
value

Measured
value

Certified
value

Measured
value

Certified
value

Measured
value

Fe 0.04 205.8 ± 6.8 193.5 ± 0.2 171.0 ± 4.9 190.4 ± 2.9 1484 ± 57 1558 ± 48 197.9 ± 0.65 196.5 ± 0.52

Cr 0.02 – – 0.50 ± 0.16 0.37 ± 0.007 3.5 2.0 ± 0.1 53 ± 0.014 67 ± 3.5

Mn 0.02 18.5 ± 0.2 18.4 ± 0.7 33 ± 2 40.5 ± 0.7 – – 10.46 ± 0.47 10.4 ± 0.01

Co 0.01 0.371 ± 0.009 0.378 ± 0.0 0.61 ± 0.02 0.71 ± 0.02 – – 300 ± 0.018 313 ± 4.24

Ni 0.08 1.04 ± 0.09 0.95 ± 0.01 0.93 ± 0.12 0.89 ± 0.06 2.72 ± 0.35 3.31 ± 1.69 0.04 ± 0.009 0.06 ± 0.001

Mo 0.01 – – – – – – 3.30 ± 0.13 3.60 ± 0.07

Ag 0.01 0.666 ± 0.009 0.656 ± 0.006 11 ± 5 22 ± 4 1.20 ± 0.07 1.30 ± 0.04 0.006 ± 0.002 0.01 ± 0.001

Sn 0.02 0.031 ± 0.008 0.021 ± 0.004 96 ± 39 269 ± 1 0.4 0.5 ± 0.00 – –

Pb 0.008 0.308 ± 0.009 0.336 ± 0.006 1.19 ± 0.18 1.27 ± 0.00 319 ± 0.05 320 ± 12 0.063 ± 0.001 0.062 ± 0.002
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Hepatic Cr, Ni, Sn, and Pb concentrations were higher in
the estuarine fetus compared to those from the marine dolphin.
Silver, Fe, Mn, Co, and Mo concentrations were similar in
fetus of both groups. Hepatic Sn and Pb were sixfold higher
in estuarine calves, while Fe, Cr, Co, Ni, Mo, Mn, and Ag

were similar for both groups. This similarity between groups
in calves was also found for renal TEs concentration.

Iron,Mn, Co, Ni, Pb, Ag, and Cr concentrations in liver were
similar (p > 0.05) between juveniles from both geographical
groups. However, hepatic Sn (p = 0,007) and Mo (p = 0,034)

Table 2 Estimated fine scale age,
total weight, and length range of
Pontoporia blainvillei from
marine and estuarine groups.
n = number of dolphins

Estuarine dolphins Marine dolphins

n Estimated
age (year)

Weight
(kg)

Total length
(cm)

n Estimated
age (year)

Weight
(kg)

Total length
(cm)

Fetus 1 – 1.9 60 1 – 2.4 51

Calves 7 0.1–0.4 4.6–13.5 75–97 2 0.1 4.1–15.9 74–108

Juveniles 8 1.1–3.4 11.5–19.3 91–120 14 1.0–3.3 13.6–23.0 98–129

Adults 5 3.5–10.5 16.4–29.0 114–140 4 4.0–9.0 22.5–31.1 120–136

Table 3 Trace element concentrations (median ± SE, μg g−1, dry weight) in the liver, kidney, and brain in age classes and groups of Pontoporia
blainvillei. The average value is calculated from the samples which concentrations were detectable

Fetus Calf Juvenile Adult

Group Estuarine Marine Estuarine Marine Estuarine Marine Estuarine Marine

Tissue

Fe Liver 691 1860 1289 ± 277 1240–1590 1232 ± 327 1337 ± 203 1397 ± 468 1597 ± 454

Kidney 572 559 653 ± 133 705–940 816 ± 128 714 ± 116 973 ± 301 728 ± 131

Brain na 126 143 ± 33.5 187 170 ± 57 132 ± 37 79–230 138 ± 41

Cr Liver 0.149 0.037 0.06 ± 0.034 0.065–0.081 0.131 ± 0.159 0.074 ± 0.035 0.065 ± 0.015* 0.113 ± 0.032*

Kidney 0.369 0.386 0.231 ± 0.218 0.070–0.160 0.123 ± 0.085 0.123 ± 0.084 0.173 ± 0.142 0.084 ± 0.040

Brain na 0.329 0.125 ± 0.088 0.138 0.131 ± 0.067 0.159 ± 0.082 0.041–0.057 0.154 ± 0.064

Mn Liver 2.7 5.43 17.21 ± 6.11 8.23–16.20 13.15 ± 2.24 13.61 ± 2.25 12.70 ± 4.41 11.58 ± 2.83

Kidney 2.25 2.15 6.43 ± 3.84 3.62–3.69 3.65 ± 2.10 3.96 ± 1.13 3.88 ± 1.35 3.88 ± 0.41

Brain na 3.25 3.06 ± 0.71 2.02 2.43 ± 0.39 2.22 ± 0.26 2.52–2.58 2.37 ± 0.35

Co Liver nd 0.046 0.035 ± 0.011 0.041–0.053 0.061 ± 0.017 0.061 ± 0.017 0.067 ± 0.016 0.072 ± 0.019

Kidney 0.018 0.022 0.035 ± 0.018 0.027–0.085 0.076 ± 0.013 0.063 ± 0.018 0.089 ± 0032 0.067 ± 0.010

Brain na 0.037 0.026 ± 0.002 0.036 0.04 ± 0.007 0.031 ± 0.006 0.027–0.045 0.039 ± 0.01

Ni Liver 0.084 0.038 0.048 ± 0.011 0.037 0.049 ± 0.022 0.056 ± 0.016 0.067 ± 0.015 0.051 ± 0.010

Kidney 0.087 0.174 0.120 ± 0.106 0.037–0.041 0.064 ± 0.026 0.058 ± 0.019 0.101 ± 0.028 0.278 ± 0.361

Brain na 0.244 0.179 ± 0.141 0.058 0.173 ± 0.134 0.148 ± 0.107 0.195–0.256 0.093 ± 0.042

Mo Liver 0.74 0.54 1.15 ± 0.29 0.70–1.66 2.81 ± 0.95* 2.11 ± 0.29* 4.58 ± 0.94* 2.98 ± 1.2*

Kidney 0.68 0.59 0.62 ± 0.11 0.75–0.77 0.94 ± 0.11 0.88 ± 0.12 0.88 ± 0.12 0.98 ± 0.20

Brain na 0.372 0.271 ± 0.019 0.352 0.287 ± 0.061 0.276 ± 0.022 0.201–0.307 0.284 ± 0.035

Ag Liver 0.42 0.35 0.63 ± 0.29 0.43–0.49 0.65 ± 0.47 1.76 ± 1.47 4.96 ± 4.02* 1.54 ± 0.94*

Kidney 0.030 0.010 0.030 ± 0.010 0.010–0.040 0.020 ± 0.010 0.020 ± 0.010 0.030 ± 0.010 0.010 ± 0.005

Brain na 0.021 0.042 ± 0.007 0.067 0.272 ± 0.108 0.138 ± 0.043 0.231–0.258 0.075 ± 0.032

Sn Liver 0.093 0.017 0.087 ± 0.025 0.014–0.069 0.425 ± 0.123* 0.162 ± 0.253* 0.755 ± 0.253* 0.067 ± 0.023*

Kidney 0.037 0.037 0.034 ± 0.030 0.014–0.097 0.038 ± 0.009 0.016 ± 0.004 0.039 ± 0.005 0.015 ± 0.001

Brain na 0.024 0.012 ± 0.002 0.016 0.033 ± 0.01 0.014 ± 0.002 0.017–0.402 0.06 ± 0.083

Pb Liver 0.057 nd 0.088 ± 0.052 nd 0.070 ± 0.031 0.054 ± 0.011 0.055 ± 0.003 0.059 ± 0.01

Kidney 0.058 0.056 0.079 ± 0.027 0.058 0.056 ± 0.003 0.054 ± 0.004 0.054 ± 0.006 0.036 ± 0.026

Brain na nd 0.02 ± 0.01 0.041 0.023 ± 0.023 0.026 ± 0.027 nd 0.043 ± 0.035

*Significant difference between groups (p < 0.05)

na not analyzed, nd not detectable
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levels were significantly higher in estuarine juveniles. Most of
the analyzed TEs showed no differences between groups in the
kidney, with the exception of Sn which showed higher concen-
trations in estuarine juveniles compared to those from themarine
area (p < 0.0001). Estuarine juveniles presented higher brain Ag
(p = 0.011), Sn (p = 0.001), and Co (p = 0.028) concentrations
than marine dolphins. In adult dolphins, only hepatic concentra-
tions of Sn (p = 0.014) and Cr (p = 0.019) and renal Sn levels
(p = 0.034) were higher in estuarine specimens.

The concentration of hepatic Mo in dolphins from both
group were correlated with the age of the dolphins (Fig. 2A;
estuarine, p < 0.0001; marine, p = 0.001). It was also observed
a relationship with age in marine dolphins for hepatic Co
(Fig. 2B; p = 0.03) and in estuarine specimens for Sn
(Fig. 2C; p < 0.0001) and Ag (Fig. 2D; p = 0.01). Only a
positive relationship between renal Co and age was observed
in estuarine dolphins (p = 0.012).

Principal component analysis (PCA) was conducted con-
sidering all TEs in liver and brain, with exception of Pb due to
the fact that more of 50 % on the individuals have undetect-
able levels in the tissues. In liver, the two principal compo-
nents (PCs) represented 46.3 and 38.9% of the variance, re-
spectively (Fig. 3), and their eigenvalues were greater than 1.

The PC1 resulted from higher levels of Ni and Cr to the left of
the origin, separating the estuarine fetus. PC2 resulted from
the highest levels of Ag, Sn, and Mo in estuarine adult dol-
phins which differentiated it from the other groups that were
greater than zero. In brain (Fig. 4), PC1 represented 39.1 % of
the variance and, in liver, was associated with higher levels of
Ag and Sn in estuarine adults and higher concentrations of Cr
and Mo in marine fetuses. PC2 represented a 34.6 % of the
total variance, and it resulted from higher levels Ni and Mn
above the origin which separated estuarine calves and higher
levels of Fe below zero associated with marine calves.

Discussion

The essential TEs are subject to regulatory mechanisms
(Bowles 1999; Law 1996), and their physiology is evaluated
by the Bdose-response curve^ where the two ends represent
conditions of deficiency and toxicity, both incompatible with
life (Minoia et al. 1990). Effects of nutritional deficiency of
these elements include reduced body size, reduced birth rates,
increased neonate, and juvenile mortality (Trites and Donnelly
2003). Nevertheless, the levels of essential elements higher

Fig. 2 Relationship of trace element concentration (μg g−1 d.w.) in liver
of Pontoporia blainvillei and estimated age for marine (continuous line
and filled symbols) and estuarine (cutline and open symbols) dolphins

groups. Circle: fetus, square: calves, diamond: juveniles, triangle: adults.
a Molybdenum, b cobalt, c tin, d silver
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than normal physiological levels may be toxic, and the toxic-
ity depends on the particular element (O’Hara and O’Shea
2001). In contrast to essential TEs, those that are non-
essential are potentially toxic even at low concentrations and
have no known physiological function. Due to the longevity
of cetaceans, long exposure times, and their upper trophic
position, accumulation of these elements in tissues is com-
mon. Therefore, accumulation in the food web is considered
the major risk for top predators (Das et al. 2003).

Fat index and Kn values from Franciscana dolphins indi-
cated a good body condition of the specimens (Polizzi et al.
2014). Hepatic Fe, Mn, Co, andMo levels in calves, juveniles,
and adults were similar to values previously reported for
Franciscana dolphins in Brazil (Kunito et al. 2004).
Bioaccumulation of Co and Mo in liver was evident for
Franciscana dolphins reported here as it was for dolphins from
Brazil (Kunito et al. 2004). Iron is an essential nutritional
element for all life-forms. Iron is stored as ferritin and hemo-
siderin in the liver of marine mammals (Denton et al. 1980).
According to this, Fe hepatic levels in Franciscana dolphins

were higher than in kidney; being consistent with other ceta-
cean species (Capelli et al. 2000; Cardellicchio et al. 2002;
Cáceres-Saez et al. 2012). Themost commonly reported effect
of Mn toxicity is a secondary iron deficiency, leading to an
anemia (Keen et al. 2000). As it was mentioned, Franciscana
dolphins had Fe levels similar to previous reports; this situa-
tion could be indicating that no signs of anemia are present in
the studied dolphins. Furthermore, the present results were
within the expected Mn concentrations in marine mammals,
which are thought to be lower than 7 μg g−1 w.w. in all tissues
(Thompson 1990).

Hepatic levels of Ni in all age classes and both geograph-
ical groups are much lower than the toxic concentration re-
ported for mammals (Denkhaus and Salnikow 2002) and be-
low the maximum levels (2.1 mg kg−1 w.w.) found in the liver
of sperm whales (Physeter macrocephalus, Law et al. 1996).
Panebianco et al. (2011) reported undetectable renal concen-
trations (<0.05 μg g−1 w.w.) and apparently higher hepatic
concentrations (Panebianco et al. 2012b) in Franciscana dol-
phins than those reported here. These levels (0.69 ± 0.88

Fig. 3 Principal component
analysis performed in the liver
using trace elements as variables.
Diamond: trace element; circle:
group of dolphin; E estuarine, M
marine, A adult, J juveniles, C
calf, F fetus

Fig. 4 Principal component
analysis performed in the brain
using trace elements as variables.
Diamond: trace element; circle:
group of dolphin; E estuarine, M
marine, A adult, J juveniles, C
calf, F fetus
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μg g−1w.w.) showed high variability suggesting that there was
exogenous input of this metal in the south of Buenos Aires
province.

The hazards associated with exposure to Cr are dependent
on its oxidation state, Cr (III) is an essential nutrient for mam-
mals involved in carbohydrates and lipid metabolismwhile Cr
(VI) is highly toxic (Velma et al. 2009). Hepatic and renal Cr
concentrations in both geographic groups of Franciscana
dolphins were apparently lower than those reported by
Kunito et al. (2004) in Brazil and are similar to levels reported
previously for the species in Argentinean waters (Panebianco
et al. 2011, 2012b). Although Cr valence was not determined
in this study, even if were the toxic form, the low chromium
concentrations found in Franciscana dolphins meant that it did
not constitute a health risk to the species.

Despite the importance of essential TEs for normal devel-
opment and function of the brain (Sandstead 1986), there is no
information in the literature regarding these elements in
Franciscana dolphins. Brain TE levels for this species were
within the ranges previously reported for bottlenose dolphins
(Tursiops truncatus, Capelli et al. 2008), striped dolphins
(Stenella coeruleoalba, Cardellicchio et al. 2002, Capelli
et al. 2008) and Risso’s dolphin (Grampus griseus, Shoham-
Frider et al. 2002, Capelli et al. 2008). Therefore, the levels of
essential elements reported in this study suggests that they
correspond to physiological levels.

The fetal period is characterized by a high metabolic rate,
elevated development and growth, and the need for high
amounts of nutrients (Mc Ardle and Ashworth 1999).
Deficiencies and imbalances of essential elements have reper-
cussions on the proper development of the fetuses. For this
reason, it is relevant to assess the status of these TEs in this age
class. There is little information about these elements in
Franciscana dolphins with a few values for Cu and Zn levels
(Gerpe et al. 2002; Polizzi et al. 2013, 2014). Therefore, the
analysis reported here is the first information of Mn, Fe, Co,
Cr, Mo, and Ni for the species.

Low variability is characteristic of essential elements,
which are subject to regulation mechanisms (Law et al.
1991). Furthermore, our results are consistent with the vari-
ability reported in cetaceans (Ciesielski et al. 2006; Stavros
et al. 2007), and since the dolphins in this study had good
body condition, it is suggested that TEs concentrations in the
Franciscana dolphins were at normal physiological levels.

Studies of health impacts of Ag in animals suggest that this
metal may have effects on the brain, heart and reproductive
system (ATSDR, Agency for Toxic Substances and Disease
Registry 1990). Silver bioaccumulates in different tissues of
cetaceans (Seixas et al. 2009a), and this is true for Franciscana
dolphins (Kunito et al. 2004, Seixas et al. 2009b). Its accumu-
lation in juvenile estuarine dolphins suggests a major input of
this metal in the diet food. Moreover, hepatic levels of Ag
observed in estuarine adults were significantly higher than

those from the marine area. In general, concentrations of Ag
in marine and estuarine waters are very low (0.1–0.3 ng l−1);
therefore, relatively small anthropogenic inputs result in envi-
ronmental enrichment (Luoma et al. 1995). The higher con-
centrations found in estuarine dolphins could be related to the
main urban and industrial centers of Argentina and Uruguay
located along the La Plata River. Most urban and industrial
waste and effluents are discharged into the river without or
low-efficiency treatment (Carsen et al. 2003).

The toxic effects of Pb on mammals include anemia, renal
damage, hypertension, cardiac disease, immuno-suppression
(through antibody inhibition), and neurological damage
(Mertz 1987). The La Plata River estuary has elevated levels
of Pb in sediments and biota (Schenone et al. 2007; Beltrame
et al. 2011). Marine fetuses and calves had no detectable Pb
levels in liver. In contrast, estuarine fetuses showed evidence
of anthropogenic sources of Pb. Juveniles and adults showed
lower hepatic Pb levels than calves. Furthermore, Pb accumu-
lation in bones is usually higher than in soft tissues of marine
mammals (Caurant et al. 2006). Lead half-life varies from 5 to
20 years in the hard tissues of mammals, whereas it is only a
few weeks or months in soft tissues (Ma 1996). Therefore, the
levels presented in liver and kidney would indicate a recent
input of Pb in the diet of Franciscana dolphins.

Elevated levels of Sn in the marine environment occurs in
organic compounds which have been widely used as antifoul-
ing paints on ships and harbors (Almeida et al. 2007), and they
have been shown to produce immunosuppressive effects in
marine mammals (Kannan et al. 1996; Nakata et al. 2002). It
is known that the gastrointestinal absorption of tin is poor
(Hiles 1974), while the cetacean can accumulate large
amounts of organic tin compounds (Tanabe et al. 1998).
Therefore, elevated hepatic Sn in Franciscana dolphins prob-
ably resulted from exposure to organotin compounds.
Estuarine dolphins had hepatic and renal concentrations
higher than marine group, suggesting that the former group
is more exposed to organotin compounds than the latter one.
Although total concentration of Sn was determined here, stud-
ies in cetaceans confirmed that a great percentage of tissular
Sn is present in an organic form reflecting the anthropogenic
contribution (Le et al. 1999; Takahashi et al. 2000; Dorneles
et al. 2008). Furthermore, its presence in fetuses suggests a
placental pathway of organic Sn due to the transference of
inorganic species had been not demonstrated in cetaceans
(Dorneles et al. 2008), although it was for butyltins (Yang
and Miyazaki 2006) and phenyltins (Yang et al. 2007).

Genetic (Mendez et al. 2008, 2010; Cunha et al. 2014;
Gariboldi et al. 2015; Negri et al. 2016), homerange (Bordino
et al. 2008) and toxicological studies (Polizzi et al. 2013) in the
FMAIV suggested the presence of at least three ecological pop-
ulations. The results obtained in this study on TE accumulation
suggest the presence of at least two different ecological popu-
lations. Denuncio (2012) reported differences in both food
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items and size of the prey (higher in estuarine dolphins) of
juveniles and adults Franciscana dolphins from both groups.
This could be the cause of the differences found in non-
essential TEs between marine and estuarine dolphins. Several
factors can be used to evaluate the separation of stocks such as
age, sex, body size, genetics, reproductive status, and nutrition-
al condition (Aguilar et al. 2002; Verreault et al. 2009). In
addition, some authors have proposed the assessment of pollut-
ants to discriminate stocks (Kunito et al. 2002, Krahn et al.
2007, Praca et al. 2011). From the information obtained for
Franciscana dolphins in the FMAIV, differences in TE concen-
trations among groups may be related to age and geographical
area. Hence, the study of Ag and Sn concentrations in adults as
chemical tracers may complement the proposal of at least two
ecological populations in this area. The number of samples
analyzed should be increased to differentiate other ecological
populations in the marine area as were reported by Gariboldi
et al. (2015) and Negri et al. (2016). In addition, our results
suggest that Franciscana dolphins are good sentinels of envi-
ronmental contamination by TEs.

Franciscana dolphins are listed by the IUCN as Vulnerable
A3d due to population declines resulting from incidental mor-
tality in gillnet fisheries (2900 animals per year in all four
management areas; Reeves et al. 2012). Although by catch
is a real and specific problem, other potential threats, such as
degradation of habitats (impacts from contaminants; Alonso
et al. 2012, 2015; Gago-Ferrero et al. 2013), can pose long-
term risks that may contribute to population decline. It is
therefore important to know the status of the pollutants
(TEs) and their effects on different stocks for better manage-
ment or regulatory actions.
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