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A bivariate representation Q2of a complex simple Lie algebra is an irreducible rep-8

resentation having highest weight a combination of the first two fundamental9

weights. For a complex classical Lie algebra, we establish an expression for the10

weight multiplicities of bivariate representations. Published by AIP Publishing.11

https://doi.org/10.1063/1.504330512

I. INTRODUCTION13

This article concerns on giving weight multiplicity formulas, continuing the previous authors’14

article.16 In Q3that article, for a classical complex Lie algebra g, a closed explicit formula for the weight15

multiplicities of any representation of any p-fundamental string was determined. Such a representation16

is an irreducible representation of g with highest weight kω1 + ωp for some non-negative integer k.17

Here, ωj denotes the jth fundamental weight associated with the root system of g.18

The primary goal of the present article is to find an expression for the weight multiplicity of19

every bivariate representation of a classical complex Lie algebra g. A bivariate representation is an20

irreducible representation with highest weight aω1 + bω2 for some non-negative integers a and b (cf.21

Ref. 17). See Sec. 1 in Ref. 16 for references of classical and recent previous results on this problem.22

In Sec. II, we introduce the standard notation used to describe the root system associated with23

a classical complex Lie algebra g. In particular, for g of type Bn, Cn, or Dn and h a fixed Cartan24

subalgebra of g, {ε1, . . ., εn} denotes the basis of h∗ satisfying that the set of simple roots are25

{ε1 � ε2, . . ., εn�1 � εn, εn} for type Bn, {ε1 � ε2, . . ., εn�1 � εn, 2εn} for type Cn, and26

{ε1 � ε2, . . ., εn�1 � εn, εn�1 + εn} for type Dn. According to this notation, bivariate representations27

have highest weight of the form kε1 + lε2 for integers k ≥ l ≥ 0.28

The obtained weight multiplicity formulas for types Bn, Cn, and Dn are in Theorems III.1, III.2,29

and III.3, respectively. The expressions involve a sum over partitions of the integer numbers ≤l, so30

they may not be considered “closed explicit formulas” like in Ref. 16. An immediate and curious31

consequence of the formulas is the next result.32

Theorem I.1. Let g be a classical complex Lie algebra of type Bn, Cn, or Dn. Let k ≥ l ≥ 033

integers and µ=
∑n

i=1 aiεi with ai ∈Z for all i. The multiplicity of µ in the irreducible representation34

πkε1+lε2 of g with highest weight kε1 + lε2, denoted by mπkε1+lε2
(µ), depends only on35

‖µ‖1B
n∑

i=1

|ai | and Zt(µ)B #{i : 1 ≤ i ≤ n, |ai | = t} for all 0 ≤ t ≤ l − 1. (1)

In other words, if µ and µ′ satisfy ‖µ‖1 = ‖µ′‖1 and Z t(µ) = Z t(µ′) for all 0 ≤ t ≤ l � 1, then36

mπkε1+lε2
(µ)=mπkε1+lε2

(µ′).37

This theorem is analogous to Corollary 1.1 in Ref. 16 (see also Lemma 3.3 in Ref. 15), which38

states that the multiplicity of a weight µ in representations in p-fundamental strings depends only39
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on ‖µ‖1 and Z0(µ). Such representations have highest weights of the form kω1 + ωp for k ≥ 0 and 40

1 ≤ p ≤ n � 1 for type Bn, 1 ≤ p ≤ n for type Cn, and 1 ≤ p ≤ n � 2 for type Dn. 41

In the best authors’ knowledge, theQ4 weight multiplicity formulas in Theorems III.1–III.3 are not 42

in the literature. Nevertheless, Maddox17 obtained a multiplicity formula for bivariate representations 43

when g is of type Cn. However, her expression differs significantly from ours. In particular, Theorem 44

I.1 does not follow immediately from her formula. See Remark III.14 for more details. 45

We

Q5

compare from a computational point of view, the multiplicity formulas obtained in 46

Theorems III.1–III.3 with Freudenthal’s famous formula (see Subsection III C). We used the open- 47

source mathematical software Sage19 to do the calculations. It was evidenced in the computational 48

results shown in Table I that the bivariate algorithm based on Theorems III.1–III.3 is faster than 49

TABLE I. Computational comparison between the bivariate algorithm and Freudenthal’s formula. Each column shows, for the
corresponding algorithm and type X, the required time for returning the set of weights with multiplicities of the representation
πkε1+lε2 of g of type Xn according to the row. The column Dn(?) refers to the version of the bivariate algorithm returning
only the dominant weights.

Time bivariate Time Freudenthal

n k l Bn Cn Dn Dn(?) Bn Cn Dn

2 5 3 0.15 0.07 0.32 0.13
3 5 3 0.26 0.14 0.15 0.13 3.88 1.87 1.27
4 5 3 0.46 0.35 0.28 0.19 32.58 14.90 12.05
5 5 3 0.99 0.67 0.62 0.23 187.43 94.08 79.82
6 5 3 2.82 1.89 1.78 0.24 876.17 527.69 451.43
7 5 3 6.94 5.22 4.74 0.27 3436.25 1898.23 1961.54
8 5 3 17.77 14.11 12.59 0.36
9 5 3 43.23 35.47 32.11 0.51
10 5 3 97.55 87.67 78.66 0.84

2 10 3 0.29 0.13 1.92 0.48
3 10 3 0.82 0.49 0.45 0.37 23.68 10.23 7.85
4 10 3 2.09 1.16 1.22 0.58 291.63 130.93 108.61
5 10 3 8.30 5.06 4.84 0.80 2630.09 1193.45 1028.42
6 10 3 38.42 24.86 23.90 1.16
7 10 3 183.73 146.06 126.82 1.96

2 50 3 3.47 1.79 78.13 28.54
3 50 3 36.40 17.62 17.50 13.50 5146.69 2108.21 1578.78
4 50 3 472.14 325.76 267.25 58.00

2 6 6 2.20 1.32 0.50 0.19
3 6 6 9.28 5.35 5.23 5.21 11.90 4.74 3.53
4 6 6 19.29 11.19 11.44 11.09 157.23 67.93 54.79
5 6 6 30.81 18.05 18.04 15.78 1443.41 663.86 553.57
6 6 6 53.76 32.65 32.64 19.50

2 10 6 3.58 2.04 1.66 0.62
3 10 6 18.14 9.86 9.91 9.77 43.50 18.34 13.59
4 10 6 44.69 25.20 24.96 23.98 695.71 298.50 243.70
5 10 6 87.71 49.55 49.36 38.89 8114.00 3571.44 2966.84
6 10 6 235.76 158.26 133.51 52.88

2 20 6 8.77 4.61 8.41 3.16
3 20 6 63.71 33.25 33.16 32.61 312.83 129.92 98.02
4 20 6 216.46 115.58 117.99 109.08 7486.63 3199.29 2620.10
5 20 6 654.96 390.98 393.92 220.11

2 15 9 40.04 22.33 4.93 1.81
3 15 9 390.59 209.87 209.12 208.37 191.24 78.85 59.11
4 15 9 1594.63 865.10 853.83 851.50 4710.03 1908.34 1642.50
5 15 9 3794.15 2112.98 2051.99 1962.57 71389.97 32013.22 28179.33

2 50 9 231.18 116.93 96.16 35.20
3 50 9 4800.55 2423.05 2553.71 2492.15 7851.47 3117.85 2346.84
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the Freudenthal algorithm for most of the small values of k and l. Moreover, for any choice of k50

and l, the same conclusion would hold for n big enough. It is probably a more significant the fact51

that Theorems III.1–III.3 return in a speedy way the multiplicity of a single weight. The situation52

is very different with Freudenthal’s formula since it is defined recursively, and moreover, it has to53

calculate the multiplicities of many intermediate weights in case the original weight is far away from54

the highest weight. Many more related remarks are made in Subsection III C.55

We have already mentioned that the expressions for the weight multiplicities in56

Theorems III.1–III.3 and IV.2 are not closed explicit formulas since they involve a sum over parti-57

tions. However, in some particular cases, one can write down the corresponding partitions obtaining58

a (long) closed expression. For instance, the statements for the multiplicity of the weight µ = 0 for59

types Bn, Cn, and Dn are included in Subsection III D. Furthermore, a formula for Q6πkε1+2ε2 in type60

Dn is also part of Subsection III D.61

Although weight multiplicity formulas are interesting in themselves, the authors were motivated62

by their application in spectral geometry (see Sec. 7 in Ref. 16). In Remark III.17, we mention possible63

applications for the weight multiplicity formulas obtained in this article for the determination of the64

spectra of some natural differential operators on spaces covered by compact symmetric spaces with65

Abelian fundamental groups.66

The weight multiplicity formula for g of type An is determined in Sec. IV. Furthermore, the67

corresponding expression for the case l = 2 is stated in Corollary IV.3. This case, g of type An, is68

much simpler than the previous ones. The obtained expressions are probably already present in the69

extensive literature on this area.70

The article is organized as follows. Section II introduces the necessary notation to read the71

statements of the primary results. Section III, which considers classical Lie algebras of type72

Bn, Cn, and Dn, is divided in five subsections. Subsection III A states Q7the weight multiplic-73

ity formulas which are proven in Subsection III B. The computational comparison is made in74

Subsection III C. Subsection III D shows closed explicit formulas in particular cases. Section III75

ends with some remarks. The case when g is of type An is considered in Section IV.76

II. NOTATION77

Throughout this section, g denotes a classical complex Lie algebra of type Bn, Cn, and Dn,78

namely, so(2n + 1,C), sp(n,C), and so(2n,C), respectively. We assume n ≥ 2 for types Bn and Cn,79

and n ≥ 3 for Dn. We fix a Cartan subalgebra h of g.80

Let {ε1, . . ., εn} be the standard basis of h∗. Then, the sets of positive roots Σ+(g, h) and the81

space of integral weights P(g) are, respectively, given by82

{εi ± εj : i < j} ∪ {εi} and
{∑

i
aiεi : ai ∈Z∀i, or ai −

1
2
∈Z∀i

}
for g of type Bn,

{εi ± εj : i < j} ∪ {2εi} and
{∑

i
aiεi : ai ∈Z∀i

}
for g of type Cn,

{εi ± εj : i < j} and
{∑

i
aiεi : ai ∈Z∀i, or ai −

1
2
∈Z∀i

}
for g of type Dn.

Furthermore,
∑

i aiεi ∈ P(g) is dominant if and only if a1 ≥ a2 ≥ · · · ≥ an ≥ 0 for types Bn and Cn83

and a1 ≥ · · · ≥ an�1 ≥|an| for type Dn.84

By the highest weight theorem, irreducible representations of g are in correspondence with85

integral dominant weights. We denote by P++(g) the set of integral dominant weights and by πλ the86

irreducible representation of g with highest weight λ ∈ P++(g).87

The first two fundamental weights areω1 = ε1 andω2 = ε1 + ε2. Hence, any non-negative integer88

combination of them is of the form kε1 + lε2 for some integers k ≥ l ≥ 0.89

The following notation is essential to read the weight multiplicity formulas in Q8Sec. III. We will90

writeZn for the set of elements
∑

i aiεi ∈ P(g) such that ai ∈Z for all i. For a weight µ=
∑n

i=1 aiεi ∈Zn
91
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and t a non-negative integer, define 92

‖µ‖1 =

n∑
i=1

|ai |, Zt(µ)= #{i : 1 ≤ i ≤ n, |ai | = t}. (2)

Given N ≥ 0, let Qn(N) be the set of all partitions of N with length ≤ n, that is, 93

Qn(N)=
{
q= (q1, q2, . . . , qn) ∈Zn : q1 ≥ q2 ≥ . . . ≥ qn ≥ 0,

∑n

i=1
qi =N

}
. (3)

Furthermore, for q ∈Qn(N) and 1 ≤ j ≤ N, we set 94

sq
j B #{i : 1 ≤ i ≤ n, qi = j}, (4)

BqB {
(
β1

1 , β2
1 , β2

2 , β3
1 , β3

2 , β3
3 , . . . , βN

N

)
: βj

t ≥ 0,
∑j

t=1
β

j
t ≤ sq

j }, (5)

Aq
βB {(α

1
1, α2

1, α2
2, α3

1, α3
2, α3

3, . . . , αN
N ) : 0 ≤ αj

t ≤ β
j
t } for any β ∈Bq. (6)

Throughout the article, we use the convention
(

b
a

)
= 0 if a < 0 or b < a. 95

III. TYPES Bn, Cn, AND Dn 96

In this section, we consider g a classical complex Lie algebra of types Bn, Cn, and Dn. We assume 97

that n ≥ 2 for types Bn and Cn and n ≥ 3 for type Dn. 98

A. Main results 99

We now state the three theorems which establish the weight multiplicity formulas for types 100

Bn, Cn, and Dn, respectively. The notation required was introduced inQ9 Sec. II. The formulas con- 101

sider weights in Zn, since the multiplicity in πkε1+lε2 of any weight in P(g) r Zn vanishes (see 102

Remark III.4). 103

Theorem III.1 (Type Bn). Let g= so(2n + 1,C) for some n ≥ 2. Let k ≥ l ≥ 0 integers and 104

µ ∈Zn. If r(µ)B (k + l � ‖µ‖1)/2 is negative, then mπkε1+lε2
(µ)= 0, and otherwise 105

mπkε1+lε2
(µ)=Bn(l, r(µ), Z0(µ), . . . , Zl−1(µ))

−Bn(l − 1, r(µ), Z0(µ), . . . , Zl−1(µ))

−Bn(l − 1, r(µ) − 1, Z0(µ), . . . , Zl−1(µ))

+ Bn(l − 2, r(µ) − 1, Z0(µ), . . . , Zl−1(µ)),

where 106

Bn(l, r, Z0, . . . , Zl−1)=
∑

0≤N≤l

∑
q∈Qn(N)

∑
β∈Bq

∑
α∈Aq

β

(
b(l − N)/2c + n − 1

n − 1

)
(
br − (l + N)/2c +

∑N
j=1

∑j
i=1( j + 1 − i)αj

i + n − 1

n − 1

)
N∏

j=1

*.
,
2sq

j −
∑j

i=1 β
j
i

(
β

j
1

α
j
1

) (n −∑j−1
t=0 Zt −

∑N
r=j+1

∑r−j+1
s=1 βr

s

β
j
1

)
(Z0 −

∑N
h=j+1(sq

h −
∑h

s=1 β
h
s )

sq
j −

∑j
t=1 β

j
t

) j∏
i=2

(Zj−i+1 −
∑N−j

t=1 β
j+t
i+1

β
j
i

) (
β

j
i

α
j
i

)
+/
-
.
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Theorem III.2 (Type Cn). Let g= sp(n,C) for some n ≥ 2. Let k ≥ l ≥ 0 integers and µ ∈Zn.107

If r(µ)B (k + l � ‖µ‖1)/2 is not a non-negative integer, then mπkε1+lε2
(µ)= 0, and otherwise108

mπkε1+lε2
(µ)=Cn(l, r(µ), Z0(µ), . . . , Zl−1(µ))

−Cn(l − 1, r(µ), Z0(µ), . . . , Zl−1(µ))

−Cn(l − 1, r(µ) − 1, Z0(µ), . . . , Zl−1(µ))

+ Cn(l − 2, r(µ) − 1, Z0(µ), . . . , Zl−1(µ)),

where109

Cn(l, r, Z0, . . . , Zl−1)=
∑

0≤N≤l,
N≡l( mod 2)

∑
q∈Qn(N)

∑
β∈Bq

∑
α∈Aq

β

(
(l − N)/2 + n − 1

n − 1

)
(
r − (l + N)/2 +

∑N
j=1

∑j
i=1( j + 1 − i)αj

i + n − 1

n − 1

)
N∏

j=1

*.
,
2sq

j −
∑j

i=1 β
j
i

(
β

j
1

α
j
1

) (n −∑j−1
t=0 Zt −

∑N
r=j+1

∑r−j+1
s=1 βr

s

β
j
1

)
(Z0 −

∑N
h=j+1(sq

h −
∑h

s=1 β
h
s )

sq
j −

∑j
t=1 β

j
t

) j∏
i=2

(Zj−i+1 −
∑N−j

t=1 β
j+t
i+1

β
j
i

) (
β

j
i

α
j
i

)
+/
-
.

Theorem III.3 (Type Dn). Let g= so(2n,C) for some n ≥ 3. Let k ≥ l ≥ 0 integers and µ ∈Zn.110

If r(µ)B (k + l � ‖µ‖1)/2 is not a non-negative integer, then mπkε1+lε2
(µ)= 0, and otherwise111

mπkε1+lε2
(µ)=Dn(l, r(µ), Z0(µ), . . . , Zl−1(µ))

−Dn(l − 1, r(µ), Z0(µ), . . . , Zl−1(µ))

−Dn(l − 1, r(µ) − 1, Z0(µ), . . . , Zl−1(µ))

+ Dn(l − 2, r(µ) − 1, Z0(µ), . . . , Zl−1(µ)),

where112

Dn(l, r, Z0, . . . , Zl−1)=
∑

0≤N≤l,
N≡l( mod 2)

∑
q∈Qn(N)

∑
β∈Bq

∑
α∈Aq

β

(
(l − N)/2 + n − 2

n − 2

)
(
r − (l + N)/2 +

∑N
j=1

∑j
i=1( j + 1 − i)αj

i + n − 2

n − 2

)
N∏

j=1

*.
,
2sq

j −
∑j

i=1 β
j
i

(
β

j
1

α
j
1

) (n −∑j−1
t=0 Zt −

∑N
r=j+1

∑r−j+1
s=1 βr

s

β
j
1

)
(Z0 −

∑N
h=j+1(sq

h −
∑h

s=1 β
h
s )

sq
j −

∑j
t=1 β

j
t

) j∏
i=2

(Zj−i+1 −
∑N−j

t=1 β
j+t
i+1

β
j
i

) (
β

j
i

α
j
i

)
+/
-
.

Remark III.4. For all types considered, it turns out that mπkε1+lε2
(µ)= 0 for all µ ∈ P(g) r Zn.113

Indeed, the subset Zn coincides with the set of G-integral weights, where G is the only compact114

linear group G whose Lie algebra is a compact real form in g. We have that G is isomorphic to115

SO(2n + 1), Sp(n), and SO(2n) for types Bn, Cn, and Dn, respectively. Since kε1 + lε2 ∈Zn, the116

representation πkε1+lε2 descends to a representation of G, and consequently, their weights are in Zn
117

(see Lemma 5.106 in Ref. 11).118
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B. Proofs 119

This subsection contains a unified proof of Theorems III.1–III.3. We first need two lemmas. The 120

first one gives well-known closed explicit formulas for the weight multiplicities of representations 121

having highest weights of the form kε1 for k a non-negative integer. A proof can be found in Lemmas 122

3.2, 4.3, and 5.3 in Ref. 16. The second lemma is the first step to prove the theorems. 123

Lemma III.5. Let g be a complex Lie algebra of type Bn, Cn, or Dn for some n ≥ 2. Let k ≥ 0 124

integer and µ ∈Zn. Then 125

mπkε1
(µ)=

(
br(µ)c+n−1

n−1

)
where r(µ)= k−‖µ ‖1

2 , for g of type Bn, (7)

mπkε1
(µ)=




(
r(µ)+n−1

n−1

)
if r(µ)B k−‖µ ‖1

2 ∈N0,

0 otherwise,
for g of type Cn, (8)

mπkε1
(µ)=




(
r(µ)+n−2

n−2

)
if r(µ)B k−‖µ ‖1

2 ∈N0,

0 otherwise,
for g of type Dn. (9)

Lemma III.6. Let g be a classical Lie algebra of type Bn, Cn, or Dn. For integers k ≥ l ≥ 0, write 126

τk,l = πkε1 ⊗ πlε1 . Then, in the virtual ring of representations of g, we have that 127

πkε1+lε2 ' τk,l − τk+1,l−1 − τk−1,l−1 + τk,l−2.

Proof. We have the fusion rule (see, for instance, page 510, Example 2 in Ref. 12) 128

τk,l = πkε1 ⊗ πlε1 '

l⊕
j=0

j⊕
i=0

π(k+l−j−i)ε1+( j−i)ε2 .

As an immediate consequence, we obtain 129

τk,l − τk+1,l−1 =

l∑
j=0

j∑
i=0

π(k+l−j−i)ε1+( j−i)ε2 −

l−1∑
j=0

j∑
i=0

π(k+l−j−i)ε1+( j−i)ε2 =

l∑
i=0

π(k−i)ε1+(l−i)ε2 ,

τk−1,l−1 − τk,l−2 =

l−1∑
j=0

j∑
i=0

π(k+l−j−i−2)ε1+( j−i)ε2 −

l−2∑
j=0

j∑
i=0

π(k+l−j−i−2)ε1+( j−i)ε2

=

l−1∑
i=0

π(k+1−i)ε1+(l−1−i)ε2 =

l∑
i=1

π(k−i)ε1+(l−i)ε2 .

Subtracting the previous identities, we obtain the desired formula. ◽ 130

Proofs of Theorems III.1–III.3. Without loss of generality, we can assume that µ ∈Zn is domi- 131

nant since the Weyl group preserves weight multiplicities. Recall that τk,l = πkε1 ⊗ πlε1 for k ≥ l ≥ 0 132

integers. Since 133

mπkε1+lε2
(µ)=mτk,l (µ) − mτk+1,l−1 (µ) − mτk−1,l−1 (µ) + mτk,l−2 (µ) (10)

by Lemma III.6, we are left with the task of showing that 134

mτk,l (µ)=




Bn(l, r(µ), Z0(µ), . . . , Zl−1(µ)) for g of type Bn,

Cn(l, r(µ), Z0(µ), . . . , Zl−1(µ)) for g of type Cn,

Dn(l, r(µ), Z0(µ), . . . , Zl−1(µ)) for g of type Dn.

(11)

It is well known that (see Exercise V.14 in Ref. 11) 135

mτk,l (µ)=
∑
η

mπkε1
(µ − η) mπlε1

(η), (12)

where the sum is restricted to P(πlε1 ), the set of weights of πlε1 . By Lemma III.5, the weights of πlε1 136

are those η such that l − ‖η‖1 ∈N0 for type Bn and l − ‖η‖1 ∈ 2N0 for types Cn and Dn. In order to 137

calculate
Q10

‖µ � η‖1 and to determine mkε1 (µ − η), we make a convenient partition of P(πlε1 ). 138
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We write Z t = Z t(µ) for all 0 ≤ t ≤ l � 1. For 0 ≤ N ≤ l integer, q= (q1, . . . , qn) ∈Qn(N),139

β = (β1
1 , β2

1 , . . . , βN
N ) ∈Bq, and α = (α1

1, α2
1, . . . , αN

N ) ∈Aq
β (see Sec. II for notation), we set140

Pq
β,α =




N∑
j=1

sq
j∑

k=0

bj,kεijk
:

ij
k , ij′

s′ if ( j, k), ( j′, k ′); bj,k =±j for all k;

ij
1 < · · · < ij

β
j
1

≤ n −
j−1∑
t=0

Zt < ij

β
j
1+1

< · · · < ij

β
j
1+βj

2

≤ n −
j−2∑
t=0

Zt < · · · ≤ n − Z0 < ij∑j
i=1 β

j
i +1

< · · · < ij

sq
j ,

for all 1 ≤ j ≤N ,

#{k :
h−1∑
t=1

β
j
t + 1 ≤ k ≤

h∑
t=1

β
j
t , bj,k = j} = αj

h




. (13)

We now list some properties shared by all the elements in Pq
β,α. Let η =

∑n
i=1 ciεi ∈Pq

β,α. The multiset141

(i.e., a set where an element can be repeated) given by the elements |c1|, . . ., |cn| coincides with the142

multiset of elements q1, . . ., qn; thus, ‖η‖1 = N. For a fixed 1 ≤ j ≤ N, the number of entries equal143

to ±j is sq
j located as follows: we divide the integral interval [1, n] in ( j + 1)-blocks as the identity144

n= (n−
∑j−1

t=0 Zt) + Zj−1 + Zj−2 + · · ·+ Z1 + Z0 suggests; that is, the first block has the first (n−
∑j−1

r=0 Zr)145

integers, the second block has the next Z j�1 elements, the third one has the next Z j�2 elements, and146

so on. For each 1 ≤ t ≤ j, there are βj
t entries in the tth block equal to ± j—α

j
t of them are positive.147

In the last block, there are sq
j −

∑j−1
t=1 β

j
t entries equal to ±j.148

As a consequence of the previous paragraph, we have partitioned the set of weights of πlε1 as149

P(πlε1 )=
⋃
N

⋃
q∈Qn(N)

⋃
β∈Bq

⋃
α∈Aq

β

Pq
β,α, (14)

where the first union is over N ∈N0 satisfying l − N ∈N0 for type Bn and l − N ∈ 2N0 for types Cn150

and Dn. All the unions are disjoint.151

Fix an integer 0 ≤ N ≤ l, q ∈Qn(N), β ∈Bq, α ∈Aq
β , and η ∈Pq

β,α. One may check that152

‖µ − η‖1 = k + l − 2r +
N∑

j=1

j∑
i=1

(
j(βj

i − α
j
i) + (2i − j − 2)αj

i

)
+

N∑
j=1

j(sq
j −

j∑
i=1

β
j
i )

= k + l − 2r +
N∑

j=1

j∑
i=1

2(i − j − 1)αj
i + jsq

j

= k + l + N − 2
(
r +

N∑
j=1

j∑
i=1

( j + 1 − i)αj
i

)
= k − 2

(
r +

N∑
j=1

j∑
i=1

( j + 1 − i)αj
i − (l + N)/2

)
.

Since mπlε1
(η) and mπkε1

(µ − η) are given in Lemma III.5 in terms of l � ‖η‖1 and k � ‖µ � η‖1,153

respectively, it follows that mπlε1
(η) and mπkε1

(µ − η) are constant, independent of the choice of154

η ∈Pq
β,α.155

From the above fact, the partition (14), and the formula (12), we conclude that156

mτk,l (µ)=
∑

N

∑
q∈Qn(N)

∑
β∈Bq

∑
α∈Aq

β

mπkε1
(µ − ηq

β,α) mπlε1
(ηq
β,α) #Pq

β,α, (15)

where ηq
β,α is any element in Pq

β,α, and the first sum is over N ∈N0 satisfying l − N ∈N0 for type Bn157

and l − N ∈ 2N0 for types Cn and Dn.158
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By tedious but straightforward combinatorial arguments, we have 159

#Pq
β,α = 2

∑N
j=1(sq

j −
∑j

i=1 β
j
i )
(n −∑N−1

j=0 Zj

βN
1

) (
ZN−1

βN
2

)
· · ·

(
Z1

βN
N

) (
Z0

sq
N −

∑N
j=1 β

N
j

)
(n −∑N−2

j=0 Zj − β
N
1 − β

N
2

βN−1
1

) (
ZN−2 − β

N
3

βN−1
2

)
· · ·

(
Z1 − β

N
N

βN−1
N−1

) (Z0 − (sq
N −

∑N
j=1 β

N
j )

sq
N−1 −

∑N−1
j=1 βN−1

j

)

· · ·

(
n − Z0 −

∑N
j=2

∑j
i=1 β

j
i

β1
1

) (Z0 −
∑N

j=2(sq
j −

∑j
i=1 β

j
i )

sq
1 − β

1
1

) (
β1

1

α1
1

) (
β2

1

α2
1

)
· · ·

(
βN

N

αN
N

)

=

N∏
j=1

*.
,
2sq

j −
∑j

i=1 β
j
i

(n −∑j−1
t=0 Zt −

∑N
r=j+1

∑r−j+1
s=1 βr

s

β
j
1

)
(Z0 −

∑N
r=j+1(sq

r −
∑r

s=1 β
r
s )

sq
j −

∑j
t=1 β

j
t

) (
β

j
1

α
j
1

) j∏
i=2

(Zj−i+1 −
∑N−j

t=1 β
j+t
i+1

β
j
i

) (
β

j
i

α
j
i

)
+/
-
.

Replacing in (15) the values of mπkε1
(µ− ηq

β,α) and mπlε1
(ηq
β,α) given by Lemma III.5 and #Pq

β,α 160

by the above expression, we obtain the desired weight multiplicity formula for τk ,l. According to 161

(10), the Proofs of Theorems III.1–III.3 are complete. ◽ 162

C. Computational comparison 163

We now include a non-serious computational comparison between the weight multiplicity for- 164

mulas in Theorems III.1–III.3 and Freudenthal’s formula (see, for instance, Sec. 22.3 in Ref. 10). 165

We use the open-source mathematical software Sage19 and its algebraic combinatorics features 166

developed by the Sage-Combinat community,20 which has implemented Freudenthal’s formulas. 167

The source code containing the bivariate algorithm can be found in the public project18 available in 168

CoCalc. (To see the corresponding hyperlink go to the electronic version of this article.) 169

The word “non-serious” in the previous paragraph has been added for several reasons that we now 170

explain. The formulas proved above have been implemented in Sage by the first named author, who 171

lacks computer programming skills. Thus, their implementations are done poorly and inefficiently. 172

On the contrary, the Sage-Combinat community programmed Freudenthal’s formula in Sage in 173

a very efficient way. Furthermore, the calculations have been made using an old version of Sage19
174

and a slow computer. 175

The implementation of Freudenthal’s formula in Sage, called Freudenthal algorithm in the 176

sequel, returns all the weights with their corresponding multiplicities. We suspect that this tactic is 177

due to a matter of efficiency since Freudenthal’s formula is defined recursively. On the other hand, 178

Theorems III.1–III.3 compute the multiplicity of a single weight. Thus, in order to make a fair com- 179

parison between them, the bivariate algorithm will also determine the set of weights of πkε1+lε2 . 180

To this end, we first find a subset of Zn containing the set of weights of πkε1+lε2 , namely, 181

{µ ∈Zn : ‖µ‖1 ≤ k + l}. Here is a summary of the algorithm. 182

Algorithm III.7 (Bivariate algorithm). 183

Input: g a classical complex Lie algebra of type Bn or Cn with n ≥ 2, or Dn with n ≥ 3, and k ≥ l 184

non-negative integers. 185

Output: the sequence of pairs [µ, mπkε1+lε2
(µ)], where µ runs over every weight of the 186

representation πkε1+lε2 of g and mπkε1+lε2
(µ) is its multiplicity. 187

1. Initialize S as an empty list. 188

2. Determine the set P of vectors µ= (a1, . . . , an) ∈Zn such that ‖µ‖1 ≤ k + l and 189

a1 ≥ a2 ≥ · · · ≥ an ≥ 0. 190

3. Run over all elements µ in P. 191

4. Compute mπkε1+lε2
(µ) by Theorems III.1–III.3. 192
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5. In case mπkε1+lε2
(µ)> 0, determine the orbit of µ by the group Wn ' Sym(n) × {±1}n, which193

acts by permutations and multiplication by ±1 on its entries.194

6. For each ν in the above orbit, add in S the entry [ν, mπkε1+lε2
(µ)].195

7. Return S.196

Remark III.8. Notice that the set of Q11dominant weights for πkε1+lε2 is included in P introduced197

in (ii) when g is of types Bn and Cn. Although this fact is not true for g of type Dn, each remaining198

element has the form µ̄B (a1, . . . , an−1,−an) for some µ = (a1, . . ., an) in P with an > 0, and199

it satisfies mπkε1+lε2
(µ̄)=mπkε1+lε2

(µ) since n ≥ 3. Consequently, step (v) Q12obtains all the weights200

of πkε1+lε2 when g is of type Bn and Cn for n ≥ 2 and Dn for n ≥ 3. Likewise, the group Q13Wn201

introduced in (v) coincides with the Weyl group when g is of type Bn or Cn. For g of type Dn and202

n ≥ 3, the Weyl group is isomorphic to Sym(n) × {±1}n�1; thus, it is strictly included in Wn. This203

fact is consistent with the previous comment on the set of dominant weights that is not contained204

in P.205

Table I displays the times (in seconds) required by both the bivariate and Freudenthal algorithms206

for different choices of n, k, and l. Let us introduce the notation B(Xn, k, l) for the time required by207

our implementation in Sage of the bivariate algorithm for g of type Xn (=Bn, Cn, or Dn) and the208

irreducible representation of g having highest weight kε1 + lε2. Similarly, write F(Xn, k, l) for the209

corresponding required time for the implementation in Sage of Freudenthal algorithm. This abuse of210

notation (the numbers are periods of time not uniquely determined) will be advantageous to express211

the numerical conclusions.212

We now indicate some conclusions evidenced by the numerical experiments. It is clear that213

B(Xn, k, l) is much smaller than F(Xn, k, l) for coherent small values of n, k, and l. Furthermore,214

the function n 7→ B(Xn, k, l)/F(Xn, k, l) seems to be increasing for any fixed choice of X, k, and l.215

Moreover, for n big enough, one would have B(Xn, k, l) < F(Xn, k, l).216

On the one hand, we see that F(Dn, k, l) < F(Cn, k, l) < F(Bn, k, l) and the gaps among217

them increase when n grows. The reason is that Freudenthal’s formula depends heavily on the root218

system associated with g, which is simpler for type Dn and more complicated for type Bn. On219

the other hand, B(Cn, k, l) and B(Dn, k, l) look similar and B(Bn, k, l) larger. In this case, the220

reason is the number of weights. Roughly speaking, the set of weights of πkε1+lε2 is almost equal221

to {µ ∈Zn : ‖µ‖1 ≤ k + l, ‖µ‖1 ≡ k + l (mod 2)} for types Cn and Dn and to {µ ∈Zn : ‖µ‖1 ≤ k + l}222

for type Bn. In fact, this is a consequence of ‖α‖1 = 2 for every root α in types Cn and Dn and223

‖α‖1 ∈ {1, 2} for every root α in type Bn. Summing up, the bivariate algorithm is not sensible224

to the number of roots in the corresponding root system, but it is sensible to the one-norm of the225

roots.226

Throughout this paragraph fix a type Xn. The times required by both algorithms depend on227

k + l. In fact, the set of weights of πkε1+lε2 does not vary considerably among the different choices of228

k and l with k + l fixed. Likewise, Freudenthal’s formula is slightly faster when l grows since the size229

of the set of weights decreases. However, the bivariate algorithm strongly depends on l. Indeed, as230

this algorithm involves partitions of all non-negative integers less than or equal to l, its speed reduces231

when l increases. In conclusion, fixing the value m = k + l, the function l 7→ B(Xn, m � l, l)/F(Xn, m232

� l, l) attains its minimum when l is as large as possible, that is, when l = k or l = k � 1 according to233

the parity of k + l. This situation is exemplified in Table II.234

The authors believe that the weight multiplicity formulas in Theorems III.1–III.3 could be imple-235

mented on new versions of Sage. Bivariate representations are a non-trivial class of irreducible236

TABLE II. Comparison among representations of g of type D4 with k + l = 14 fixed.

l 0 1 2 3 4 5 6 7

B(D4, 14 � l, l) 1.03 1.04 1.09 1.69 3.28 7.45 17.50 39.99
F(D4, 14 � l, l) 152.84 152.77 152.60 151.50 146.38 137.41 124.40 106.22
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representations, which frequently appear on users’ calculations. Not only the time required by the 237

bivariate algorithm for n large enough is reduced, but there is also a great advantage in the possi- 238

bility of calculating the multiplicity of a single weight in a very short period of time. For example, 239

when g is of type D5, k = 20, and l = 6, its implemented program in Sage takes only between 240

0.40 and 0.65 s for each single weight µ. Furthermore, the efficiency of the algorithm improves 241

significantly when it returns only the multiplicities of dominant weights [i.e., step (v) is omitted 242

in Algorithm III.7], which is in general what users really need. This can be appreciated in the 243

fourth column of Table I, denoted by Dn(?). There, we list the times required by this simplified 244

version of the bivariate algorithm for g of type Dn. Of course, the fact that the bivariate algo- 245

rithm works only for particular simple complex Lie algebras and bivariate representations is a big 246

disadvantage. 247

D. Closed explicit weight formulas in particular cases 248

The weight multiplicity formulas obtained in Theorems III.1–III.3 are not closed expressions 249

because they involve a sum over partitions of non-negative integers. However, in some particular 250

cases (e.g., small values of l, particular choices of µ), it is possible to write out the partitions, and 251

therefore, the formulas become closed expressions. For example, if l = 0, then the formulas reduce 252

to the closed explicit expressions in Lemma III.5. 253

When l = 1, only sums over the set of partitions of 0 or 1 are involved. These sets have exactly 254

one element, so the sums disappear. For example, when g is of type Dn, we get 255

mπkε1+ε2
(µ)=Dn(1, r(µ), Z0(µ)) − Dn(0, r(µ)) − Dn(0, r(µ) − 1) (16)

=

1∑
β1

1=0

1−β1
1∑

α1
1=0

(
r − 1 + α1

1 + n − 2

n − 2

)
21−β1

1

(
β1

1

α1
1

) (
n − Z0(µ)

β1
1

) (
Z0(µ)

1 − β1
1

)

−

(
r(µ) + n − 2

n − 2

)
−

(
r(µ) − 1 + n − 2

n − 2

)
for every µ ∈Zn satisfying that r(µ) = (k + 1 � ‖µ‖1)/2 is a non-negative integer. Notice that this 256

formula is a particular case of Theorem 4.1 in Ref. 16. 257

Similarly, when l = 2, there are only sums over the set of partitions of N for N = 0, 1, 2. Since 258

2 = 2 and 2 = 1 + 1 are the only partitions of 2, the corresponding sum splits into two. We now state 259

the multiplicity formula for l = 2 and type Dn. We pick type Dn for citing purposes. 260

Corollary III.9. Let g= so(2n,C) for n ≥ 3, let k ≥ 2 integer, and let µ ∈Zn. If r(µ) 261

B (k + 2 � ‖µ‖1)/2 is a non-negative integer, then 262

mπkε1+2ε2
(µ)=

(
r(µ) + n − 4

n − 2

) (
2Z0(µ)(n − 1) +

(
n − Z0(µ)

2

))
+

(
r(µ) + n − 3

n − 2

) (
2Z0(µ)(n − Z0(µ)) + Z1(µ) − n + 2

(
n − Z0(µ)

2

))
+

(
r(µ) + n − 2

n − 2

) ((
n − Z0(µ)

2

)
− Z1(µ)

)
,

and mπkε1+2ε2
(µ)= 0 otherwise. 263

Furthermore, we can obtain a closed explicit multiplicity formula for the weight µ = 0 in the 264

representation πkε1+lε2 of g. We next state the formulas for types Bn, Cn, and Dn, but we prove it only 265

for the case Dn, since types Bn and Cn follow in a similar way. 266
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Corollary III.10 (Type Dn). Let g= so(2n,C) for some n ≥ 3 and let k ≥ l ≥ 0 integers. We have267

that mπkε1+lε2
(0)= 0 if k + l is odd. Moreover, if k + l is even, then268

mπkε1+lε2
(0)= 2

∑
0≤N≤l

(−1)N+l R(n, k, l, N)

(
b(l − N)/2c + n − 2

n − 2

)
(
b(k − N + 1)/2c + n − 2

n − 2

) n∑
t=0

(
n
t

) (
N − t + n − 1

n − 1

)
,

where269

R(n, k, l, N)=




l − N + n − 2
l − N + 2n − 4

if N ≡ l (mod 2),

k + 1 − N + n − 2
k + 1 − N + 2n − 4

if N ≡ l + 1 (mod 2).

Proof. The asserted formula can be obtained by Theorem III.3. However, we will prove it in a270

simplified way, by following the Proof of Theorem III.3. The reason is that the partition in (14) of271

the set of weights of πlε1 is (unnecessarily) too fine for µ = 0. By (10), we have that272

mπkε1+lε2
(0)=mτk,l (0) − mτk+1,l−1 (0) − mτk−1,l−1 (0) + mτk,l−2 (0). (17)

As before, for arbitrary k ≥ l ≥ 0 integers, it holds273

mτk,l (0)=
∑
η

mπkε1
(−η) mπlε1

(η),

where the sum is restricted to the weights of πlε1 . From Lemma III.5, we see that η is a weight274

of πlε1 if and only if l − ‖η‖1 ∈ 2N0. For such a weight η, mπkε1
(−η)= 0 unless 2N0 3 k − ‖−η‖1275

= (k − l) + (l− ‖η‖1), equivalently k − l ∈ 2N0. We conclude that mτk,l (0)= 0 if k + l is odd. Moreover,276

mπkε1+lε2
(0)= 0 if k + l is odd by (17).277

We now proceed to compute mτk,l (0) for arbitrary k ≥ l ≥ 0 integers satisfying that k + l is even.278

Fix N ∈N0 such that l−N ∈ 2N0. For each η ∈Zn with ‖η‖1 = N, we know that mπkε1
(−η) and mπlε1

(η)279

are constant, independent of the choice of η. Hence,280

mτk,l (0)=
∑

0≤N≤l,
N≡l(mod 2)

(
(l − N)/2 + n − 2

n − 2

) (
(k − N)/2 + n − 2

n − 2

)
#{η ∈Zn : ‖η‖1 =N }. (18)

It is well known (see, for instance, Sec. 2.5 in Ref. 4) that #{η ∈Zn : ‖η‖1 =N } =
∑n

t=0

(
n
t

) (
N−t+n−1

n−1

)
.281

Thus, by replacing (18) in (17), one obtains the desired formula. ◽282

Corollary III.11 (Type Cn). Let g= sp(n,C) for some n ≥ 2 and let k ≥ l ≥ 0 integers. We have283

that mπkε1+lε2
(0)= 0 if k + l is odd. Moreover, if k + l is even, then284

mπkε1+lε2
(0)= 2

∑
0≤N≤l

(−1)N+l R(n + 1, k, l, N)

(
b(l − N)/2c + n − 1

n − 1

)
(
b(k − N + 1)/2c + n − 1

n − 1

) n∑
t=0

(
n
t

) (
N − t + n − 1

n − 1

)
,

where R(n, k, l, N) is as in Corollary III.10.285

Corollary III.12 (Type Bn). Let g= so(2n + 1,C) for some n ≥ 2 and let k ≥ l ≥ 0 integers. Then286

mπkε1+lε2
(0)=

∑
0≤N≤l

(−1)N+lS(n, k, l, N)

(
b(l − N)/2c + n − 1

n − 1

)
(
b(k + 1 − N)/2c + n − 1

n − 1

) n∑
t=0

(
n
t

) (
N − t + n − 1

n − 1

)
,



000000-12 E. A. Lauret and F. R. Bertone J. Math. Phys. 59, 000000 (2018)

where 287

S(n, k, l, N)=




1 −
b(l − N)/2c b(k + 1 − N)/2c

(b(l − N)/2c + n − 1)(b(k + 1 − N)/2c + n − 1)
if k + l is even,

b(k + 1 − N)/2c
b(k + 1 − N)/2c + n − 1

−
b(l − N)/2c

b(l − N)/2c + n − 1
if k + l is odd.

E. Remarks 288

We end this section with a few remarks. 289

Remark III.13 .The weight multiplicity formula for type Dn in Theorem III.3 also holds when 290

n = 2 with πkε1+lε2 replaced by πkε1+lε2 ⊕ πkε1−lε2 . It is important to note that so(4,C) (type D2) is not 291

simple. Indeed, so(4,C)' sl(2,C) ⊕ sl(2,C) or D2 = A1 ⊕ A1. Hence, a weight multiplicity formula 292

for the representations πkε1±lε2 with k ≥ l ≥ 0 of so(4,C) can be obtained using this fact. 293

Remark III.14. Maddox17 determined a weight multiplicity formula for any bivariate represen- 294

tation for g of type Cn. Her expression (Theorem 4.3 in Ref. 17) looks more elegant than the one in 295

Theorem III.2. However, it includes a sum over ordered partitions of r(µ) of length n and another sum 296

over the subsets of a set of 2n elements. In conclusion, her shorter formula hides in the mentioned 297

sums the involved terms appearing in the expression given in Theorem III.2. Furthermore, the neat 298

dependence condition in Theorem I.1 does not follow immediately from Theorem 4.3 in Ref. 17. 299

We now compare Maddox’s method with ours. Both employ the expression in Lemma III.6 for 300

an irreducible representation as a sum of tensor products in the virtual ring of representations. The 301

significant difference arises in the calculation of the weight multiplicity in a tensor product. Roughly 302

speaking, the Proofs of Theorems III.1–III.3 use the identity (12) and then a convenient partition of 303

the set of weights of the small component in the tensor product. On the other hand, Maddox makes 304

use of τk,l = πkε1 ⊗ πlε1 'Symk(C2n) ⊗ Syml(C2n) for g of type Cn and counts the weight vectors in 305

terms of a function which has a combinatorial expression. 306

Remark III.15. There are in the literature several algorithms to compute weight multiplicities. 307

The one based on Freudenthal’s formula is the most classical and is still used for several computer 308

programs (e.g., Sage19). Nowadays, there exist faster algorithms. A possible time comparison with 309

any of them would require an implementation on Sage, which would be unfair because of the poor 310

computer programming skills of the authors. 311

Among the mentionedQ14 faster algorithms, it is the distinguished one by Baldoni and Vergne3 (see 312

Refs. 1, 2, and 8 for related results), which is based on symbolic computations of Kostant partition 313

functions. See also Refs. 6, 7, and 21 for recent different approaches. 314

Remark III.16. This interesting remark about the behavior of mπkε1+lε2
(µ) as a function on k 315

and l was pointed out by the referee. For simplicity, we take µ = 0, we fix l a non-negative integer 316

and we consider g a classical Lie algebra of type Dn for some n ≥ 3, although the general case 317

is very similar. Corollary III.10 implies that k 7→mπkε1+lε2
(0) is a quasi-polynomial in the variable 318

k ≥ l whose degree does not depend on l. In fact, its degree coincides with the degree of the polynomial 319

k 7→mπ2kε1
(0)=

(
k+n−2

n−2

)
(i.e., when l = 0), which is equal to n � 2. 320

An interesting problem, also suggested by the referee, is to understand the behavior of the function 321

l 7→mπ(l+h)ε1+lε2
(0), for some h fixed. This does not seem to be computable from Corollary III.10. 322

Remark III.17. In Sec. 7 of Ref. 16, there is a detailed account of some applications of weight 323

multiplicity formulas in spectral geometry (see Refs. 5, 13–5). These expressions for the weight 324

multiplicities are used to determine explicitly the spectra of certain natural differential operators on 325

a manifold (or a good orbifold) of the form ΓrG/K, where G is a semisimple compact Lie group, K 326

is a closed subgroup of G, and Γ is a finite subgroup of the maximal torus T of G. 327
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We next specify some cases where the formulas obtained in this article could be applied. When328

G = Sp(n) and K = Sp(n � 1) × Sp(1), the spherical representations associated with the Gelfand329

pair (G, K) (i.e., the set of irreducible representations of G containing non-zero vectors fixed by K)330

have highest weight of the form k(ε1 + ε2) for k ≥ 0. Consequently, Theorem III.2 may be applied to331

determine the spectrum of the Laplace–Beltrami operator acting on functions on spaces covered by the332

n-dimensional quaternionic projective space Sp(n)/Sp(n � 1) × Sp(1) with the Abelian fundamental333

group.334

When G = SO(m) and K = SO(m � 2) × SO(2), the corresponding spherical representations for335

(G, K) have highest weight of the form kε1 + lε2 for k ≥ l ≥ 0. Thus, according to m is odd or336

even, Theorem III.1 or III.3 could be applied to the same purpose as above, for spaces covered by the337

2-Grassmannian space G/K with the Abelian fundamental group.338

In a slightly different way, we now consider n ≥ 3, G = SO(2n), K = SO(2n � 1), and more339

general natural differential operators. An irreducible representation τ of K induces a natural G-340

homogeneous complex vector bundle Eτ on G/K. There is an associated natural differential operator341

∆τ acting on smooth sections of Eτ , which induces the differential operator ∆τ ,Γ acting on smooth342

sections of ΓrEτ , that is, Γ-invariant smooth sections of Eτ . We now fix τ = τbε1 , the irreducible343

representation of K with highest weight bε1. The corresponding τbε1 -spherical representations of344

(G, K , τbε1 ) (i.e., the set of π ∈ Ĝ such that HomK (τbε1 , π |K ), 0) is equal to {πkε1+lε2 : k ≥ b ≥ l ≥ 0}.345

Consequently, Theorem III.3 might be used to determine the spectrum of∆τbε1 ,Γ for Γ a finite subgroup346

of the maximal torus of G. An analogous process can be done in the case G = SO(2n � 1) and347

K = SO(2n � 2).348

IV. TYPE An349

Consider g= sl(n + 1,C) the Cartan subalgebra350

h= {diag
(
θ1, . . . , θn+1

)
: θi ∈C∀ i,

n+1∑
i=1

θi = 0}.

Set εi
(
diag(θ1, . . . , θn+1)

)
= θi for each 1 ≤ i ≤ n + 1. We will use the conventions of Lecture 15 in351

Ref. 9; that is, we correspondingly write352

h∗ =
n+1⊕
i=1

Cεi/〈

n+1∑
i=1

εi = 0〉,

and we write εi for its image in h∗. Consequently, the set of positive roots is given by353

Σ+(g, h)B {εi − εj : 1 ≤ i < j ≤ n + 1}, and the weight lattice is P(g)B
⊕n+1

i=1 Zεi/〈
∑n+1

i=1 εi = 0〉. Two354

weights µ=
∑n+1

i=1 biεi and ν =
∑n+1

i=1 ciεi in P(g) coincide if and only if bi � ci is constant, independent355

of i.356

A weight λ =
∑n+1

i=1 aiεi in P(g) is dominant if and only if a1 ≥ a2 ≥ · · · ≥ an+1. By the highest357

weight theorem, the irreducible representations of g are in correspondence with dominant weights.358

We denote by πλ the irreducible representation with highest weight λ, which will be always written359

as λ =
∑n+1

i=1 aiεi with an+1 = 0. Thus, the irreducible representations of G are in correspondence with360

elements in the set361

P++(g)B



n∑
i=1

aiεi : ai ∈Z∀ i, a1 ≥ a2 ≥ · · · ≥ an ≥ 0



.

The fundamental weights are given by ωp = ε1 + · · · + εp for each 1 ≤ p ≤ n. Thus, any integer362

combination between ω1 and ω2 has the form kε1 + lε2 for some integers k ≥ l ≥ 0.363

For λ =
∑n

i=1 aiεi ∈ P++(g), any weight µ of πλ (i.e., the multiplicity of µ in πλ is non-zero) can be364

written as µ=
∑n+1

i=1 biεi for some b1, . . . , bn+1 ∈N0 satisfying
∑n+1

i=1 bi =
∑n

i=1 ai. Indeed, every weight365

in πλ is a difference between λ and a sum of positive roots.366

Let λ and µ be as in
Q15

the previous paragraph. It is well known that [see, for instance, (A.19) in367

Ref. 9] the multiplicity of µ in πλ is given by the Kostka number Kλ,µ: the number of semistandard368
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tableaux on the Young diagram associated with λ (i.e., a diagram with ai boxes in the ith row, with 369

the rows of boxes lined up on the left) of type µ. More precisely, Kλ,µ is the number of ways one 370

can fill the boxes of the Young diagram associated with λ with b1 1’s, b2 2’s, up to bn+1 (n + 1)’s, 371

in such a way that the entries in each row are non-decreasing, and those in each column are strictly 372

increasing. 373

The next lemma will be needed in the proof of the main result of this section. 374

Lemma IV.1. Let g be a classical Lie algebra of type An. For integers k ≥ l ≥ 0, write 375

τk,l = πkε1 ⊗ πlε1 . Then, in the virtual ring of representations, we have that 376

πkε1+lε2 ' τk,l − τk+1,l−1.

Proof. The well-known fusion rule (see, for instance, Proposition 15.25 in Ref. 9) 377

τk,l = πkε1 ⊗ πlε1 '

l⊕
p=0

π(k+p)ε1+(l−p)ε2

implies 378

τk,l − τk+1,l−1 =

l∑
p=0

π(k+p)ε1+(l−p)ε2 −

l∑
p=1

π(k+p)ε1+(l−p)ε2 = πkε1+lε2 ,

and the lemma follows. ◽ 379

We now want to calculate theQ16 weight multiplicities of the representation with highest weight a 380

non-negative integer combination of the first two fundamental weights. The following multiplicity 381

formula is probably already known, but it is included here for completeness. 382

Theorem IV.2 (Type An). Let g= sl(n + 1,C) for some n ≥ 2 and let k ≥ l ≥ 0 integers. Let 383

µ=
∑n+1

i=1 aiεi ∈ P(g) with ai ∈N0 for all i and
∑n+1

i=1 ai = k + l. If ai ≤ k for all i, then 384

mπkε1+lε2
(µ)=

∑
q∈Qn+1(l)

l∏
j=1

(n + 1 −
j−1∑
t=0

Zt(µ) −
l∑

i=j+1
sq

i

sq
j

)

−
∑

q′∈Qn+1(l−1)

l−1∏
j=1

(n + 1 −
j−1∑
t=0

Zt(µ) −
l−1∑

i=j+1
sq′

i

sq′

j

)
,

and mπkε1+lε2
(µ)= 0 otherwise, where Z t(µ) = #{i: 1 ≤ i ≤ n + 1, ai = t}, 385

Qn+1(N)= {q= (q1, q2, . . . , qn+1) ∈Zn+1 : q1 ≥ q2 ≥ · · · ≥ qn+1 ≥ 0,
n+1∑
i=1

qi =N },

and sq
j B #{i : 1 ≤ i ≤ n + 1, qi = j} for q ∈Qn+1(N) and 1 ≤ j ≤ N. 386

Proof. Since τk,l = πkε1 ⊗ πlε1 , we have that 387

mτk,l (µ)=
∑
η

mπkε1
(µ − η) mπlε1

(η), (19)

where the sum is restricted to the weights of πlε1 . For h any positive integer, the Young diagram 388

associated with πhε1 has only one row, of length h. Thus, the set of weights of πhε1 is given by elements 389

of the form ν =
∑n+1

i=1 ciεi with c1, . . . , cn+1 ∈N0 and
∑n+1

i=1 ci = h, and all of them have multiplicity 1. 390

Consequently, mτk,l (µ) is equal to the number of weights η of πlε1 satisfying that µ � η is a weight of 391

πkε1 . 392

Let q ∈Qn+1(l). We want to count the number of weights η =
∑n+1

i=1 biεi contributing to (19) (i.e., 393

η is a weight of πlε1 and µ � η is a weight of πkε1 ) satisfying that sq
j entries of η are equal to j for 394
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each 1 ≤ j ≤ l. Clearly, µ � η is a weight of πkε1 if and only if ai � bi ≥ 0 for all 1 ≤ i ≤ n + 1. Since395

for each 1 ≤ j ≤ l there are n + 1 −
∑j−1

t=0 Zt(µ) ai’s greater than j � 1, then the required number is396 (
n + 1 −

∑l−1
t=0 Zt(µ)

sq
l

) (
n + 1 −

∑l−2
t=0 Zt(µ) − sq

l

sq
l−1

)
· · ·

(n + 1 − Z0(µ) −
∑l

j=2 sq
j

sq
1

)
. (20)

We have shown that mτk,l (µ) is equal to the sum over q ∈Qn+1(l) of (20). The theorem now397

follows by Lemma IV.1. ◽398

We now state the closed explicit formulas for the particular cases l = 0, 1, and 2. When l = 0, since399

Qn+1(0)= {(0, . . . , 0)}, Theorem IV.2 immediately implies that every weight as in the hypotheses (i.e.,400

µ=
∑n+1

i=1 biεi with bi ∈N0 for all i and
∑n+1

i=1 bi = k) has multiplicity one. This fact is very well known401

because the Young diagram associated with πkε1 has only one row, and consequently, the number of402

semistandard tableaux on this diagram of type µ is one.403

We now assume l = 1. Let µ be again as Q17in the hypotheses of Theorem IV.2. The number404

of partitions of 1 is obviously one, i.e., Qn+1(1)= {(1, 0, . . . , 0)}; thus, mπkε1+ε2
(µ)=

(
n+1−`0(µ)

1

)
− 1405

= n − `0(µ), where `0(µ) is the number of zeros coordinates of µ. It is not difficult to check that the406

number of semistandard tableaux of type µ is n � `0(µ).407

We conclude the article stating the multiplicity formula for the irreducible representation of408

sl(n + 1,C) with highest weight kε1 + 2ε2. Similar to the above, the proof follows immediately from409

Theorem IV.2, since it reduces to consider the only two partitions of 2. The reader may try to obtain410

this formula by counting semistandard tableaux of type µ and convince his/herself that the difficulty411

will increase for a higher l.412

Corollary IV.3. Let g= sl(n + 1,C) for some n ≥ 2 and let k ≥ 2 integer. Let µ=
∑n+1

i=1 aiεi ∈ P(g)413

with ai ∈N0 for all i and
∑n+1

i=1 ai = k + 2. If ai ≤ k for all i, then414

mπkε1+2ε2
(µ)=

(
n + 1 − Z0(µ)

2

)
− Z1(µ)

and mπkε1+2ε2
(µ)= 0 otherwise, where Z t(µ) = #{i: 1 ≤ i ≤ n + 1, ai = t}.415

We end this article with an observation pointed out by the referee, in the same spirit of416

Remark III.16.417

Remark IV.4. We consider the “weight zero” in πkε1+lε2 , which in our convention is given by418

0k+lB
∑n+1

i=1
k+l
n+1εi. Clearly, mπkε1+lε2

(0k+l)= 0 unless n + 1 divides k + l. Theorem IV.2 does not give419

an explicit expression for mπkε1+lε2
(0k+l) like in Corollaries III.10–III.12. However, for l ≥ 0 fixed, it420

implies that mπkε1+lε2
(0k+l) does not depend on k, for k sufficiently large satisfying that n + 1 divides421

k + l. Moreover, the function k 7→mπkε1+lε2
(0k+l) is constant for every k ∈ ln +(n + 1)N0. Indeed, for422

such k, we have that k+l
n+1 ≥ l, thus `t(0k+l) = 0 for every 0 ≤ t ≤ l � 1.423
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