AUTHOR QUERY FORM

Journal: J. Math. Phys.	Please provide your responses and any corrections by annotating this PDF and uploading it according	
PubilShing	to the instructions provided in the proof notifica-	
Article Number: 037808JMP	tion email.	

Dear Author,
Below are the queries associated with your article. Please answer all of these queries before sending the proof back to AIP.

Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before returning your proof.

1. Is the title of your article accurate and spelled correctly?
2. Please check affiliations including spelling, completeness, and correct linking to authors.
3. Did you remember to include acknowledgment of funding, if required, and is it accurate?

Location in article	Query/Remark: click on the Q link to navigate to the appropriate spot in the proof. There, insert your comments as a PDF annotation.
Q1	Please check that the author names are in the proper order and spelled correctly. Also, please ensure that each author's given and surnames have been correctly identified (given names are highlighted in red and surnames appear in blue).
Q2	Please reword the sentence beginning with "A bivariate representation..." so that your meaning will be clear to the reader.
Q3	We have reworded the sentence beginning "In that article, for..." for clarity. Please check that your meaning is preserved.
Q4	In the sentence beginning "In the best authors' knowledge, the...," please clarify whether "In the best authors' knowledge" could be changed to "To the best of the authors' knowledge".
Q5	Standard journal style does not allow the use of unlabeled footnotes in tables; therefore, we have incorporated the footnote into the caption of Table I. Please check.
Q6	In the sentence beginning "Furthermore, a formula for...," please confirm that "that subsection" refers to Subsection III D.
Q7	In the sentence beginning "Subsection III A states the weight multiplicity," please confirm that "the first one" and "the second one" refer to Subsection III A and Subsection III B, respectively.
Q8	In the sentence beginning "The following notation is...," please confirm that "next section" refers to Sec . III.
Q9	In the sentence beginning "The notation required...," please confirm that "previous section" refers to Sec. II.
Q10	We have reworded the sentence beginning "In order to calculate..." for clarity. Please check that your meaning is preserved.
Q11	In the sentence beginning "Notice that the set of...," please clarify whether "introduced in (ii)" could be changed to "introduced in step 2 ."
	Continued on next page.

Continued from previous page.	
Q12	In the sentence beginning "Consequently, step (v)...," please clarify whether "step (v)" could be changed to "step 5."
Q13	In the sentence beginning "Likewise, the group...," please clarify whether "introduced in (v)" could be changed to "introduced in step 5."
Q14	We have reworded the sentence beginning "Among the mentioned..." for clarity. Please check that your meaning is preserved.
Q15	We have reworded the sentence beginning "Let λ and μ be as in..." for clarity. Please check that your meaning is preserved.
Q16	We have reworded the sentence beginning "We now want to calculate the..." for clarity. Please check that your meaning is preserved.
Q17	We have reworded the sentence beginning "Let μ be again as..." for clarity. Please check that your meaning is preserved.
Q18	If e-print Ref. 2 has subsequently been published elsewhere, please provide updated reference information (journal title, volume number, and page number).
Q19	Please provide publisher's name in Ref. 8.
Q20	Please update Ref. 14 with volume number, page number, and year if published. If not yet published, please provide the article title and, if available, the journal title. If the article is an "early" or "advance" view published online by a journal before assignment to a volume and issue, please provide a DOI if available.
Q21	We were unable to locate a digital object identifier (doi) for Ref. 21. Please verify and correct author names and journal details (journal title, volume number, page number, and year) as needed and provide the doi. If a doi is not available, no other information is needed from you. For additional information on doi's, please select this link: http//www.doi.org/.

Thank you for your assistance.

Weight multiplicity formulas for bivariate representations of classical Lie algebras

Emilio A. Lauret ${ }^{\text {a) }}$ and Fiorela Rossi Bertone ${ }^{\text {b) }}$
CIEM-FaMAF (CONICET), Universidad Nacional de Córdoba, Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina

(Received 7 June 2018; accepted 5 August 2018; published online XX XX XXXX)

Abstract

A bivariate representation of a complex simple Lie algebra is an irreducible representation having highest weight a combination of the first two fundamental weights. For a complex classical Lie algebra, we establish an expression for the weight multiplicities of bivariate representations. Published by AIP Publishing. https://doi.org/10.1063/1.5043305

I. INTRODUCTION

This article concerns on giving weight multiplicity formulas, continuing the previous authors' article. ${ }^{16}$ In that article, for a classical complex Lie algebra \mathfrak{g}, a closed explicit formula for the weight multiplicities of any representation of any p-fundamental string was determined. Such a representation is an irreducible representation of \mathfrak{g} with highest weight $k \omega_{1}+\omega_{p}$ for some non-negative integer k. Here, ω_{j} denotes the j th fundamental weight associated with the root system of \mathfrak{g}.

The primary goal of the present article is to find an expression for the weight multiplicity of every bivariate representation of a classical complex Lie algebra \mathfrak{g}. A bivariate representation is an irreducible representation with highest weight $a \omega_{1}+b \omega_{2}$ for some non-negative integers a and b (cf. Ref. 17). See Sec. 1 in Ref. 16 for references of classical and recent previous results on this problem.

In Sec. II, we introduce the standard notation used to describe the root system associated with a classical complex Lie algebra \mathfrak{g}. In particular, for \mathfrak{g} of type $\mathrm{B}_{n}, \mathrm{C}_{n}$, or D_{n} and \mathfrak{h} a fixed Cartan subalgebra of $\mathfrak{g},\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ denotes the basis of \mathfrak{h}^{*} satisfying that the set of simple roots are $\left\{\varepsilon_{1}-\varepsilon_{2}, \ldots, \varepsilon_{n-1}-\varepsilon_{n}, \varepsilon_{n}\right\}$ for type $\mathrm{B}_{n},\left\{\varepsilon_{1}-\varepsilon_{2}, \ldots, \varepsilon_{n-1}-\varepsilon_{n}, 2 \varepsilon_{n}\right\}$ for type C_{n}, and $\left\{\varepsilon_{1}-\varepsilon_{2}, \ldots, \varepsilon_{n-1}-\varepsilon_{n}, \varepsilon_{n-1}+\varepsilon_{n}\right\}$ for type D_{n}. According to this notation, bivariate representations have highest weight of the form $k \varepsilon_{1}+l \varepsilon_{2}$ for integers $k \geq l \geq 0$.

The obtained weight multiplicity formulas for types $\mathrm{B}_{n}, \mathrm{C}_{n}$, and D_{n} are in Theorems III.1, III.2, and III.3, respectively. The expressions involve a sum over partitions of the integer numbers $\leq l$, so they may not be considered "closed explicit formulas" like in Ref. 16. An immediate and curious consequence of the formulas is the next result.

Theorem I.1. Let \mathfrak{g} be a classical complex Lie algebra of type $\mathrm{B}_{n}, \mathrm{C}_{n}$, or D_{n}. Let $k \geq l \geq 0$ integers and $\mu=\sum_{i=1}^{n} a_{i} \varepsilon_{i}$ with $a_{i} \in \mathbb{Z}$ for all i. The multiplicity of μ in the irreducible representation $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ of \mathfrak{g} with highest weight $k \varepsilon_{1}+l \varepsilon_{2}$, denoted by $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)$, depends only on

$$
\begin{equation*}
\|\mu\|_{1}:=\sum_{i=1}^{n}\left|a_{i}\right| \quad \text { and } \quad Z_{t}(\mu):=\#\left\{i: 1 \leq i \leq n,\left|a_{i}\right|=t\right\} \quad \text { for all } 0 \leq t \leq l-1 . \tag{1}
\end{equation*}
$$

In other words, if μ and μ^{\prime} satisfy $\|\mu\|_{1}=\left\|\mu^{\prime}\right\|_{1}$ and $Z_{t}(\mu)=Z_{t}\left(\mu^{\prime}\right)$ for all $0 \leq t \leq l-1$, then $m_{\pi_{k \varepsilon_{1}+\varepsilon_{2}}}(\mu)=m_{\pi_{k \varepsilon_{1}+\varepsilon_{2}}}\left(\mu^{\prime}\right)$.

This theorem is analogous to Corollary 1.1 in Ref. 16 (see also Lemma 3.3 in Ref. 15), which states that the multiplicity of a weight μ in representations in p-fundamental strings depends only

[^0]on $\|\mu\|_{1}$ and $Z_{0}(\mu)$. Such representations have highest weights of the form $k \omega_{1}+\omega_{p}$ for $k \geq 0$ and $1 \leq p \leq n-1$ for type $\mathrm{B}_{n}, 1 \leq p \leq n$ for type C_{n}, and $1 \leq p \leq n-2$ for type D_{n}.

In the best authors' knowledge, the weight multiplicity formulas in Theorems III.1-III. 3 are not in the literature. Nevertheless, Maddox ${ }^{17}$ obtained a multiplicity formula for bivariate representations when \mathfrak{g} is of type C_{n}. However, her expression differs significantly from ours. In particular, Theorem I. 1 does not follow immediately from her formula. See Remark III. 14 for more details.

We compare from a computational point of view, the multiplicity formulas obtained in Theorems III.1-III. 3 with Freudenthal's famous formula (see Subsection III C). We used the opensource mathematical software Sage ${ }^{19}$ to do the calculations. It was evidenced in the computational results shown in Table I that the bivariate algorithm based on Theorems III.1-III. 3 is faster than

TABLE I. Computational comparison between the bivariate algorithm and Freudenthal's formula. Each column shows, for the corresponding algorithm and type X , the required time for returning the set of weights with multiplicities of the representation $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ of \mathfrak{g} of type X_{n} according to the row. The column $\mathrm{D}_{n}(\star)$ refers to the version of the bivariate algorithm returning only the dominant weights.

n	k	l	Time bivariate				Time Freudenthal		
			B_{n}	C_{n}	D_{n}	$\mathrm{D}_{n}(\star)$	B_{n}	C_{n}	D_{n}
2	5	3	0.15	0.07			0.32	0.13	
3	5	3	0.26	0.14	0.15	0.13	3.88	1.87	1.27
4	5	3	0.46	0.35	0.28	0.19	32.58	14.90	12.05
5	5	3	0.99	0.67	0.62	0.23	187.43	94.08	79.82
6	5	3	2.82	1.89	1.78	0.24	876.17	527.69	451.43
7	5	3	6.94	5.22	4.74	0.27	3436.25	1898.23	1961.54
8	5	3	17.77	14.11	12.59	0.36			
9	5	3	43.23	35.47	32.11	0.51			
10	5	3	97.55	87.67	78.66	0.84			
2	10	3	0.29	0.13			1.92	0.48	
3	10	3	0.82	0.49	0.45	0.37	23.68	10.23	7.85
4	10	3	2.09	1.16	1.22	0.58	291.63	130.93	108.61
5	10	3	8.30	5.06	4.84	0.80	2630.09	1193.45	1028.42
6	10	3	38.42	24.86	23.90	1.16			
7	10	3	183.73	146.06	126.82	1.96			
2	50	3	3.47	1.79			78.13	28.54	
3	50	3	36.40	17.62	17.50	13.50	5146.69	2108.21	1578.78
4	50	3	472.14	325.76	267.25	58.00			
2	6	6	2.20	1.32			0.50	0.19	
3	6	6	9.28	5.35	5.23	5.21	11.90	4.74	3.53
4	6	6	19.29	11.19	11.44	11.09	157.23	67.93	54.79
5	6	6	30.81	18.05	18.04	15.78	1443.41	663.86	553.57
6	6	6	53.76	32.65	32.64	19.50			
2	10	6	3.58	2.04			1.66	0.62	
3	10	6	18.14	9.86	9.91	9.77	43.50	18.34	13.59
4	10	6	44.69	25.20	24.96	23.98	695.71	298.50	243.70
5	10	6	87.71	49.55	49.36	38.89	8114.00	3571.44	2966.84
6	10	6	235.76	158.26	133.51	52.88			
2	20	6	8.77	4.61			8.41	3.16	
3	20	6	63.71	33.25	33.16	32.61	312.83	129.92	98.02
4	20	6	216.46	115.58	117.99	109.08	7486.63	3199.29	2620.10
5	20	6	654.96	390.98	393.92	220.11			
2	15	9	40.04	22.33			4.93	1.81	
3	15	9	390.59	209.87	209.12	208.37	191.24	78.85	59.11
4	15	9	1594.63	865.10	853.83	851.50	4710.03	1908.34	1642.50
5	15	9	3794.15	2112.98	2051.99	1962.57	71389.97	32013.22	28179.33
2	50	9	231.18	116.93			96.16	35.20	
3	50	9	4800.55	2423.05	2553.71	2492.15	7851.47	3117.85	2346.84

the Freudenthal algorithm for most of the small values of k and l. Moreover, for any choice of k and l, the same conclusion would hold for n big enough. It is probably a more significant the fact that Theorems III.1-III. 3 return in a speedy way the multiplicity of a single weight. The situation is very different with Freudenthal's formula since it is defined recursively, and moreover, it has to calculate the multiplicities of many intermediate weights in case the original weight is far away from the highest weight. Many more related remarks are made in Subsection III C.

We have already mentioned that the expressions for the weight multiplicities in Theorems III.1-III. 3 and IV. 2 are not closed explicit formulas since they involve a sum over partitions. However, in some particular cases, one can write down the corresponding partitions obtaining a (long) closed expression. For instance, the statements for the multiplicity of the weight $\mu=0$ for types $\mathrm{B}_{n}, \mathrm{C}_{n}$, and D_{n} are included in Subsection III D. Furthermore, a formula for $\pi_{k \varepsilon_{1}+2 \varepsilon_{2}}$ in type D_{n} is also part of Subsection III D.

Although weight multiplicity formulas are interesting in themselves, the authors were motivated by their application in spectral geometry (see Sec. 7 in Ref. 16). In Remark III.17, we mention possible applications for the weight multiplicity formulas obtained in this article for the determination of the spectra of some natural differential operators on spaces covered by compact symmetric spaces with Abelian fundamental groups.

The weight multiplicity formula for \mathfrak{g} of type A_{n} is determined in Sec. IV. Furthermore, the corresponding expression for the case $l=2$ is stated in Corollary IV.3. This case, \mathfrak{g} of type A_{n}, is much simpler than the previous ones. The obtained expressions are probably already present in the extensive literature on this area.

The article is organized as follows. Section II introduces the necessary notation to read the statements of the primary results. Section III, which considers classical Lie algebras of type $\mathrm{B}_{n}, \mathrm{C}_{n}$, and D_{n}, is divided in five subsections. Subsection III A states the weight multiplicity formulas which are proven in Subsection III B. The computational comparison is made in Subsection III C. Subsection III D shows closed explicit formulas in particular cases. Section III ends with some remarks. The case when \mathfrak{g} is of type A_{n} is considered in Section IV.

II. NOTATION

Throughout this section, \mathfrak{g} denotes a classical complex Lie algebra of type $\mathrm{B}_{n}, \mathrm{C}_{n}$, and D_{n}, namely, $\mathfrak{s o}(2 n+1, \mathbb{C}), \mathfrak{s p}(n, \mathbb{C})$, and $\mathfrak{s o}(2 n, \mathbb{C})$, respectively. We assume $n \geq 2$ for types B_{n} and C_{n}, and $n \geq 3$ for D_{n}. We fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g}.

Let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ be the standard basis of \mathfrak{h}^{*}. Then, the sets of positive roots $\Sigma^{+}(\mathfrak{g}, \mathfrak{h})$ and the space of integral weights $P(\mathfrak{g})$ are, respectively, given by

$$
\begin{aligned}
\left\{\varepsilon_{i} \pm \varepsilon_{j}: i<j\right\} \cup\left\{\varepsilon_{i}\right\} \text { and }\left\{\sum_{i} a_{i} \varepsilon_{i}: a_{i} \in \mathbb{Z} \forall i, \text { or } a_{i}-\frac{1}{2} \in \mathbb{Z} \forall i\right\} & \text { for } \mathfrak{g} \text { of type } \mathrm{B}_{n} \\
\left\{\varepsilon_{i} \pm \varepsilon_{j}: i<j\right\} \cup\left\{2 \varepsilon_{i}\right\} \text { and }\left\{\sum_{i} a_{i} \varepsilon_{i}: a_{i} \in \mathbb{Z} \forall i\right\} & \text { for } \mathfrak{g} \text { of type } \mathrm{C}_{n} \\
\qquad\left\{\varepsilon_{i} \pm \varepsilon_{j}: i<j\right\} \text { and }\left\{\sum_{i} a_{i} \varepsilon_{i}: a_{i} \in \mathbb{Z} \forall i, \text { or } a_{i}-\frac{1}{2} \in \mathbb{Z} \forall i\right\} & \text { for } \mathfrak{g} \text { of type } \mathrm{D}_{n}
\end{aligned}
$$

Furthermore, $\sum_{i} a_{i} \varepsilon_{i} \in P(\mathfrak{g})$ is dominant if and only if $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$ for types B_{n} and C_{n} and $a_{1} \geq \cdots \geq a_{n-1} \geq\left|a_{n}\right|$ for type D_{n}.

By the highest weight theorem, irreducible representations of \mathfrak{g} are in correspondence with integral dominant weights. We denote by $P^{++}(\mathfrak{g})$ the set of integral dominant weights and by π_{λ} the irreducible representation of \mathfrak{g} with highest weight $\lambda \in P^{++}(\mathfrak{g})$.

The first two fundamental weights are $\omega_{1}=\varepsilon_{1}$ and $\omega_{2}=\varepsilon_{1}+\varepsilon_{2}$. Hence, any non-negative integer combination of them is of the form $k \varepsilon_{1}+l \varepsilon_{2}$ for some integers $k \geq l \geq 0$.

The following notation is essential to read the weight multiplicity formulas in Sec. III. We will
and t a non-negative integer, define

$$
\begin{equation*}
\|\mu\|_{1}=\sum_{i=1}^{n}\left|a_{i}\right|, \quad Z_{t}(\mu)=\#\left\{i: 1 \leq i \leq n,\left|a_{i}\right|=t\right\} . \tag{2}
\end{equation*}
$$

Given $N \geq 0$, let $\mathcal{Q}_{n}(N)$ be the set of all partitions of N with length $\leq n$, that is,

$$
\begin{equation*}
\mathcal{Q}_{n}(N)=\left\{\mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right) \in \mathbb{Z}^{n}: q_{1} \geq q_{2} \geq \ldots \geq q_{n} \geq 0, \sum_{i=1}^{n} q_{i}=N\right\} . \tag{3}
\end{equation*}
$$

Furthermore, for $\mathbf{q} \in \mathcal{Q}_{n}(N)$ and $1 \leq j \leq N$, we set

$$
\begin{align*}
s_{j}^{\mathbf{q}} & :=\#\left\{i: 1 \leq i \leq n, q_{i}=j\right\}, \tag{4}\\
\mathcal{B}^{\mathbf{q}} & :=\left\{\left(\beta_{1}^{1}, \beta_{1}^{2}, \beta_{2}^{2}, \beta_{1}^{3}, \beta_{2}^{3}, \beta_{3}^{3}, \ldots, \beta_{N}^{N}\right): \beta_{t}^{j} \geq 0, \sum_{t=1}^{j} \beta_{t}^{j} \leq s_{j}^{\mathbf{q}}\right\}, \tag{5}\\
\mathcal{A}_{\beta}^{\mathbf{q}} & :=\left\{\left(\alpha_{1}^{1}, \alpha_{1}^{2}, \alpha_{2}^{2}, \alpha_{1}^{3}, \alpha_{2}^{3}, \alpha_{3}^{3}, \ldots, \alpha_{N}^{N}\right): 0 \leq \alpha_{t}^{j} \leq \beta_{t}^{j}\right\} \quad \text { for any } \beta \in \mathcal{B}^{\mathbf{q}} . \tag{6}
\end{align*}
$$

Throughout the article, we use the convention $\binom{b}{a}=0$ if $a<0$ or $b<a$.

III. TYPES $\mathrm{B}_{\boldsymbol{n}}, \mathrm{C}_{\boldsymbol{n}}$, AND $\mathrm{D}_{\boldsymbol{n}}$

In this section, we consider \mathfrak{g} a classical complex Lie algebra of types $\mathrm{B}_{n}, \mathrm{C}_{n}$, and D_{n}. We assume that $n \geq 2$ for types B_{n} and C_{n} and $n \geq 3$ for type D_{n}.

A. Main results

We now state the three theorems which establish the weight multiplicity formulas for types $\mathrm{B}_{n}, \mathrm{C}_{n}$, and D_{n}, respectively. The notation required was introduced in Sec. II. The formulas consider weights in \mathbb{Z}^{n}, since the multiplicity in $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ of any weight in $P(\mathfrak{g}) \backslash \mathbb{Z}^{n}$ vanishes (see Remark III.4).

Theorem III. 1 (Type B_{n}). Let $\mathfrak{g}=\mathfrak{s o}(2 n+1, \mathbb{C})$ for some $n \geq 2$. Let $k \geq l \geq 0$ integers and ${ }_{104}$ $\mu \in \mathbb{Z}^{n}$. If $r(\mu):=\left(k+l-\|\mu\|_{1}\right) / 2$ is negative, then $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)=0$, and otherwise

$$
\begin{aligned}
m_{\pi_{k \varepsilon_{1}+1 \varepsilon_{2}}}(\mu)= & B_{n}\left(l, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& -B_{n}\left(l-1, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& -B_{n}\left(l-1, r(\mu)-1, Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& +B_{n}\left(l-2, r(\mu)-1, Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
B_{n}\left(l, r, Z_{0}, \ldots, Z_{l-1}\right)= & \sum_{0 \leq N \leq l} \sum_{\mathbf{q} \in \mathcal{Q}_{n}(N)} \sum_{\beta \in \mathcal{B}^{\mathbf{q}}} \sum_{\alpha \in \mathcal{A}_{\beta}^{q}}\binom{\lfloor(l-N) / 2\rfloor+n-1}{n-1} \\
& \binom{\lfloor r-(l+N) / 2\rfloor+\sum_{j=1}^{N} \sum_{i=1}^{j}(j+1-i) \alpha_{i}^{j}+n-1}{n-1} \\
& \prod_{j=1}^{N}\left(\begin{array}{c}
n 2_{j}^{s_{j}^{q}-\sum_{i=1}^{j} \beta_{i}^{j}} \beta_{1}^{j} \\
\beta_{1}^{j} \\
\alpha_{1}^{j}
\end{array}\right)\binom{n-\sum_{t=0}^{j-1} Z_{t}-\sum_{r=j+1}^{N} \sum_{s=1}^{r-j+1} \beta_{s}^{r}}{\beta_{1}^{j}} \\
& \binom{Z_{0}-\sum_{h=j+1}^{N}\left(s_{h}^{\mathbf{q}}-\sum_{s=1}^{h} \beta_{s}^{h}\right)}{s_{j}^{\mathbf{q}}-\sum_{t=1}^{j} \beta_{t}^{j}} \prod_{i=2}^{j}\binom{Z_{j-i+1}-\sum_{t=1}^{N-j} \beta_{i+1}^{j+t}}{\beta_{i}^{j}}\binom{\beta_{i}^{j}}{\alpha_{i}^{j}} .
\end{aligned}
$$

Theorem III. 2 (Type C_{n}). Let $\mathfrak{g}=\mathfrak{s p}(n, \mathbb{C})$ for some $n \geq 2$. Let $k \geq l \geq 0$ integers and $\mu \in \mathbb{Z}^{n}$. If $r(\mu):=\left(k+l-\|\mu\|_{1}\right) / 2$ is not a non-negative integer, then $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)=0$, and otherwise

$$
\begin{aligned}
m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)= & C_{n}\left(l, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& -C_{n}\left(l-1, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& -C_{n}\left(l-1, r(\mu)-1, Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& +C_{n}\left(l-2, r(\mu)-1, Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
C_{n}\left(l, r, Z_{0}, \ldots, Z_{l-1}\right)= & \sum_{\substack{0 \leq N \leq l, N \equiv l(l) \\
\bmod 2)}} \sum_{\mathbf{q} \in \mathcal{Q}_{n}(N)} \sum_{\beta \in \mathcal{B}^{\mathbf{q}}} \sum_{\alpha \in \mathcal{A}_{\beta}^{\mathbf{q}}}\binom{(l-N) / 2+n-1}{n-1} \\
& \binom{r-(l+N) / 2+\sum_{j=1}^{N} \sum_{i=1}^{j}(j+1-i) \alpha_{i}^{j}+n-1}{n-1} \\
& \prod_{j=1}^{N}\left(\begin{array}{c}
\left(2_{j}^{s_{j}^{\mathbf{q}}-\sum_{i=1}^{j} \beta_{i}^{j}}\binom{\beta_{1}^{j}}{\alpha_{1}^{j}}\binom{n-\sum_{t=0}^{j-1} Z_{t}-\sum_{r=j+1}^{N} \sum_{s=1}^{r-j+1} \beta_{s}^{r}}{\beta_{1}^{j}}\right. \\
\end{array}\binom{Z_{0}-\sum_{h=j+1}^{N}\left(s_{h}^{\mathbf{q}}-\sum_{s=1}^{h} \beta_{s}^{h}\right)}{s_{j}^{\mathbf{q}}-\sum_{t=1}^{j} \beta_{t}^{j}} \prod_{i=2}^{j}\binom{Z_{j-i+1}-\sum_{t=1}^{N-j} \beta_{i+1}^{j+t}}{\beta_{i}^{j}}\binom{\beta_{i}^{j}}{\alpha_{i}^{j}} .\right.
\end{aligned}
$$

Theorem III. 3 (Type D_{n}). Let $\mathfrak{g}=\mathfrak{s o}(2 n, \mathbb{C})$ for some $n \geq 3$. Let $k \geq l \geq 0$ integers and $\mu \in \mathbb{Z}^{n}$. If $r(\mu):=\left(k+l-\|\mu\|_{1}\right) / 2$ is not a non-negative integer, then $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)=0$, and otherwise

$$
\begin{aligned}
m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)= & D_{n}\left(l, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& -D_{n}\left(l-1, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& -D_{n}\left(l-1, r(\mu)-1, Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) \\
& +D_{n}\left(l-2, r(\mu)-1, Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
D_{n}\left(l, r, Z_{0}, \ldots, Z_{l-1}\right)= & \sum_{\substack{0 \leq N \leq l, N \equiv l(\bmod 2)}} \sum_{\mathbf{q} \in \mathcal{Q}_{n}(N)} \sum_{\beta \in \mathcal{B}^{\mathbf{q}}} \sum_{\alpha \in \mathcal{A}_{\beta}^{\mathbf{q}}}\binom{(l-N) / 2+n-2}{n-2} \\
& \binom{r-(l+N) / 2+\sum_{j=1}^{N} \sum_{i=1}^{j}(j+1-i) \alpha_{i}^{j}+n-2}{n-2} \\
& \prod_{j=1}^{N}\left(2^{s_{j}^{\mathbf{q}}-\sum_{i=1}^{j} \beta_{i}^{j}\binom{\beta_{1}^{j}}{\alpha_{1}^{j}}\binom{n-\sum_{t=0}^{j-1} Z_{t}-\sum_{r=j+1}^{N} \sum_{s=1}^{r-j+1} \beta_{s}^{r}}{\beta_{1}^{j}}}\right. \\
& \left.\binom{Z_{0}-\sum_{h=j+1}^{N}\left(s_{h}^{\mathbf{q}}-\sum_{s=1}^{h} \beta_{s}^{h}\right)}{s_{j}^{\mathbf{q}}-\sum_{t=1}^{j} \beta_{t}^{j}} \prod_{i=2}^{j}\binom{Z_{j-i+1}-\sum_{t=1}^{N-j} \beta_{i+1}^{j+t}}{\beta_{i}^{j}}\binom{\beta_{i}^{j}}{\alpha_{i}^{j}}\right) .
\end{aligned}
$$

Remark III.4. For all types considered, it turns out that $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)=0$ for all $\mu \in P(\mathfrak{g}) \backslash \mathbb{Z}^{n}$. Indeed, the subset \mathbb{Z}^{n} coincides with the set of G-integral weights, where G is the only compact linear group G whose Lie algebra is a compact real form in \mathfrak{g}. We have that G is isomorphic to $\mathrm{SO}(2 n+1), \mathrm{Sp}(n)$, and $\mathrm{SO}(2 n)$ for types $\mathrm{B}_{n}, \mathrm{C}_{n}$, and D_{n}, respectively. Since $k \varepsilon_{1}+l \varepsilon_{2} \in \mathbb{Z}^{n}$, the representation $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ descends to a representation of G, and consequently, their weights are in \mathbb{Z}^{n} (see Lemma 5.106 in Ref. 11).

B. Proofs

This subsection contains a unified proof of Theorems III.1-III.3. We first need two lemmas. The first one gives well-known closed explicit formulas for the weight multiplicities of representations having highest weights of the form $k \varepsilon_{1}$ for k a non-negative integer. A proof can be found in Lemmas 3.2, 4.3, and 5.3 in Ref. 16. The second lemma is the first step to prove the theorems.

Lemma III.5. Let \mathfrak{g} be a complex Lie algebra of type $\mathrm{B}_{n}, \mathrm{C}_{n}$, or D_{n} for some $n \geq 2$. Let $k \geq 0$ integer and $\mu \in \mathbb{Z}^{n}$. Then

$$
\begin{align*}
& m_{\pi_{k \varepsilon_{1}}}(\mu)=\binom{\lfloor r(\mu)\rfloor+n-1}{n-1} \quad \text { where } r(\mu)=\frac{k-\|\mu\|_{1}}{2}, \quad \text { for } \mathfrak{g} \text { of type } \mathrm{B}_{n}, \tag{7}\\
& m_{\pi_{k \varepsilon_{1}}}(\mu)=\left\{\begin{array}{ll}
\binom{r(\mu)+n-1}{n-1} & \text { if } r(\mu):=\frac{k-\|\mu\|_{1}}{2} \in \mathbb{N}_{0}, \\
0 & \text { otherwise, }
\end{array} \text { for } \mathfrak{g} \text { of type } \mathrm{C}_{n},\right. \tag{8}\\
& m_{\pi_{k \varepsilon_{1}}}(\mu)=\left\{\begin{array}{ll}
\binom{r(\mu)+n-2}{n-2} & \text { if } r(\mu):=\frac{k-\|\mu\|_{1}}{2} \in \mathbb{N}_{0}, \\
0 & \text { otherwise, }
\end{array} \text { for } \mathfrak{g} \text { of type } \mathrm{D}_{n} .\right. \tag{9}
\end{align*}
$$

Lemma III.6. Let \mathfrak{g} be a classical Lie algebra of type $\mathrm{B}_{n}, \mathrm{C}_{n}$, or D_{n}. For integers $k \geq l \geq 0$, write $\tau_{k, l}=\pi_{k \varepsilon_{1}} \otimes \pi_{l \varepsilon_{1}}$. Then, in the virtual ring of representations of \mathfrak{g}, we have that

$$
\pi_{k \varepsilon_{1}+l \varepsilon_{2}} \simeq \tau_{k, l}-\tau_{k+1, l-1}-\tau_{k-1, l-1}+\tau_{k, l-2}
$$

Proof. We have the fusion rule (see, for instance, page 510, Example 2 in Ref. 12)

$$
\tau_{k, l}=\pi_{k \varepsilon_{1}} \otimes \pi_{l \varepsilon_{1}} \simeq \bigoplus_{j=0}^{l} \bigoplus_{i=0}^{j} \pi_{(k+l-j-i) \varepsilon_{1}+(j-i) \varepsilon_{2}}
$$

As an immediate consequence, we obtain

$$
\begin{aligned}
\tau_{k, l}-\tau_{k+1, l-1} & =\sum_{j=0}^{l} \sum_{i=0}^{j} \pi_{(k+l-j-i) \varepsilon_{1}+(j-i) \varepsilon_{2}}-\sum_{j=0}^{l-1} \sum_{i=0}^{j} \pi_{(k+l-j-i) \varepsilon_{1}+(j-i) \varepsilon_{2}}=\sum_{i=0}^{l} \pi_{(k-i) \varepsilon_{1}+(l-i) \varepsilon_{2}} \\
\tau_{k-1, l-1}-\tau_{k, l-2} & =\sum_{j=0}^{l-1} \sum_{i=0}^{j} \pi_{(k+l-j-i-2) \varepsilon_{1}+(j-i) \varepsilon_{2}}-\sum_{j=0}^{l-2} \sum_{i=0}^{j} \pi_{(k+l-j-i-2) \varepsilon_{1}+(j-i) \varepsilon_{2}} \\
& =\sum_{i=0}^{l-1} \pi_{(k+1-i) \varepsilon_{1}+(l-1-i) \varepsilon_{2}}=\sum_{i=1}^{l} \pi_{(k-i) \varepsilon_{1}+(l-i) \varepsilon_{2}}
\end{aligned}
$$

Subtracting the previous identities, we obtain the desired formula.
Proofs of Theorems III.1-III.3. Without loss of generality, we can assume that $\mu \in \mathbb{Z}^{n}$ is dominant since the Weyl group preserves weight multiplicities. Recall that $\tau_{k, l}=\pi_{k \varepsilon_{1}} \otimes \pi_{l \varepsilon_{1}}$ for $k \geq l \geq 0$ integers. Since

$$
\begin{equation*}
m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)=m_{\tau_{k, l}}(\mu)-m_{\tau_{k+1, l-1}}(\mu)-m_{\tau_{k-1, l-1}}(\mu)+m_{\tau_{k, l-2}}(\mu) \tag{10}
\end{equation*}
$$

by Lemma III.6, we are left with the task of showing that

$$
m_{\tau_{k, l}}(\mu)= \begin{cases}B_{n}\left(l, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) & \text { for } \mathfrak{g} \text { of type } \mathrm{B}_{n}, \tag{11}\\ C_{n}\left(l, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) & \text { for } \mathfrak{g} \text { of type } \mathrm{C}_{n}, \\ D_{n}\left(l, r(\mu), Z_{0}(\mu), \ldots, Z_{l-1}(\mu)\right) & \text { for } \mathfrak{g} \text { of type } \mathrm{D}_{n}\end{cases}
$$

It is well known that (see Exercise V. 14 in Ref. 11)

$$
\begin{equation*}
m_{\tau_{k, l}}(\mu)=\sum_{\eta} m_{\pi_{k \varepsilon_{1}}}(\mu-\eta) m_{\pi_{l \varepsilon_{1}}}(\eta) \tag{12}
\end{equation*}
$$

where the sum is restricted to $\mathcal{P}\left(\pi_{l \varepsilon_{1}}\right)$, the set of weights of $\pi_{l \varepsilon_{1}}$. By Lemma III.5, the weights of $\pi_{l \varepsilon_{1}}$ are those η such that $l-\|\eta\|_{1} \in \mathbb{N}_{0}$ for type B_{n} and $l-\|\eta\|_{1} \in 2 \mathbb{N}_{0}$ for types C_{n} and D_{n}. In order to calculate $\|\mu-\eta\|_{1}$ and to determine $m_{k \varepsilon_{1}}(\mu-\eta)$, we make a convenient partition of $\mathcal{P}\left(\pi_{l \varepsilon_{1}}\right)$.

We write $Z_{t}=Z_{t}(\mu)$ for all $0 \leq t \leq l-1$. For $0 \leq N \leq l$ integer, $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right) \in \mathcal{Q}_{n}(N)$, $\beta=\left(\beta_{1}^{1}, \beta_{1}^{2}, \ldots, \beta_{N}^{N}\right) \in \mathcal{B}^{\mathbf{q}}$, and $\alpha=\left(\alpha_{1}^{1}, \alpha_{1}^{2}, \ldots, \alpha_{N}^{N}\right) \in \mathcal{A}_{\beta}^{\mathbf{q}}$ (see Sec. II for notation), we set

$$
\mathcal{P}_{\beta, \alpha}^{\mathbf{q}}=\left\{\begin{array}{c}
i_{k}^{j} \neq i_{s^{\prime}}^{j^{\prime}} \text { if }(j, k) \neq\left(j^{\prime}, k^{\prime}\right) ; b_{j, k}= \pm j \text { for all } k ; \tag{13}\\
\dot{i}_{1}^{j}<\cdots<i_{\beta_{1}^{j}}^{j} \leq n-\sum_{t=0}^{j-1} Z_{t}<\dot{i}_{\beta_{1}^{j}+1}^{j}<\cdots<i_{\beta_{1}^{j}+\beta_{2}^{j}}^{j} \\
\sum_{j=1}^{N} \sum_{k=0}^{s_{j}^{\mathbf{q}} b_{j, k} \varepsilon_{i_{k}^{j}}}: \leq n-\sum_{t=0}^{j-2} Z_{t}<\cdots \leq n-Z_{0}<\dot{i}_{\sum_{i=1}^{j} \beta_{i}^{j}+1}^{j}<\cdots<\dot{i}_{s_{j}^{\mathbf{q}}}^{j}, \\
\text { for all } 1 \leq j \leq N, \\
\#\left\{k: \sum_{t=1}^{h-1} \beta_{t}^{j}+1 \leq k \leq \sum_{t=1}^{h} \beta_{t}^{j}, b_{j, k}=j\right\}=\alpha_{h}^{j}
\end{array}\right\} .
$$

We now list some properties shared by all the elements in $\mathcal{P}_{\beta, \alpha}^{\mathbf{q}}$. Let $\eta=\sum_{i=1}^{n} c_{i} \varepsilon_{i} \in \mathcal{P}_{\beta, \alpha}^{\mathbf{q}}$. The multiset (i.e., a set where an element can be repeated) given by the elements $\left|c_{1}\right|, \ldots,\left|c_{n}\right|$ coincides with the multiset of elements q_{1}, \ldots, q_{n}; thus, $\|\eta\|_{1}=N$. For a fixed $1 \leq j \leq N$, the number of entries equal to $\pm j$ is $s_{j}^{\mathbf{q}}$ located as follows: we divide the integral interval $[1, n]$ in $(j+1)$-blocks as the identity $n=\left(n-\sum_{t=0}^{j-1} Z_{t}\right)+Z_{j-1}+Z_{j-2}+\cdots+Z_{1}+Z_{0}$ suggests; that is, the first block has the first $\left(n-\sum_{r=0}^{j-1} Z_{r}\right)$ integers, the second block has the next Z_{j-1} elements, the third one has the next Z_{j-2} elements, and so on. For each $1 \leq t \leq j$, there are β_{t}^{j} entries in the t th block equal to $\pm j-\alpha_{t}^{j}$ of them are positive. In the last block, there are $s_{j}^{\mathbf{q}}-\sum_{t=1}^{j-1} \beta_{t}^{j}$ entries equal to $\pm j$.

As a consequence of the previous paragraph, we have partitioned the set of weights of $\pi_{l \varepsilon_{1}}$ as

$$
\begin{equation*}
\mathcal{P}\left(\pi_{l \varepsilon_{1}}\right)=\bigcup_{N} \bigcup_{\mathbf{q} \in \mathcal{Q}_{n}(N)} \bigcup_{\beta \in \mathcal{B}^{\mathbf{q}}} \bigcup_{\alpha \in \mathcal{A}_{\beta}^{\mathbf{q}}} \mathcal{P}_{\beta, \alpha}^{\mathbf{q}}, \tag{14}
\end{equation*}
$$

where the first union is over $N \in \mathbb{N}_{0}$ satisfying $l-N \in \mathbb{N}_{0}$ for type B_{n} and $l-N \in 2 \mathbb{N}_{0}$ for types C_{n} and D_{n}. All the unions are disjoint.

Fix an integer $0 \leq N \leq l, \mathbf{q} \in \mathcal{Q}_{n}(N), \beta \in \mathcal{B}^{\mathbf{q}}, \alpha \in \mathcal{A}_{\beta}^{\mathbf{q}}$, and $\eta \in \mathcal{P}_{\beta, \alpha}^{\mathbf{q}}$. One may check that

$$
\begin{aligned}
\|\mu-\eta\|_{1} & =k+l-2 r+\sum_{j=1}^{N} \sum_{i=1}^{j}\left(j\left(\beta_{i}^{j}-\alpha_{i}^{j}\right)+(2 i-j-2) \alpha_{i}^{j}\right)+\sum_{j=1}^{N} j\left(s_{j}^{\mathbf{q}}-\sum_{i=1}^{j} \beta_{i}^{j}\right) \\
& =k+l-2 r+\sum_{j=1}^{N} \sum_{i=1}^{j} 2(i-j-1) \alpha_{i}^{j}+j s_{j}^{\mathbf{q}} \\
& =k+l+N-2\left(r+\sum_{j=1}^{N} \sum_{i=1}^{j}(j+1-i) \alpha_{i}^{j}\right) \\
& =k-2\left(r+\sum_{j=1}^{N} \sum_{i=1}^{j}(j+1-i) \alpha_{i}^{j}-(l+N) / 2\right) .
\end{aligned}
$$

Since $m_{\pi_{l \varepsilon_{1}}}(\eta)$ and $m_{\pi_{k \varepsilon_{1}}}(\mu-\eta)$ are given in Lemma III. 5 in terms of $l-\|\eta\|_{1}$ and $k-\|\mu-\eta\|_{1}$, respectively, it follows that $m_{\pi_{l \varepsilon_{1}}}(\eta)$ and $m_{\pi_{k \varepsilon_{1}}}(\mu-\eta)$ are constant, independent of the choice of $\eta \in \mathcal{P}_{\beta, \alpha}^{\mathbf{q}}$.

From the above fact, the partition (14), and the formula (12), we conclude that

$$
\begin{equation*}
m_{\tau_{k, l}}(\mu)=\sum_{N} \sum_{\mathbf{q} \in \mathcal{Q}_{n}(N)} \sum_{\beta \in \mathcal{B}^{\mathbf{q}}} \sum_{\alpha \in \mathcal{A}_{\beta}^{\mathbf{q}}} m_{\pi_{k \varepsilon_{1}}}\left(\mu-\eta_{\beta, \alpha}^{\mathbf{q}}\right) m_{\pi_{l \varepsilon_{1}}}\left(\eta_{\beta, \alpha}^{\mathbf{q}}\right) \# \mathcal{P}_{\beta, \alpha}^{\mathbf{q}} \tag{15}
\end{equation*}
$$

where $\eta_{\beta, \alpha}^{\mathbf{q}}$ is any element in $\mathcal{P}_{\beta, \alpha}^{\mathbf{q}}$, and the first sum is over $N \in \mathbb{N}_{0}$ satisfying $l-N \in \mathbb{N}_{0}$ for type B_{n} and $l-N \in 2 \mathbb{N}_{0}$ for types C_{n} and D_{n}.

By tedious but straightforward combinatorial arguments, we have

$$
\begin{aligned}
& \# \mathcal{P}_{\beta, \alpha}^{\mathbf{q}}= 2^{\sum_{j=1}^{N}\left(s_{j}^{\mathbf{q}}-\sum_{i=1}^{j} \beta_{i}^{j}\right)}\binom{n-\sum_{j=0}^{N-1} Z_{j}}{\beta_{1}^{N}}\binom{Z_{N-1}}{\beta_{2}^{N}} \ldots\binom{Z_{1}}{\beta_{N}^{N}}\binom{Z_{0}}{s_{N}^{\mathbf{q}}-\sum_{j=1}^{N} \beta_{j}^{N}} \\
&\binom{n-\sum_{j=0}^{N-2} Z_{j}-\beta_{1}^{N}-\beta_{2}^{N}}{\beta_{1}^{N-1}}\binom{Z_{N-2}-\beta_{3}^{N}}{\beta_{2}^{N-1}} \ldots\binom{Z_{1}-\beta_{N}^{N}}{\beta_{N-1}^{N-1}}\binom{Z_{0}-\left(s_{N}^{\mathbf{q}}-\sum_{j=1}^{N} \beta_{j}^{N}\right)}{s_{N-1}^{\mathbf{q}}-\sum_{j=1}^{N-1} \beta_{j}^{N-1}} \\
& \cdots\binom{n-Z_{0}-\sum_{j=2}^{N} \sum_{i=1}^{j} \beta_{i}^{j}}{\beta_{1}^{1}}\binom{Z_{0}-\sum_{j=2}^{N}\left(s_{j}^{\mathbf{q}}-\sum_{i=1}^{j} \beta_{i}^{j}\right)}{s_{1}^{\mathbf{q}}-\beta_{1}^{1}}\binom{\beta_{1}^{1}}{\alpha_{1}^{1}}\binom{\beta_{1}^{2}}{\alpha_{1}^{2}} \cdots\binom{\beta_{N}^{N}}{\alpha_{N}^{N}} \\
&= \prod_{j=1}^{N}\left(\begin{array}{c}
2_{j}^{s_{j}^{\mathbf{q}}-\sum_{i=1}^{j} \beta_{i}^{j}}\binom{n-\sum_{t=0}^{j-1} Z_{t}-\sum_{r=j+1}^{N} \sum_{s=1}^{r-j+1} \beta_{s}^{r}}{\beta_{1}^{j}} \\
\\
\end{array}\right. \\
&\binom{Z_{0}-\sum_{r=j+1}^{N}\left(s_{r}^{\mathbf{q}}-\sum_{s=1}^{r} \beta_{s}^{r}\right)}{s_{j}^{\mathbf{q}}-\sum_{t=1}^{j} \beta_{t}^{j}}\binom{\beta_{1}^{j}}{\alpha_{1}^{j}} \prod_{i=2}^{j}\binom{Z_{j-i+1}-\sum_{t=1}^{N-j} \beta_{i+1}^{j+t}}{\beta_{i}^{j}}\binom{\beta_{i}^{j}}{\alpha_{i}^{j}} .
\end{aligned}
$$

Replacing in (15) the values of $m_{\pi_{k \varepsilon_{1}}}\left(\mu-\eta_{\beta, \alpha}^{\mathbf{q}}\right)$ and $m_{\pi_{l \varepsilon_{1}}}\left(\eta_{\beta, \alpha}^{\mathbf{q}}\right)$ given by Lemma III. 5 and \# $\mathcal{P}_{\beta, \alpha}^{\mathbf{q}} \quad{ }^{160}$ by the above expression, we obtain the desired weight multiplicity formula for $\tau_{k, l}$. According to (10), the Proofs of Theorems III.1-III. 3 are complete.

C. Computational comparison

We now include a non-serious computational comparison between the weight multiplicity formulas in Theorems III.1-III. 3 and Freudenthal's formula (see, for instance, Sec. 22.3 in Ref. 10). We use the open-source mathematical software Sage ${ }^{19}$ and its algebraic combinatorics features developed by the Sage-Combinat community, ${ }^{20}$ which has implemented Freudenthal's formulas. The source code containing the bivariate algorithm can be found in the public project ${ }^{18}$ available in CoCalc. (To see the corresponding hyperlink go to the electronic version of this article.)

The word "non-serious" in the previous paragraph has been added for several reasons that we now explain. The formulas proved above have been implemented in Sage by the first named author, who lacks computer programming skills. Thus, their implementations are done poorly and inefficiently. On the contrary, the Sage-Combinat community programmed Freudenthal's formula in Sage in a very efficient way. Furthermore, the calculations have been made using an old version of Sage ${ }^{19}$ and a slow computer.

The implementation of Freudenthal's formula in Sage, called Freudenthal algorithm in the sequel, returns all the weights with their corresponding multiplicities. We suspect that this tactic is due to a matter of efficiency since Freudenthal's formula is defined recursively. On the other hand, Theorems III.1-III. 3 compute the multiplicity of a single weight. Thus, in order to make a fair comparison between them, the bivariate algorithm will also determine the set of weights of $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$. To this end, we first find a subset of \mathbb{Z}^{n} containing the set of weights of $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$, namely, $\left\{\mu \in \mathbb{Z}^{n}:\|\mu\|_{1} \leq k+l\right\}$. Here is a summary of the algorithm.

Algorithm III. 7 (Bivariate algorithm).
Input: \mathfrak{g} a classical complex Lie algebra of type B_{n} or C_{n} with $n \geq 2$, or D_{n} with $n \geq 3$, and $k \geq l$ non-negative integers.

Output: the sequence of pairs $\left[\mu, m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)\right]$, where μ runs over every weight of the representation $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ of \mathfrak{g} and $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)$ is its multiplicity.

1. Initialize S as an empty list.
2. Determine the set P of vectors $\mu=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ such that $\|\mu\|_{1} \leq k+l$ and 189 $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$.
3. Run over all elements μ in P.
4. Compute $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)$ by Theorems III.1-III.3.
5. In case $m_{\pi_{k \varepsilon_{1}+1 \varepsilon_{2}}}(\mu)>0$, determine the orbit of μ by the group $W_{n} \simeq \operatorname{Sym}(n) \times\{ \pm 1\}^{n}$, which acts by permutations and multiplication by ± 1 on its entries.
6. For each v in the above orbit, add in S the entry $\left[v, m_{\pi_{k \varepsilon_{1}+\varepsilon_{2}}}(\mu)\right]$.
7. Return S.

Remark III.8. Notice that the set of dominant weights for $\pi_{k \varepsilon_{1}+\varepsilon_{2}}$ is included in P introduced in (ii) when \mathfrak{g} is of types B_{n} and C_{n}. Although this fact is not true for \mathfrak{g} of type D_{n}, each remaining element has the form $\bar{\mu}:=\left(a_{1}, \ldots, a_{n-1},-a_{n}\right)$ for some $\mu=\left(a_{1}, \ldots, a_{n}\right)$ in P with $a_{n}>0$, and it satisfies $m_{\pi_{k s_{1}+\varepsilon_{2}}}(\bar{\mu})=m_{\pi_{k s_{1}+l \varepsilon_{2}}}(\mu)$ since $n \geq 3$. Consequently, step (v) obtains all the weights of $\pi_{k \varepsilon_{1}+\varepsilon_{2}}$ when \mathfrak{g} is of type B_{n}^{2} and C_{n} for $n \geq 2$ and D_{n} for $n \geq 3$. Likewise, the group W_{n} introduced in (v) coincides with the Weyl group when \mathfrak{g} is of type B_{n} or C_{n}. For \mathfrak{g} of type D_{n} and $n \geq 3$, the Weyl group is isomorphic to $\operatorname{Sym}(n) \times\{ \pm 1\}^{n-1}$; thus, it is strictly included in W_{n}. This fact is consistent with the previous comment on the set of dominant weights that is not contained in P.

Table I displays the times (in seconds) required by both the bivariate and Freudenthal algorithms for different choices of n, k, and l. Let us introduce the notation $B\left(\mathrm{X}_{n}, k, l\right)$ for the time required by our implementation in Sage of the bivariate algorithm for \mathfrak{g} of type $\mathrm{X}_{n}\left(=\mathrm{B}_{n}, \mathrm{C}_{n}\right.$, or $\left.\mathrm{D}_{n}\right)$ and the irreducible representation of \mathfrak{g} having highest weight $k \varepsilon_{1}+l \varepsilon_{2}$. Similarly, write $F\left(\mathrm{X}_{n}, k, l\right)$ for the corresponding required time for the implementation in Sage of Freudenthal algorithm. This abuse of notation (the numbers are periods of time not uniquely determined) will be advantageous to express the numerical conclusions.

We now indicate some conclusions evidenced by the numerical experiments. It is clear that $B\left(\mathrm{X}_{n}, k, l\right)$ is much smaller than $F\left(\mathrm{X}_{n}, k, l\right)$ for coherent small values of n, k, and l. Furthermore, the function $n \mapsto B\left(\mathrm{X}_{n}, k, l\right) / F\left(\mathrm{X}_{n}, k, l\right)$ seems to be increasing for any fixed choice of X, k, and l. Moreover, for n big enough, one would have $B\left(\mathrm{X}_{n}, k, l\right)<F\left(\mathrm{X}_{n}, k, l\right)$.

On the one hand, we see that $F\left(\mathrm{D}_{n}, k, l\right)<F\left(\mathrm{C}_{n}, k, l\right)<F\left(\mathrm{~B}_{n}, k, l\right)$ and the gaps among them increase when n grows. The reason is that Freudenthal's formula depends heavily on the root system associated with \mathfrak{g}, which is simpler for type D_{n} and more complicated for type B_{n}. On the other hand, $B\left(\mathrm{C}_{n}, k, l\right)$ and $B\left(\mathrm{D}_{n}, k, l\right)$ look similar and $B\left(\mathrm{~B}_{n}, k, l\right)$ larger. In this case, the reason is the number of weights. Roughly speaking, the set of weights of $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ is almost equal to $\left\{\mu \in \mathbb{Z}^{n}:\|\mu\|_{1} \leq k+l,\|\mu\|_{1} \equiv k+l(\bmod 2)\right\}$ for types C_{n} and D_{n} and to $\left\{\mu \in \mathbb{Z}^{n}:\|\mu\|_{1} \leq k+l\right\}$ for type B_{n}. In fact, this is a consequence of $\|\alpha\|_{1}=2$ for every root α in types C_{n} and D_{n} and $\|\alpha\|_{1} \in\{1,2\}$ for every root α in type B_{n}. Summing up, the bivariate algorithm is not sensible to the number of roots in the corresponding root system, but it is sensible to the one-norm of the roots.

Throughout this paragraph fix a type X_{n}. The times required by both algorithms depend on $k+l$. In fact, the set of weights of $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ does not vary considerably among the different choices of k and l with $k+l$ fixed. Likewise, Freudenthal's formula is slightly faster when l grows since the size of the set of weights decreases. However, the bivariate algorithm strongly depends on l. Indeed, as this algorithm involves partitions of all non-negative integers less than or equal to l, its speed reduces when l increases. In conclusion, fixing the value $m=k+l$, the function $l \mapsto B\left(\mathrm{X}_{n}, m-l, l\right) / F\left(\mathrm{X}_{n}, m\right.$ $-l, l)$ attains its minimum when l is as large as possible, that is, when $l=k$ or $l=k-1$ according to the parity of $k+l$. This situation is exemplified in Table II.

The authors believe that the weight multiplicity formulas in Theorems III.1-III. 3 could be implemented on new versions of Sage. Bivariate representations are a non-trivial class of irreducible

TABLE II. Comparison among representations of \mathfrak{g} of type D_{4} with $k+l=14$ fixed.

l	0	1	2	3	4	5	6	
$B\left(\mathrm{D}_{4}, 14-l, l\right)$	1.03	1.04	1.09	1.69	3.28	7.45	17.50	39.99
$F\left(\mathrm{D}_{4}, 14-l, l\right)$	152.84	152.77	152.60	151.50	146.38	137.41	124.40	106.22

representations, which frequently appear on users' calculations. Not only the time required by the bivariate algorithm for n large enough is reduced, but there is also a great advantage in the possibility of calculating the multiplicity of a single weight in a very short period of time. For example, when \mathfrak{g} is of type $\mathrm{D}_{5}, k=20$, and $l=6$, its implemented program in Sage takes only between 0.40 and 0.65 s for each single weight μ. Furthermore, the efficiency of the algorithm improves significantly when it returns only the multiplicities of dominant weights [i.e., step (v) is omitted in Algorithm III.7], which is in general what users really need. This can be appreciated in the fourth column of Table I, denoted by $\mathrm{D}_{n}(\star)$. There, we list the times required by this simplified version of the bivariate algorithm for \mathfrak{g} of type D_{n}. Of course, the fact that the bivariate algorithm works only for particular simple complex Lie algebras and bivariate representations is a big disadvantage.

D. Closed explicit weight formulas in particular cases

The weight multiplicity formulas obtained in Theorems III.1-III. 3 are not closed expressions because they involve a sum over partitions of non-negative integers. However, in some particular cases (e.g., small values of l, particular choices of μ), it is possible to write out the partitions, and therefore, the formulas become closed expressions. For example, if $l=0$, then the formulas reduce to the closed explicit expressions in Lemma III.5.

When $l=1$, only sums over the set of partitions of 0 or 1 are involved. These sets have exactly one element, so the sums disappear. For example, when \mathfrak{g} is of type D_{n}, we get

$$
\begin{align*}
m_{\pi_{k \varepsilon_{1}+\varepsilon_{2}}}(\mu)= & D_{n}\left(1, r(\mu), Z_{0}(\mu)\right)-D_{n}(0, r(\mu))-D_{n}(0, r(\mu)-1) \tag{16}\\
= & \sum_{\beta_{1}^{1}=0}^{1} \sum_{\alpha_{1}^{1}=0}^{1-\beta_{1}^{1}}\binom{r-1+\alpha_{1}^{1}+n-2}{n-2} 2^{1-\beta_{1}^{1}}\binom{\beta_{1}^{1}}{\alpha_{1}^{1}}\binom{n-Z_{0}(\mu)}{\beta_{1}^{1}}\binom{Z_{0}(\mu)}{1-\beta_{1}^{1}} \\
& -\binom{r(\mu)+n-2}{n-2}-\binom{r(\mu)-1+n-2}{n-2}
\end{align*}
$$

for every $\mu \in \mathbb{Z}^{n}$ satisfying that $r(\mu)=\left(k+1-\|\mu\|_{1}\right) / 2$ is a non-negative integer. Notice that this formula is a particular case of Theorem 4.1 in Ref. 16.

Similarly, when $l=2$, there are only sums over the set of partitions of N for $N=0,1,2$. Since $2=2$ and $2=1+1$ are the only partitions of 2 , the corresponding sum splits into two. We now state the multiplicity formula for $l=2$ and type D_{n}. We pick type D_{n} for citing purposes.

Corollary III.9. Let $\mathfrak{g}=\mathfrak{s o}(2 n, \mathbb{C})$ for $n \geq 3$, let $k \geq 2$ integer, and let $\mu \in \mathbb{Z}^{n}$. If $r(\mu)$ $:=\left(k+2-\|\mu\|_{1}\right) / 2$ is a non-negative integer, then

$$
\begin{aligned}
m_{\pi_{k \varepsilon_{1}+2 \varepsilon_{2}}}(\mu)= & \binom{r(\mu)+n-4}{n-2}\left(2 Z_{0}(\mu)(n-1)+\binom{n-Z_{0}(\mu)}{2}\right) \\
& +\binom{r(\mu)+n-3}{n-2}\left(2 Z_{0}(\mu)\left(n-Z_{0}(\mu)\right)+Z_{1}(\mu)-n+2\binom{n-Z_{0}(\mu)}{2}\right) \\
& +\binom{r(\mu)+n-2}{n-2}\left(\binom{n-Z_{0}(\mu)}{2}-Z_{1}(\mu)\right),
\end{aligned}
$$

and $m_{\pi_{k \varepsilon_{1}+2 \varepsilon_{2}}}(\mu)=0$ otherwise.
Furthermore, we can obtain a closed explicit multiplicity formula for the weight $\mu=0$ in the representation $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ of \mathfrak{g}. We next state the formulas for types $\mathrm{B}_{n}, \mathrm{C}_{n}$, and D_{n}, but we prove it only

Corollary III. 10 (Type D_{n}). Let $\mathfrak{g}=\mathfrak{s o}(2 n, \mathbb{C})$ for some $n \geq 3$ and let $k \geq l \geq 0$ integers. We have that $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(0)=0$ if $k+l$ is odd. Moreover, if $k+l$ is even, then

$$
\begin{aligned}
m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(0)= & 2 \sum_{0 \leq N \leq l}(-1)^{N+l} R(n, k, l, N)\binom{\lfloor(l-N) / 2\rfloor+n-2}{n-2} \\
& \binom{\lfloor(k-N+1) / 2\rfloor+n-2}{n-2} \sum_{t=0}^{n}\binom{n}{t}\binom{N-t+n-1}{n-1},
\end{aligned}
$$

where

$$
R(n, k, l, N)= \begin{cases}\frac{l-N+n-2}{l-N+2 n-4} & \text { if } N \equiv l \quad(\bmod 2) \\ \frac{k+1-N+n-2}{k+1-N+2 n-4} & \text { if } N \equiv l+1 \quad(\bmod 2)\end{cases}
$$

Proof. The asserted formula can be obtained by Theorem III.3. However, we will prove it in a simplified way, by following the Proof of Theorem III.3. The reason is that the partition in (14) of the set of weights of $\pi_{l \varepsilon_{1}}$ is (unnecessarily) too fine for $\mu=0$. By (10), we have that

$$
\begin{equation*}
m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(0)=m_{\tau_{k, l}}(0)-m_{\tau_{k+1, l-1}}(0)-m_{\tau_{k-1, l-1}}(0)+m_{\tau_{k, l-2}}(0) \tag{17}
\end{equation*}
$$

As before, for arbitrary $k \geq l \geq 0$ integers, it holds

$$
m_{\tau_{k, l}}(0)=\sum_{\eta} m_{\pi_{k \varepsilon_{1}}}(-\eta) m_{\pi_{l \varepsilon_{1}}}(\eta)
$$

where the sum is restricted to the weights of $\pi_{l \varepsilon_{1}}$. From Lemma III.5, we see that η is a weight of $\pi_{l \varepsilon_{1}}$ if and only if $l-\|\eta\|_{1} \in 2 \mathbb{N}_{0}$. For such a weight $\eta, m_{\pi_{k \varepsilon_{1}}}(-\eta)=0$ unless $2 \mathbb{N}_{0} \ni k-\|-\eta\|_{1}$ $=(k-l)+\left(l-\|\eta\|_{1}\right)$, equivalently $k-l \in 2 \mathbb{N}_{0}$. We conclude that $m_{\tau_{k, l}}(0)=0$ if $k+l$ is odd. Moreover, $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(0)=0$ if $k+l$ is odd by (17).

We now proceed to compute $m_{\tau_{k, l}}(0)$ for arbitrary $k \geq l \geq 0$ integers satisfying that $k+l$ is even. Fix $N \in \mathbb{N}_{0}$ such that $l-N \in 2 \mathbb{N}_{0}$. For each $\eta \in \mathbb{Z}^{n}$ with $\|\eta\|_{1}=N$, we know that $m_{\pi_{k \varepsilon_{1}}}(-\eta)$ and $m_{\pi_{l \varepsilon_{1}}}(\eta)$ are constant, independent of the choice of η. Hence,

$$
\begin{equation*}
m_{\tau_{k, l}}(0)=\sum_{\substack{0 \leq N \leq l, l \\ N \equiv(\bmod 2)}}\binom{(l-N) / 2+n-2}{n-2}\binom{(k-N) / 2+n-2}{n-2} \#\left\{\eta \in \mathbb{Z}^{n}:\|\eta\|_{1}=N\right\} \tag{18}
\end{equation*}
$$

It is well known (see, for instance, Sec. 2.5 in Ref. 4) that $\#\left\{\eta \in \mathbb{Z}^{n}:\|\eta\|_{1}=N\right\}=\sum_{t=0}^{n}\binom{n}{t}\binom{N-t+n-1}{n-1}$. Thus, by replacing (18) in (17), one obtains the desired formula.

Corollary III. 11 (Type C_{n}). Let $\mathfrak{g}=\mathfrak{s p}(n, \mathbb{C})$ for some $n \geq 2$ and let $k \geq l \geq 0$ integers. We have that $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(0)=0$ if $k+l$ is odd. Moreover, if $k+l$ is even, then

$$
\begin{aligned}
m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(0)= & 2 \sum_{0 \leq N \leq l}(-1)^{N+l} R(n+1, k, l, N)\binom{\lfloor(l-N) / 2\rfloor+n-1}{n-1} \\
& \binom{\lfloor(k-N+1) / 2\rfloor+n-1}{n-1} \sum_{t=0}^{n}\binom{n}{t}\binom{N-t+n-1}{n-1},
\end{aligned}
$$

where $R(n, k, l, N)$ is as in Corollary III.10.

Corollary III. 12 (Type $\left.\mathrm{B}_{n}\right)$. Let $\mathfrak{g}=\mathfrak{s o}(2 n+1, \mathbb{C})$ for some $n \geq 2$ and let $k \geq l \geq 0$ integers. Then

$$
\begin{aligned}
m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(0)= & \sum_{0 \leq N \leq l}(-1)^{N+l} S(n, k, l, N)\binom{\lfloor(l-N) / 2\rfloor+n-1}{n-1} \\
& \binom{\lfloor(k+1-N) / 2\rfloor+n-1}{n-1} \sum_{t=0}^{n}\binom{n}{t}\binom{N-t+n-1}{n-1},
\end{aligned}
$$

where

$$
S(n, k, l, N)= \begin{cases}1-\frac{\lfloor(l-N) / 2\rfloor\lfloor(k+1-N) / 2\rfloor}{(\lfloor(l-N) / 2\rfloor+n-1)(\lfloor(k+1-N) / 2\rfloor+n-1)} & \text { if } k+l \text { is even } \\ \frac{\lfloor(k+1-N) / 2\rfloor}{\lfloor(k+1-N) / 2\rfloor+n-1}-\frac{\lfloor(l-N) / 2\rfloor}{\lfloor(l-N) / 2\rfloor+n-1} & \text { if } k+l \text { is odd }\end{cases}
$$

E. Remarks

We end this section with a few remarks.

Remark III. 13 .The weight multiplicity formula for type D_{n} in Theorem III. 3 also holds when $n=2$ with $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$ replaced by $\pi_{k \varepsilon_{1}+l \varepsilon_{2}} \oplus \pi_{k \varepsilon_{1}-l \varepsilon_{2}}$. It is important to note that $\mathfrak{s o}(4, \mathbb{C})$ (type D_{2}) is not simple. Indeed, $\mathfrak{s o}(4, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C}) \oplus \mathfrak{s l}(2, \mathbb{C})$ or $\mathrm{D}_{2}=\mathrm{A}_{1} \oplus \mathrm{~A}_{1}$. Hence, a weight multiplicity formula for the representations $\pi_{k \varepsilon_{1} \pm l \varepsilon_{2}}$ with $k \geq l \geq 0$ of $\mathfrak{s o}(4, \mathbb{C})$ can be obtained using this fact.

Remark III.14. Maddox ${ }^{17}$ determined a weight multiplicity formula for any bivariate representation for \mathfrak{g} of type C_{n}. Her expression (Theorem 4.3 in Ref. 17) looks more elegant than the one in Theorem III.2. However, it includes a sum over ordered partitions of $r(\mu)$ of length n and another sum over the subsets of a set of $2 n$ elements. In conclusion, her shorter formula hides in the mentioned sums the involved terms appearing in the expression given in Theorem III.2. Furthermore, the neat dependence condition in Theorem I. 1 does not follow immediately from Theorem 4.3 in Ref. 17.

We now compare Maddox's method with ours. Both employ the expression in Lemma III. 6 for an irreducible representation as a sum of tensor products in the virtual ring of representations. The significant difference arises in the calculation of the weight multiplicity in a tensor product. Roughly speaking, the Proofs of Theorems III.1-III. 3 use the identity (12) and then a convenient partition of the set of weights of the small component in the tensor product. On the other hand, Maddox makes use of $\tau_{k, l}=\pi_{k \varepsilon_{1}} \otimes \pi_{l \varepsilon_{1}} \simeq \operatorname{Sym}^{k}\left(\mathbb{C}^{2 n}\right) \otimes \operatorname{Sym}^{l}\left(\mathbb{C}^{2 n}\right)$ for \mathfrak{g} of type C_{n} and counts the weight vectors in terms of a function which has a combinatorial expression.

Remark III.15. There are in the literature several algorithms to compute weight multiplicities. The one based on Freudenthal's formula is the most classical and is still used for several computer programs (e.g., Sage ${ }^{19}$). Nowadays, there exist faster algorithms. A possible time comparison with any of them would require an implementation on Sage, which would be unfair because of the poor computer programming skills of the authors.

Among the mentioned faster algorithms, it is the distinguished one by Baldoni and Vergne ${ }^{3}$ (see Refs. 1, 2, and 8 for related results), which is based on symbolic computations of Kostant partition functions. See also Refs. 6, 7, and 21 for recent different approaches.

Remark III.16. This interesting remark about the behavior of $m_{\pi_{k \varepsilon_{1}+1 \varepsilon_{2}}}(\mu)$ as a function on k and l was pointed out by the referee. For simplicity, we take $\mu=0$, we fix l a non-negative integer and we consider \mathfrak{g} a classical Lie algebra of type D_{n} for some $n \geq 3$, although the general case is very similar. Corollary III. 10 implies that $k \mapsto m_{\pi_{k \varepsilon_{1}+1 \varepsilon_{2}}}(0)$ is a quasi-polynomial in the variable $k \geq l$ whose degree does not depend on l. In fact, its degree coincides with the degree of the polynomial $k \mapsto m_{\pi_{2 k \varepsilon_{1}}}(0)=\binom{k+n-2}{n-2}$ (i.e., when $l=0$), which is equal to $n-2$.

An interesting problem, also suggested by the referee, is to understand the behavior of the function $l \mapsto m_{\pi_{(l+h) \varepsilon_{1}+1 \varepsilon_{2}}}(0)$, for some h fixed. This does not seem to be computable from Corollary III.10.

Remark III.17. In Sec. 7 of Ref. 16, there is a detailed account of some applications of weight multiplicity formulas in spectral geometry (see Refs. 5, 13-5). These expressions for the weight multiplicities are used to determine explicitly the spectra of certain natural differential operators on a manifold (or a good orbifold) of the form $\Gamma \backslash G / K$, where G is a semisimple compact Lie group, K is a closed subgroup of G, and Γ is a finite subgroup of the maximal torus T of G.

We next specify some cases where the formulas obtained in this article could be applied. When $G=\operatorname{Sp}(n)$ and $K=\operatorname{Sp}(n-1) \times \operatorname{Sp}(1)$, the spherical representations associated with the Gelfand pair (G, K) (i.e., the set of irreducible representations of G containing non-zero vectors fixed by K) have highest weight of the form $k\left(\varepsilon_{1}+\varepsilon_{2}\right)$ for $k \geq 0$. Consequently, Theorem III. 2 may be applied to determine the spectrum of the Laplace-Beltrami operator acting on functions on spaces covered by the n-dimensional quaternionic projective space $\operatorname{Sp}(n) / \operatorname{Sp}(n-1) \times \operatorname{Sp}(1)$ with the Abelian fundamental group.

When $G=\mathrm{SO}(m)$ and $K=\mathrm{SO}(m-2) \times \mathrm{SO}(2)$, the corresponding spherical representations for (G, K) have highest weight of the form $k \varepsilon_{1}+l \varepsilon_{2}$ for $k \geq l \geq 0$. Thus, according to m is odd or even, Theorem III. 1 or III. 3 could be applied to the same purpose as above, for spaces covered by the 2-Grassmannian space G / K with the Abelian fundamental group.

In a slightly different way, we now consider $n \geq 3, G=\mathrm{SO}(2 n), K=\mathrm{SO}(2 n-1)$, and more general natural differential operators. An irreducible representation τ of K induces a natural G homogeneous complex vector bundle E_{τ} on G / K. There is an associated natural differential operator Δ_{τ} acting on smooth sections of E_{τ}, which induces the differential operator $\Delta_{\tau, \Gamma}$ acting on smooth sections of $\Gamma \backslash E_{\tau}$, that is, Γ-invariant smooth sections of E_{τ}. We now fix $\tau=\tau_{b \varepsilon_{1}}$, the irreducible representation of K with highest weight $b \varepsilon_{1}$. The corresponding $\tau_{b \varepsilon_{1}}$-spherical representations of $\left(G, K, \tau_{b \varepsilon_{1}}\right)$ (i.e., the set of $\pi \in \widehat{G}$ such that $\left.\operatorname{Hom}_{K}\left(\tau_{b \varepsilon_{1}},\left.\pi\right|_{K}\right) \neq 0\right)$ is equal to $\left\{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}: k \geq b \geq l \geq 0\right\}$. Consequently, Theorem III. 3 might be used to determine the spectrum of $\Delta_{\tau_{b \varepsilon_{1}}, \Gamma}$ for Γ a finite subgroup of the maximal torus of G. An analogous process can be done in the case $G=\mathrm{SO}(2 n-1)$ and $K=\mathrm{SO}(2 n-2)$.

IV. TYPE A_{n}

Consider $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{C})$ the Cartan subalgebra

$$
\mathfrak{h}=\left\{\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{n+1}\right): \theta_{i} \in \mathbb{C} \forall i, \sum_{i=1}^{n+1} \theta_{i}=0\right\} .
$$

Set $\varepsilon_{i}\left(\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{n+1}\right)\right)=\theta_{i}$ for each $1 \leq i \leq n+1$. We will use the conventions of Lecture 15 in Ref. 9; that is, we correspondingly write

$$
\mathfrak{h}^{*}=\bigoplus_{i=1}^{n+1} \mathbb{C} \varepsilon_{i} /\left\langle\sum_{i=1}^{n+1} \varepsilon_{i}=0\right\rangle,
$$

and we write ε_{i} for its image in \mathfrak{h}^{*}. Consequently, the set of positive roots is given by $\Sigma^{+}(\mathfrak{g}, \mathfrak{h}):=\left\{\varepsilon_{i}-\varepsilon_{j}: 1 \leq i<j \leq n+1\right\}$, and the weight lattice is $P(\mathfrak{g}):=\bigoplus_{i=1}^{n+1} \mathbb{Z} \varepsilon_{i} /\left\langle\sum_{i=1}^{n+1} \varepsilon_{i}=0\right\rangle$. Two weights $\mu=\sum_{i=1}^{n+1} b_{i} \varepsilon_{i}$ and $v=\sum_{i=1}^{n+1} c_{i} \varepsilon_{i}$ in $P(\mathfrak{g})$ coincide if and only if $b_{i}-c_{i}$ is constant, independent of i.

A weight $\lambda=\sum_{i=1}^{n+1} a_{i} \varepsilon_{i}$ in $P(\mathfrak{g})$ is dominant if and only if $a_{1} \geq a_{2} \geq \cdots \geq a_{n+1}$. By the highest weight theorem, the irreducible representations of \mathfrak{g} are in correspondence with dominant weights. We denote by π_{λ} the irreducible representation with highest weight λ, which will be always written as $\lambda=\sum_{i=1}^{n+1} a_{i} \varepsilon_{i}$ with $a_{n+1}=0$. Thus, the irreducible representations of G are in correspondence with elements in the set

$$
P^{++}(\mathfrak{g}):=\left\{\sum_{i=1}^{n} a_{i} \varepsilon_{i}: a_{i} \in \mathbb{Z} \forall i, a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0\right\}
$$

The fundamental weights are given by $\omega_{p}=\varepsilon_{1}+\cdots+\varepsilon_{p}$ for each $1 \leq p \leq n$. Thus, any integer combination between ω_{1} and ω_{2} has the form $k \varepsilon_{1}+l \varepsilon_{2}$ for some integers $k \geq l \geq 0$.

For $\lambda=\sum_{i=1}^{n} a_{i} \varepsilon_{i} \in P^{++}(\mathfrak{g})$, any weight μ of π_{λ} (i.e., the multiplicity of μ in π_{λ} is non-zero) can be written as $\mu=\sum_{i=1}^{n+1} b_{i} \varepsilon_{i}$ for some $b_{1}, \ldots, b_{n+1} \in \mathbb{N}_{0}$ satisfying $\sum_{i=1}^{n+1} b_{i}=\sum_{i=1}^{n} a_{i}$. Indeed, every weight in π_{λ} is a difference between λ and a sum of positive roots.

Let λ and μ be as in the previous paragraph. It is well known that [see, for instance, (A.19) in Ref. 9] the multiplicity of μ in π_{λ} is given by the Kostka number $K_{\lambda, \mu}$: the number of semistandard
tableaux on the Young diagram associated with λ (i.e., a diagram with a_{i} boxes in the i th row, with the rows of boxes lined up on the left) of type μ. More precisely, $K_{\lambda, \mu}$ is the number of ways one can fill the boxes of the Young diagram associated with λ with $b_{1} 1$'s, $b_{2} 2$'s, up to $b_{n+1}(n+1)$'s, in such a way that the entries in each row are non-decreasing, and those in each column are strictly increasing.

The next lemma will be needed in the proof of the main result of this section.
Lemma IV.1. Let \mathfrak{g} be a classical Lie algebra of type A_{n}. For integers $k \geq l \geq 0$, write $\tau_{k, l}=\pi_{k \varepsilon_{1}} \otimes \pi_{l \varepsilon_{1}}$. Then, in the virtual ring of representations, we have that

$$
\pi_{k \varepsilon_{1}+l \varepsilon_{2}} \simeq \tau_{k, l}-\tau_{k+1, l-1}
$$

Proof. The well-known fusion rule (see, for instance, Proposition 15.25 in Ref. 9)

$$
\tau_{k, l}=\pi_{k \varepsilon_{1}} \otimes \pi_{l \varepsilon_{1}} \simeq \bigoplus_{p=0}^{l} \pi_{(k+p) \varepsilon_{1}+(l-p) \varepsilon_{2}}
$$

implies

$$
\tau_{k, l}-\tau_{k+1, l-1}=\sum_{p=0}^{l} \pi_{(k+p) \varepsilon_{1}+(l-p) \varepsilon_{2}}-\sum_{p=1}^{l} \pi_{(k+p) \varepsilon_{1}+(l-p) \varepsilon_{2}}=\pi_{k \varepsilon_{1}+l \varepsilon_{2}}
$$

and the lemma follows.
We now want to calculate the weight multiplicities of the representation with highest weight a non-negative integer combination of the first two fundamental weights. The following multiplicity formula is probably already known, but it is included here for completeness.

Theorem IV. 2 (Type A_{n}). Let $\mathfrak{g}=\mathfrak{s l}(n+1$, $\mathbb{C})$ for some $n \geq 2$ and let $k \geq l \geq 0$ integers. Let $\mu=\sum_{i=1}^{n+1} a_{i} \varepsilon_{i} \in P(\mathfrak{g})$ with $a_{i} \in \mathbb{N}_{0}$ for all i and $\sum_{i=1}^{n+1} a_{i}=k+l$. If $a_{i} \leq k$ for all i, then

$$
\begin{aligned}
m_{\pi_{k s_{1}+1 \varepsilon_{2}}}(\mu)= & \sum_{\mathbf{q} \in \mathcal{Q}_{n+1}(l)} \prod_{j=1}^{l}\binom{n+1-\sum_{t=0}^{j-1} Z_{t}(\mu)-\sum_{i=j+1}^{l} s_{i}^{\mathbf{q}}}{s_{j}^{\mathbf{q}}} \\
& -\sum_{\mathbf{q}^{\prime} \in \mathcal{Q}_{n+1}(l-1)} \prod_{j=1}^{l-1}\binom{n+1-\sum_{t=0}^{j-1} Z_{t}(\mu)-\sum_{i=j+1}^{l-1} s_{i}^{\mathbf{q}^{\prime}}}{s_{j}^{\mathbf{q}^{\prime}}},
\end{aligned}
$$

and $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}(\mu)=0$ otherwise, where $Z_{t}(\mu)=\#\left\{i: 1 \leq i \leq n+1, a_{i}=t\right\}$,

$$
\mathcal{Q}_{n+1}(N)=\left\{\mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{n+1}\right) \in \mathbb{Z}^{n+1}: q_{1} \geq q_{2} \geq \cdots \geq q_{n+1} \geq 0, \sum_{i=1}^{n+1} q_{i}=N\right\}
$$

and $s_{j}^{\mathbf{q}}:=\#\left\{i: 1 \leq i \leq n+1, q_{i}=j\right\}$ for $\mathbf{q} \in \mathcal{Q}_{n+1}(N)$ and $1 \leq j \leq N$.
Proof. Since $\tau_{k, l}=\pi_{k \varepsilon_{1}} \otimes \pi_{l \varepsilon_{1}}$, we have that

$$
\begin{equation*}
m_{\tau_{k, l}}(\mu)=\sum_{\eta} m_{\pi_{k_{\varepsilon_{1}}}}(\mu-\eta) m_{\pi_{\varepsilon_{1}}}(\eta), \tag{19}
\end{equation*}
$$

where the sum is restricted to the weights of $\pi_{l \varepsilon_{1}}$. For h any positive integer, the Young diagram associated with $\pi_{h \varepsilon_{1}}$ has only one row, of length h. Thus, the set of weights of $\pi_{h \varepsilon_{1}}$ is given by elements of the form $v=\sum_{i=1}^{n+1} c_{i} \varepsilon_{i}$ with $c_{1}, \ldots, c_{n+1} \in \mathbb{N}_{0}$ and $\sum_{i=1}^{n+1} c_{i}=h$, and all of them have multiplicity 1 . Consequently, $m_{\tau_{k, l}}(\mu)$ is equal to the number of weights η of $\pi_{l \varepsilon_{1}}$ satisfying that $\mu-\eta$ is a weight of $\pi_{k \varepsilon_{1}}$.

Let $\mathbf{q} \in \mathcal{Q}_{n+1}(l)$. We want to count the number of weights $\eta=\sum_{i=1}^{n+1} b_{i} \varepsilon_{i}$ contributing to (19) (i.e., η is a weight of $\pi_{l \varepsilon_{1}}$ and $\mu-\eta$ is a weight of $\pi_{k \varepsilon_{1}}$) satisfying that s_{j}^{q} entries of η are equal to j for
each $1 \leq j \leq l$. Clearly, $\mu-\eta$ is a weight of $\pi_{k \varepsilon_{1}}$ if and only if $a_{i}-b_{i} \geq 0$ for all $1 \leq i \leq n+1$. Since for each $1 \leq j \leq l$ there are $n+1-\sum_{t=0}^{j-1} Z_{t}(\mu) a_{i}$'s greater than $j-1$, then the required number is

$$
\begin{equation*}
\binom{n+1-\sum_{t=0}^{l-1} Z_{t}(\mu)}{s_{l}^{\mathbf{q}}}\binom{n+1-\sum_{t=0}^{l-2} Z_{t}(\mu)-s_{l}^{\mathbf{q}}}{s_{l-1}^{\mathbf{q}}} \cdots\binom{n+1-Z_{0}(\mu)-\sum_{j=2}^{l} s_{j}^{\mathbf{q}}}{s_{1}^{\mathbf{q}}} \tag{20}
\end{equation*}
$$

We have shown that $m_{\tau_{k, l}}(\mu)$ is equal to the sum over $\mathbf{q} \in \mathcal{Q}_{n+1}(l)$ of (20). The theorem now follows by Lemma IV.1.

We now state the closed explicit formulas for the particular cases $l=0,1$, and 2 . When $l=0$, since $\mathcal{Q}_{n+1}(0)=\{(0, \ldots, 0)\}$, Theorem IV. 2 immediately implies that every weight as in the hypotheses (i.e., $\mu=\sum_{i=1}^{n+1} b_{i} \varepsilon_{i}$ with $b_{i} \in \mathbb{N}_{0}$ for all i and $\sum_{i=1}^{n+1} b_{i}=k$) has multiplicity one. This fact is very well known because the Young diagram associated with $\pi_{k \varepsilon_{1}}$ has only one row, and consequently, the number of semistandard tableaux on this diagram of type μ is one.

We now assume $l=1$. Let μ be again as in the hypotheses of Theorem IV.2. The number of partitions of 1 is obviously one, i.e., $\mathcal{Q}_{n+1}(1)=\{(1,0, \ldots, 0)\}$; thus, $m_{\pi_{k \varepsilon_{1}+\varepsilon_{2}}}(\mu)=\binom{n+1-\ell_{0}(\mu)}{1}-1$ $=n-\ell_{0}(\mu)$, where $\ell_{0}(\mu)$ is the number of zeros coordinates of μ. It is not difficult to check that the number of semistandard tableaux of type μ is $n-\ell_{0}(\mu)$.

We conclude the article stating the multiplicity formula for the irreducible representation of $\mathfrak{s l}(n+1, \mathbb{C})$ with highest weight $k \varepsilon_{1}+2 \varepsilon_{2}$. Similar to the above, the proof follows immediately from Theorem IV.2, since it reduces to consider the only two partitions of 2 . The reader may try to obtain this formula by counting semistandard tableaux of type μ and convince his/herself that the difficulty will increase for a higher l.

Corollary IV.3. Let $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{C})$ for some $n \geq 2$ and let $k \geq 2$ integer. Let $\mu=\sum_{i=1}^{n+1} a_{i} \varepsilon_{i} \in P(\mathfrak{g})$ with $a_{i} \in \mathbb{N}_{0}$ for all i and $\sum_{i=1}^{n+1} a_{i}=k+2$. If $a_{i} \leq k$ for all i, then

$$
m_{\pi_{k \varepsilon_{1}+2 \varepsilon_{2}}}(\mu)=\binom{n+1-Z_{0}(\mu)}{2}-Z_{1}(\mu)
$$

and $m_{\pi_{k \varepsilon_{1}+2 \varepsilon_{2}}}(\mu)=0$ otherwise, where $Z_{t}(\mu)=\#\left\{i: 1 \leq i \leq n+1, a_{i}=t\right\}$.
We end this article with an observation pointed out by the referee, in the same spirit of Remark III. 16.

Remark IV.4. We consider the "weight zero" in $\pi_{k \varepsilon_{1}+l \varepsilon_{2}}$, which in our convention is given by $0_{k+l}:=\sum_{i=1}^{n+1} \frac{k+l}{n+1} \varepsilon_{i}$. Clearly, $m_{\pi_{k \varepsilon_{1}+\varepsilon_{2}}}\left(0_{k+l}\right)=0$ unless $n+1$ divides $k+l$. Theorem IV. 2 does not give an explicit expression for $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}\left(0_{k+l}\right)$ like in Corollaries III.10-III.12. However, for $l \geq 0$ fixed, it implies that $m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}\left(0_{k+l}\right)$ does not depend on k, for k sufficiently large satisfying that $n+1$ divides $k+l$. Moreover, the function $k \mapsto m_{\pi_{k \varepsilon_{1}+l \varepsilon_{2}}}\left(0_{k+l}\right)$ is constant for every $k \in \ln +(n+1) \mathbb{N}_{0}$. Indeed, for such k, we have that $\frac{k+l}{n+1} \geq l$, thus $\ell_{t}\left(0_{k+l}\right)=0$ for every $0 \leq t \leq l-1$.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous referee for pointing out very interesting remarks. This research was partially supported by grants from CONICET, FONCyT, and SeCyT-UNC. The first named author was supported by the Alexander von Humboldt Foundation.

[^1]${ }^{5}$ S. Boldt and E. A. Lauret, "An explicit formula for the Dirac multiplicities on lens spaces," J. Geom. Anal. 27, 689-725 436 (2017).
${ }^{6}$ M. Cavallin, "An algorithm for computing weight multiplicities in irreducible modules for complex semisimple Lie algebras," J. Algebra 471, 492-510 (2017).
${ }^{7}$ M. Christandl, B. Doran, and M. Walter, "Computing multiplicities of Lie group representations," in 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science—FOCS 2012 (IEEE Computer Soc., Los Alamitos, CA, 2012), pp. 639-648.
${ }^{8}$ C. Cochet, "Vector partition function and representation theory," in Conference Proceedings on Formal Power Series and Algebraic Combinatorics, Taormina, Italy (■, 2005), pp. 1009-1020.
${ }^{9}$ W. Fulton and J. Harris, Representation Theory: A First Course (Springer-Verlag, New York, 2004).
${ }^{10}$ J. Humphreys, Introduction to Lie Algebras and their Representations, Graduate Texts in Mathematics (Springer-Verlag, New York, 1972), Vol. 9.
${ }^{11}$ A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics (Birkhäuser Boston, Inc., 2002), Vol. 140.
${ }^{12}$ K. Koike and I. Terada, "Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn," J. Algebra 107, 466-511 (1987).
${ }^{13}$ E. A. Lauret, "Spectra of orbifolds with cyclic fundamental groups," Ann. Global Anal. Geom. 50(1), 1-28 (2016). 451
${ }^{14}$ E. A. Lauret, "The spectrum on p-forms of a lens space," Geom. Dedicata (in press).
${ }^{15}$ E. A. Lauret, R. J. Miatello, and J. P. Rossetti, "Spectra of lens spaces from 1-norm spectra of congruence lattices," Int. Math. Res. Not. IMRN 2016(4), 1054-1089.
${ }^{16}$ E. A. Lauret and F. Rossi Bertone, "Multiplicity formulas for fundamental strings of representations of classical Lie algebras," J. Math. Phys. 58, 111703 (2017).
${ }^{17}$ J. Maddox, "An elementary approach to weight multiplicities in bivariate irreducible representations of $S p(2 r)$," Commun. Algebra 42(9), 4094-4101 (2014).
${ }^{18}$ Public Sage project Weight multiplicities for bivariate representations, in Collaborative Calculation in the Cloud (CoCalc.com), 2017.
${ }^{19}$ W. A. Stein et al., Sage Mathematics Software, Version 4.3, The Sage Development Team, 2009, www.sagemath.org.
${ }^{20}$ The Sage-Combinat community, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, http://combinat.sagemath.org, 2008.
${ }^{21}$ W. Schützer, "A new character formula for Lie algebras and Lie groups," J. Lie Theory 22(3), 817-838 (2012).

437
438
439
440
441

[^0]: ${ }^{\text {a) }}$ Electronic mail: elauret@famaf.unc.edu.ar
 b) Electronic mail: rossib@famaf.unc.edu.ar

[^1]: ${ }^{1}$ M. W. Baldoni, M. Beck, C. Cochet, and M. Vergne, "Volume computation for polytopes and partition functions for classical root systems," Discrete Comput. Geom. 35(4), 551-595 (2006).
 ${ }^{2}$ M. W. Baldoni and M. Vergne, "Multiplicity of compact group representations and applications to Kronecker coefficients," e-print arXiv:1506.02472 (2015).
 ${ }^{3}$ M. W. Baldoni and M. Vergne, "Computation of dilated Kronecker coefficients," J. Symbolic Comput. 84, 113-146 (2018) (With an appendix by M. Walter).
 ${ }^{4}$ M. Beck and S. Robins, Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics (Springer, New York, 2007).

