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Abstract

Southern-Hemisphere terrestrial communities from the early Paleocene are poorly known,

but recent work on Danian plant fossils from the Salamanca Formation in Chubut Province,

Argentina are providing critical data on earliest Paleocene floras. The fossils described here

come from a site in the Salamanca Formation dating to ca. 1 million years or less after the

end-Cretaceous extinction event; they are the first fossil flowers reported from the Danian of

South America, and possible the entire Southern Hemisphere. They are compressions and

impressions in flat-laminated light gray shale, and they belong to the family Rhamnaceae

(buckthorns). Flowers of Notiantha grandensis gen. et sp. nov. are pentamerous, with dis-

tinctly keeled calyx lobes projecting from the hypanthium, clawed and cucullate emarginate

petals, antepetalous stamens, and a pentagonal floral disk that fills the hypanthium. Their

phylogenetic position was evaluated using a molecular scaffold approach combined with

morphological data. Results indicate that the flowers are most like those of extant ziziphoid

Rhamnaceae. The associated leaves, assigned to Suessenia grandensis gen. et sp. nov.

are simple and ovate, with serrate margins and three acrodromous basal veins. They

conform to the distinctive leaves of some extant Rhamnaceae in the ziziphoid and ampelozi-

zyphoid clades. These fossils provide the first unequivocal megafossil evidence of Rhamna-

ceae in the Southern Hemisphere, demonstrating that Rhamnaceae expanded beyond

the tropics by the earliest Paleocene. Given previous reports of rhamnaceous pollen in the

late Paleogene and Neogene of Antarctica and southern Australia, this new occurrence

increases the possibility of high-latitude dispersal of this family between South America and

Australia via Antarctica during the Cenozoic.

Introduction

The Salamanca Formation is an estuarine unit in the San Jorge Basin of southern Argentina

that yields well-preserved, well-dated fossils from the early Paleocene. Studies of these fossils
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are providing new data on plant and animal diversity following the end-Cretaceous extinction

event [1–19]. Here, we report the first fossil flowers from an early Danian (~65Ma) assemblage

in the Southern Hemisphere and show that they are attributable to Rhamnaceae. Extant Rham-

naceae Juss. comprise 54 genera and over 900 species of shrubs, trees, lianas, and perennial

herbs that are easily identified for their unusual combination of floral characters [20–23]. Tra-

ditionally, the family was subdivided into five tribes differentiated based on fruit types [24,25];

however, recent molecular phylogenetic studies suggest that these were not natural groups

[26]. Instead, the family is now divided into 11 tribes that are distinguished by combinations

of vegetative and reproductive character states, with a handful of genera still unplaced at the

tribal level [21–23,26,27]. The tribes and unplaced genera belong to three major clades that are

informally known as the rhamnoids, ziziphoids, and ampelozizyphoids; however, morphologi-

cal synapomorphies for these three groups have not been identified so far [26]. Despite recent

advances in understanding the systematics of living Rhamnaceae, many aspects of their early

evolution and biogeographic history remain unclear [22,23,28–30].

In the last decade, the fossil record of Rhamnaceae has grown significantly (Fig 1; Table 1),

and several occurrences have confirmed at least a Late Cretaceous origin for the family [28,31].

Fossil remains assigned to extant genera have been reported from Eocene and younger depos-

its, including the distinctive fruits of Paliurus Mill. [32–41], Berchemia Neck. ex DC. [42], and

Ventilago Gaertn. [31,43], the wood and leaves of Hovenia Thunb. [37,44–46]; and the distinc-

tive leaves of Ceanothus L. [38,47–50] and Colubrina Rich. ex Brongn. [51,52]. These fossils

provide minimum age estimates for the diversification of crown-group Rhamnaceae, and sev-

eral have been used to calibrate trees in recent molecular phylogenetic analyses [29,53,54].

Whereas some authors have suggested a Laurasian origin for the Rhamnaceae family [55],

Richardson et al. [53] concluded that a Gondwanan origin during the Paleogene is more parsi-

monious for the ziziphoid and the ampelozizyphoid clades. Most recently, Onstein et al.

[26,56] concluded that crown-group Rhamnaceae began to diversify in the tropical rainforest

Fig 1. World map showing the distribution of modern and fossil Rhamnaceae. Gray area indicates the distribution of extant

Rhamnaceae. The shapes correspond to different fossilized plant organs and the colors represent different ages. The fossil flowers and

leaves described here were collected from the Rancho Grande site in Chubut Argentina. Details of all occurrences shown here are listed in

Table 1. The base map was created with Natural Earth Dataset.

https://doi.org/10.1371/journal.pone.0176164.g001
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Table 1. Summary of fossil Rhamnaceae. Occurrences of fossils attributed to Rhamnaceae, excluding those based on leaf compressions alone.

Taxon Organ Latitude Longitude Age Reference

Coahuilanthus belindae Calvillo-Canadell et Cevallos-Ferriz flower 25.50 -101.30 Cretaceous [31]

Archaeopaliurus boyacensis Correa, Jaramillo, Manchester et Gutierrez fruit, leaves 5.90 -72.80 Cretaceous [28]

Notiantha grandensis gen. et sp. nov. flower -45.55 -68.25 Paleocene this study

Solanites pusillus Berry flower 36.42 -88.35 Eocene [30,103]

Berchemia eocenica Collinson, Manchester et Wilde fruit 49.90 8.75 Eocene [42]

Paliurus favonii Unger fruit 21.80 110.90 Eocene [41]

Paliurus clarnensis Burge et Manchester fruit 44.75 -120.60 Eocene [38]

Paliurus ubensis Huzioka et Takahasi fruit 33.95 131.25 Eocene [148]

Paliurus sp. fruit 44.18 -120.20 Eocene [37]

Paliurus clarnensis Burge et Manchester fruit 44.73 -120.40 Eocene [38]

Paliurus clarnensis Burge et Manchester fruit 44.59 -120.26 Eocene [38]

Paliurus clarnensis Burge et Manchester fruit 44.70 -120.42 Eocene [38]

Paliurus clarnensis Burge et Manchester fruit 44.74 -120.47 Eocene [38]

Ziziphus eocenicus Singh et al. 2010 fruit 21.40 73.12 Eocene [149]

Nahinda axamilpensis Calvillo-Canadell et Cevallos Ferriz flower 18.60 -97.90 Oligocene [31]

Distigouania irregularis Chambers et Poinar flower 19.80 -70.75 Oligocene [104]

Comopellis presbya Chambers et Poinar flower 19.80 -70.75 Oligocene [105]

Ventilago engoto Calvillo-Canadell et Cevallos-Ferriz fruit 18.60 -97.90 Oligocene [31]

Hovenia palaeodulcis Suzuki wood 33.79 130.46 Oligocene [45]

Paliurus sibirica Dorofeev fruit 56.80 84.49 Oligocene [150]

Paliurus sibirica Dorofeev fruit 51.47 13.62 Oligocene [150]

Paliurus favonii Unger fruit 22.15 107.02 Miocene [40]

Paliurus microcarpa Li fruit 29.15 121.25 Miocene [39]

Ventillago lincangensis Liu et Xie fruit 23.90 100.00 Miocene [43]

Paliurus tiliaefolius (Unger] Bŭžek thorny twigs & leaves 50.55 13.77 Miocene [151]

Hovenia cf dulcis Suzuki wood 36.57 136.60 Miocene [44]

Hovenia palaeodulcis Suzuki wood 38.90 -105.29 Miocene [46]

Palurus favonii Unger fruit 51.63 12.35 Miocene [152]

Palurus favonii Unger fruit 50.55 13.76 Miocene [153]

Palurus favonii Unger fruit 50.55 13.76 Miocene [153]

Palurus favonii Unger fruit 50.55 13.76 Miocene [154]

Paliurus thurmanii Heer fruit 50.55 13.76 Miocene [154]

Paliurus thurmanii Heer fruit 48.43 12.37 Miocene [155]

Paliurus ovoideus Goeppert fruit 51.28 14.09 Miocene [156]

Palurus favonii Unger fruit 47.47 15.28 Miocene [157]

Palurus favonii Unger fruit 47.47 15.28 Miocene [157]

Paliurus thurmanii Heer fruit 47.07 6.70 Miocene [158]

Paliurus tiliaefolius Unger fruit 50.36 13.25 Miocene [34]

Paliurus tiliaefolius Unger fruit 50.36 13.25 Miocene [34]

Paliurus aff. aculeatus Lam. fruit 52.21 18.25 Miocene [159]

Palurus favonii Unger fruit 46.94 15.79 Miocene [157]

Paliurus fricii Brabenec fruit 50.26 13.57 Miocene [160]

Paliurus zaporogensis Krysht. fruit 49.68 63.43 Miocene [35]

Paliurus sp. fruit 26.12 99.33 Miocene [161]

Paliurus protonipponicus Suzuki fruit 35.22 137.08 Miocene [162]

Paliurus hesperius Berry fruit 47.94 -119.00 Miocene [163]

Paliurus hesperius Berry fruit 47.66 -117.43 Miocene [164]

(Continued )
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biome during the Cretaceous, rather than the Paleogene [53,57], but also that much of the

modern richness can be attributed to relatively recent (latest Paleogene to Neogene) diversifi-

cation in Mediterranean-type ecosystems.

The fossil flowers reported here are adpressions, and they have a combination of character

states similar to members of the ziziphoid clade and the tribe Paliureae Reissek ex Endl, but

they do not match any extant genus. Although not in organic connection, the flowers were

found in association with ziziphoid leaves, also described here. We use phylogenetic analysis

to determine the relationship of these fossils to living members of the family and to test biogeo-

graphic hypotheses, including the idea that the Rhamnaceae originated in Laurasia.

Geologic setting

The Salamanca Formation crops out in the San Jorge Basin in southern Chubut and northern

Santa Cruz provinces, Argentina, overlying the Cretaceous Chubut Group and underlying the

Paleocene and Eocene Rı́o Chico Group [10,17, 18, 58–61]. The formation yields abundant

plant remains [2,3,8,9,15,16,19,62–65] as well as fossils of invertebrates [10,65–71], marine

macrofaunas [72–74], reptiles [75–77], and mammals [1,4–7,11–14,78,79].

The fossils described here were collected from the Rancho Grande locality in Chubut, a sin-

gle fossil quarry exposed along the banks of the Rı́o Chico in the lower Salamanca Formation

[17,18]. All necessary permits were obtained for the described study, which complied with all

relevant regulations. The age of the Rancho Grande site is constrained to geomagnetic polarity

chron C29n, or 65.58–64.86 Ma (early Danian) on the 2012 Geomagnetic Polarity Timescale

[17,18,80]. The formation consists primarily of estuarine to shallow marine deposits, and the

fossils were found in flat-laminated beds of very-fine sandstone to siltstone. The Rancho

Table 1. (Continued)

Taxon Organ Latitude Longitude Age Reference

Paliurus sp. fruit 47.94 -119.00 Miocene [165]

Paliurus sp. fruit 47.01 -116.25 Miocene [166]

Paliurus sp. fruit 30.47 -84.99 Miocene [167,168]

Ziziphus sp. wood 28.18 73.30 Pliocene [135]

Paliurus nipponicus Miki fruit 34.64 135.03 Pliocene [33]

Paliurus aff. hemsleyanus fruit 45.05 2.72 Pliocene [169]

Ziziphus khoksungensis Grote fruit 15.05 102.12 Pleistocene [170]

Paliurus nipponicus Miki fruit 34.82 135.82 Pleistocene [32]

Rhamnaceae pollen 43.83 -73.05 Neogene [171,172]

Rhamnaceae pollen 52.52 5.5 Neogene [173]

Rhamnaceae pollen 54.2 9.7 Neogene [174]

Rhamnaceae pollen 18.53 -98.7 Oligocene [175]

Rhamnaceae pollen 39.75 34.84 Eocene [176]

Rhamnaceae pollen -60 42 Neogene [128]

Rhamnaceae pollen 32 10 Neogene [177]

Rhamnaceae pollen -17.36 145.69 Neogene [126]

Rhamnaceae pollen -37.35 144.13 Neogene [130]

Rhamnaceae pollen -62.15 -58.45 Oligocene [127]

Rhamnaceae pollen -38.25 146.38 Oligocene [128]

Berchemia pseudodiscolor Chesters fruit -0.4 34.17 Miocene [178, 179, 180]

Ziziphus miocenicus Chesters fruit -0.4 34.17 Miocene [178]

Ziziphus rusingensis Chesters fruit -0.4 34.17 Miocene [178, 179, 180]

https://doi.org/10.1371/journal.pone.0176164.t001
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Grande beds were deposited in a tidal estuary near the seaward limit of tidal influence [18].

Abundant angiosperm leaves, delicate flowers, and leafy herbaceous shoots characterize the

assemblage. The presence of a diverse marine fauna including brittle stars, a benthic foramini-

fer, and bivalves in the same bedding planes suggests significant transport of the plant material

from the original site of growth [39,46]

Palynological analysis of Danian deposits in northern Chubut Province revealed low floral

diversity after the end-Cretaceous mass extinction, followed by a rapid recovery [63]. Recent

analysis of palynomorphs collected from the same temporal interval of the Salamanca Fm. as

the fossil flowers and leaves described here (C29n) found that 50% of all pollen types are angio-

sperms, whereas gymnosperms accounted for only ~13% of total richness; however, Classopol-
lis pollen, representing the extinct conifer family Cheirolepidiaceae, is the most abundant

palynomorph in all samples [17]. Wood assemblages from the Salamanca Fm. are dominated

by conifers, but the presence of fossil angiosperm woods indicate that they were also part of

the canopy [8,9,65]. The co-occurrence of palms [2,3,16,64,65,81], dicot woods with indistinct

growth rings [9], and alligatorids [76,77], indicates temperature remained above freezing year-

round. The results of leaf physiognomic analyses [15,82,83] indicate that the climate in the San

Jorge Basin during the early Paleocene was warm subtropical.

Materials and methods

The fossil specimens are housed in the Paleobotanical collection of the Museo Paleontológico

Egidio Feruglio (MPEF-Pb), Trelew, Chubut Province, Argentina, under these numbers:

MPEF-Pb 8548a&b, MPEF-Pb 8549, MPEF-Pb 8551 (flowers), MPEF-Pb 8552, MPEF-Pb

8553, MPEF-Pb 8555, MPEF-Pb 8560, MPEF-Pb 8563 (leaves). The fossil flower specimens

were prepared using standard degauging techniques, whereas the leaves required minimal

preparation. Images of macroscopic features were captured with a Canon EOS 7D DSLR Cam-

era, and microscopic details were photographed with a Nikon DS Fi1 camera mounted on a

Nikon SMZ1000 stereoscope at the Museo Paleontológico Egidio Feruglio. Epifluorescence

microscopy was used to check for the presence of pollen grains in the anthers. Images were

processed with Adobe Photoshop (San Jose, California, USA). The fossils were compared with

extant Rhamnaceae specimens obtained from the LH Bailey Hortorium Herbarium (BH),

Department of Plant Biology, Cornell University, Ithaca, NY, USA, the U.S. National Herbar-

ium (US), Smithsonian National Museum of Natural History, Washington DC, USA, the

National Cleared Leaf Collection (NCLC-H) Smithsonian National Museum of Natural His-

tory, Washington DC, USA, and the University of Florida Herbarium (FLAS), University of

Florida, Gainesville, FL, USA (S1 Table). Terminology for description of the leaves follows that

of the Manual of Leaf Architecture [84].

To evaluate the phylogenetic affinities of the fossil flowers, and the plant concept based on

both flowers and leaves, we assembled a new morphological matrix for Rhamnaceae modified

from that of Calvillo-Canadell [85] as later published by Millán and Crepet [30]. We compared

the floral characters with those included in the studies by Aagesen [86], Richardson et al. [27],

and Islam and Simmons [87]. Based on these comparisons, we made several changes to the

original matrix of morphological characters. First, we modified several characters to so that

there are fewer alternative states and so that additional fossil and modern material is easier to

score, but also so that the results are not in conflict with previous analyses. Second, we

excluded characters that are not preserved in any of the fossil flowers because they would not

influence the optimal position of the fossil-taxon on the scaffold topology. Third, we added

three characters related to pubescence and floral disk morphology because these features are

preserved on the fossils. Fourth, we added five foliar characters. Fifth, we scored character data
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for seven additional extant genera Sarcomphalus R. Browne emend. Hauenschild, Hovenia
(Paliureae), Ventilago (Ventilagineae), Pomaderris Labill. (Pomaderreae), Noltea Rchb. (Phyli-

ceae), Ampelozizyphus Duckey (Ampelozizypheae), Bathiorhamnus Capuron (Bathiorham-

neae), and Helinus E. May. ex Endl. (Gouanieae Reissek ex Endl.). Finally, we scored character

data for the fossil flowers and leaves. The matrix comprises 25 taxa, 25 floral characters, and

five leaf characters. The complete matrix is available online at the MorphoBank website

(project P2506, Morphology of Rhamnaceae (flowers and leaves) [matrix 24392]; http://

morphobank.org/permalink/?P24392). Nine of the 11 tribes of Rhamnaceae are represented in

this new matrix, as opposed to four tribes in the matrix used by Millán and Crepet [30]. With

the inclusion of Sarcomphalus (formerly new world Ziziphus Mill.) and Hovenia, the generic

diversity of Paliureae is fully represented in this new dataset. Of the three monogeneric tribes

in the ampelozizyphoid clade, Ampelozizyphus and Bathiorhamnus are included [88,89].

We analyzed the matrix using the molecular scaffold approach described by Springer et al.

[90] to determine the most parsimonious position(s) first based on the fossil flowers alone,

and then including the foliar characters. We used two different scaffolds to evaluated how sen-

sitive the placement of the fossil is to tree topology. First, we constrained the tree searches such

that the final topology is consistent with the relationships reported by Hauenschild et al. [23].

The Hauenschild et al. topology is based on sequence data from one chloroplast marker (trnL-
trnF) and one nuclear marker (ITS) for more than 400 species. Then, we constrained the tree

searches such that the final topology is consistent with the relationships reported by Onstein

et al. [29]. The Onstein et al. topology is based sequence data from six chloroplast markers and

one nuclear marker (ITS) for 280 species. All tree searches were implemented in the phyloge-

netic software TNT [91] using the parsimony ratchet [92]. We constrained the searches by

appending a set of binary characters that define the scaffold topology and weighting them to

99%. All characters were unordered, and only the position of the new taxon was free to vary.

In the analyses, 10 sets of 200 iterations using a 10% perturbation of characters were used for

the ratchet analyses, and default values for drift, sectorial search, and tree fusion were retained.

Nomenclature

The electronic version of this article in Portable Document Format (PDF) in a work with an

ISSN or ISBN will represent a published work according to the International Code of Nomen-

clature for algae, fungi, and plants, and hence the new names contained in the electronic publi-

cation of a PLOS article are effectively published under that Code from the electronic edition

alone, so there is no longer any requirement to provide printed copies.

New names contained in this work have been submitted to IFPNI, from where they will be

made available to the Global Names Index. The LSID IFPNI codes can be resolved and the

associated information viewed through any standard web browser by appending the LSID con-

tained in this publication to the prefix http://fossilplants.info/. The LSID for this publication is:

http://fossilplants.info/publications/4B0FD041-D9CE-446E-B866-D201D710F412. The online

version of this work is archived and available from the Dryad Digital Repository.

Results

Systematics

Order: Rosales Bercht. & J. Presl 1820

Family: Rhamnaceae Jussieu 1789

Genus: Notiantha Jud, Gandolfo, Iglesias & Wilf, gen. nov.

Type species: Notiantha grandensis Jud, Gandolfo, Iglesias & Wilf, sp. nov. (Fig 2).
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PLOS ONE | https://doi.org/10.1371/journal.pone.0176164 May 10, 2017 6 / 24

http://morphobank.org/permalink/?P24392
http://morphobank.org/permalink/?P24392
http://fossilplants.info/
http://fossilplants.info/publications/4B0FD041-D9CE-446E-B866-D201D710F412
https://doi.org/10.1371/journal.pone.0176164


Generic diagnosis: Pedicellate, pentamerous, actinomorphic, perfect flowers; hypanthium

obconical, glabrous; calyx lobes five, lobes deltoid to ovate, keeled, inserted at the margin of

the hypanthium; petals five, short-clawed, cucullate, curved, and equal in length to the calyx

lobes, petal apex emarginate; stamens epipetalous, anthers dorsifixed and versatile; pentagonal

floral disk filling the hypanthium.

Fig 2. Notiantha grandensis Jud, Gandolfo, Iglesias & Wilf, gen et sp. nov. (A) Flower in transverse view

showing pentamerous structure, sepals triangular with a distinct keel, cucullate petals alternating with sepals,

stamens antepetalous, and floral disk surrounding a coalified gynoecium. MPEF-Pb 8548a. (B) Counterpart of

specimen in ‘A’ showing a sepal with a central keel and two marginal veins converging toward the apex (at

arrow) MPEF-Pb 8548b. (C) Composite digital illustration of the flower created from ‘A’ and ‘B’. (D) Flower in

longitudinal view showing slender pedicel, floral cup (at arrow), three preserved sepals, and a cucullate petal

(at arrowhead). MPEF-Pb 8549. (E) Close-up of the petal in ‘D’ showing clawed structure and the

longitudinally folded distal portion of the petal; the overlapping lobes are marked with arrows. MPEF-Pb 8549.

(F) Flower in longitudinal view showing slender pedicel and three sepals. MPEF-Pb 8551. (G) Close-up of

flower in ‘A’ showing the keeled sepal (at arrowhead), and the notched petal apex (at arrow). MPEF-Pb

8548a. (H) Close-up of flower in ‘A’ showing an anther opposite a petal, and a line suggesting where the

anther filament adnate to the petal at its base (at arrow). MPEF-Pb 8548a. Scale bars: A-D, F = 2 mm; E = 0.5

mm; G, H = 1 mm.

https://doi.org/10.1371/journal.pone.0176164.g002
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Etymology: From the Greek nótios for southern, and anthos for flower.

Species: Notiantha grandensis Jud, Gandolfo, Iglesias & Wilf, sp. nov. Fig 2A–2H.

Holotype: MPEF-Pb 8548a,b.

Paratypes: MPEF-Pb 8549, MPEF-Pb 8551.

Repository: Museo Paleontológico Egidio Feruglio Paleobotany Collection (MPEF-Pb),

Trelew City, Chubut, Argentina.

Type Locality: Rancho Grande, Chubut, Argentina.

Stratigraphic position: Lower Salamanca Formation.

Age: Paleocene, early Danian, geomagnetic polarity chron C29n (65.58–64.86 Ma).

Etymology of specific epithet: from the Rancho Grande locality.

Species diagnosis: as for the genus Notiantha.

Description: The flowers are pedicellate, pentamerous, actinomorphic, and perfect, 5–7

mm diameter (Fig 2A–2C) with a gamosepalous, obconical floral cup. The pedicel is slender,

2.5–4 mm long and 0.6 mm across (Fig 2D and 2F). The perianth is composed of calyx and

corolla that have whorled phyllotaxy. The calyx lobes (sepals) are triangular to slightly ovate

with acute and straight to slightly acuminate apex (Fig 2A–2C and 2F–2H), and they are 1.4–

1.6 mm wide and 1.5–1.7 mm long. A distinct adaxial, longitudinal keel (Fig 2A–2D and 2F–

2H) and two converging marginal veins are visible on each sepal (Fig 2B). The corolla is com-

posed of short-clawed, cucullate petals (Fig 2A–2E) with an apical notch (i.e., emarginate apex;

Fig 2G); they are either open (Fig 2G and 2H) or conduplicate (Fig 2E) and alternating with

sepals (Fig 2A–2C); petals are 1.4 mm long, 0.1 mm wide at base and 0.6 mm at the widest

part. The androecium has five antepetalous stamens (i.e. obhaplostemonous) (Fig 2A–2C),

which are adnate to the petals at the base (Fig 2H); the filaments are slender, c. 1.2 mm long,

and the anthers are dorsifixed and versatile and seem to have four microsporangia (Fig 2H).

Pollen grains were not detected in the anthers. The gynoecium is poorly preserved, and the

number of carpels and stylodia is unknown. In transverse view, the pentagonal area that is 1.9

mm across, darker than the sepals, and surrounds the coalified gynoecium is interpreted as a

floral disk. The floral disk surrounds and covers much of the coalified gynoecium, suggesting

that it is either semi-inferior or inferior.

Genus: Suessenia Jud, Gandolfo, Iglesias & Wilf, gen. nov.

Type Species: Suessenia grandensis Jud, Gandolfo, Iglesias & Wilf, sp. nov. (Fig 3).

Generic Diagnosis: Leaves simple, marginal petiolate; blade shape ovate to elliptic; base

obtuse, rounded, symmetrical or slightly asymmetrical, apex acute or obtuse; margin unlobed,

toothed; primary vein framework basal acrodromous, with three basal veins (rarely 5),

agrophic veins absent or present; major secondary vein framework absent or semicraspedo-

dromous distally; tertiary vein framework mixed percurrent; tooth spacing regular, teeth api-

cally pointed, with indeterminate glandular tissue on the tooth apex.

Etymology: Named for K. Suessenguth in honor of his early work on the classification of

Rhamnaceae.

Species: Suessenia grandensis Jud, Gandolfo, Iglesias & Wilf, sp. nov. Fig 3A–3F.

Holotype: MPEF-Pb 8553.

Repository: Museo Paleontológico Egidio Feruglio Paleobotany Collection (MPEF-Pb),

Trelew City, Chubut, Argentina

Type Locality: Rancho Grande. Chubut, Argentina.

Stratigraphic position: Lower Salamanca Formation.

Age: Paleocene, early Danian, geomagnetic polarity chron C29n (65.58–64.86 Ma).

Etymology of specific epithet: from the Rancho Grande locality.

Species diagnosis: as for the genus Suessenia.
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Fig 3. Comparison of fossil (A-F) and modern Rhamnaceae leaves (G-J). (A) S. grandensis MPEF-Pb

8553 showing overall shape, stout petiole, acute base (at arrow), serrate margin, and acrodromous primary

veins. (B) S. grandensis MPEF-Pb 8560 showing its shape, acute to attenuate apex (at arrow), serrate

margin, and acrodromous primary veins. (C) S. grandensis MPEF-Pb 8555 showing overall shape, petiole,

acute base, serrate margin, and acrodromous primary veins. (D) Close-up of the leaf blade (MPEF-Pb 8552)

showing mixed percurrent epimedial tertiary veins running between the medial primary vein (mp) and the

lateral primary vein (lp). Note that they form an acute angle to the medial primary vein. (E). S. grandensis

MPEF 8563 overall shape, petiole, acute base, serrate margin, and acrodromous primary veins, and an

asymmetric, obtuse apex. (F) Close-up of the margin in ‘E’ showing exterior tertiary veins that are looped or

terminating at the margin; note the glandular tooth apex (at arrow). (G) Leaf of Sarcomphalus saeri (Pittier)

Hauenschild US 2045934 showing ovate blade, petiole, rounded base, acute apex, serrate margin, three

acrodromous primary veins, and alternate percurrent epimedial tertiary veins. (H) Leaf of S. saeri US 3554997

showing ovate blade, petiole, rounded base, acute apex, serrate margin with apically oriented teeth, three

acrodromous primary veins, distal major secondary veins, and alternate percurrent epimedial tertiary veins. (I)

Cleared leaf of Ziziphus sativa Gaertn. (junior synonym of Z. jujuba Miller) NCLC-H 1791 showing ovate to

elliptic blade, acute base, acute apex, serrate margin with apically oriented teeth, three acrodromous primary

veins. (J) Close-up of the leaf in ‘I’ showing the apically oriented glandular teeth. Note the similarity to ‘F.’

Scale bars: A, B, H = 10 mm; C, E = 5 mm; D = 3 mm; F, J = 2 mm; G = 15 mm; I = 40 mm.

https://doi.org/10.1371/journal.pone.0176164.g003
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Description: Leaves simple, petiolate. Petiole stout, blade attachment marginal, laminar size

microphyll. Laminar shape ovate to elliptic, with medial symmetry, length to width ratio 3:1

(7:3–4:1) (Fig 3A–3C). Apex acute, straight to acuminate, symmetrical (Fig 3B), base angle

obtuse to acute, rounded to cuneate, insertion slightly asymmetrical (Fig 3A). Margin unlobed,

serrate (Fig 3A–3F). Primary vein framework palmate acrodromous with three basal veins.

Basal veins naked in some specimens (Fig 3C, at arrow). Major secondary veins not present,

agrophic veins absent. Intercostal tertiary vein fabric (between the primary veins) mixed per-

current, angle of the percurrent tertiaries acute (Fig 3D). External tertiary veins supply the teeth

(Fig 3F). Quaternary vein fabric irregular reticulate (Fig 3D). Tooth frequency decreasing dis-

tally, with one order, three teeth per cm (Fig 3A–3D). Sinus shape angular, tooth shape straight/

retroflexed. Tooth apex pointed distally, with medial principal vein terminating at the tooth

apex; each tooth with a gland on the apex (Fig 3E and 3F). Number of specimens examined: 31

Phylogenetic analysis

The tree search using only floral characters and constrained by the topology of Hauenschild

et al. [23], yielded two equally most-parsimonious trees: one with Notiantha deep in the zizi-

phoid clade and another sister to the extant Paliureae (Fig 4). The next tree search using the

Fig 4. One of two equally most parsimonious trees based on floral characters and the topology

of Hauenschild et al. [23] showing the position of Notiantha sister to the extant Paliureae [Hovenia

+Sarcomphalus+Paliurus+Ziziphus] at arrow. The alternate most parsimonious position in the ziziphoid

clade for the fossil flowers is colored in dark green. A = Ampelozizypheae, B = Bathiorhamneae, V =

Ventilagineae, R = Rhamneae, Po = Pomaderreae, C = Colletieae, Ph = Phyliceae, U = unplaced genera at

tribal level, G = Gouanieae, Pa = Paliureae.

https://doi.org/10.1371/journal.pone.0176164.g004
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full 30 characters (from both flowers and leaves) resulted in five best trees. Three with

Notiantha nested in the Paliureae, one with Notiantha sister to the Paliureae, and one with

Notiantha sister to all ziziphoids except Gouanieae (S1 Fig). In all of the most-parsimonious

trees obtained using the Hauenschild et al. [23] topology, the fossil-taxon was nested within

the ziziphoid clade. The tree searches using the alternate topology reported by Onstein et al.

yielded slightly differen results. The first analysis using only the floral characters for Notiantha
resulted in eight most-parsimonious trees. One tree found Notiantha sister to the extant ampe-

lozizyphoids, Ampelozizyphus and Bathiorhamnus (Fig 4), whereas all other trees placed

Notiantha within the ziziphoid clade: either unplaced (e.g. sister to Ceanothus) or within the

Paliureae (S2 Fig). Some trees in which the fossil is nested among the rhamnoids are only two

steps longer than the optimal trees shown in (S2 Fig). The final tree search, using the full set of

30 floral and foliar characters, yielded four equally most-parsimonious trees. In one tree, the

composite fossil-taxon is sister to the ampelozizyphoid clade, but in the other three trees, it is

nested in the Paliureae (S3 Fig).

Discussion

Comparison with extant and fossil plants

Extant flowers. The flowers of Notiantha grandensis are readily assignable to Rhamnaceae

because of their pentamerous structure, the obconical hypanthium with triangular keeled

calyx lobes (sepals), clawed and cucullate petals, antepetalous stamens, and the floral disk

[20,93,94]. Pentamerous flowers with antepetalous stamens are also found in Basellaceae Raf.,

Vitaceae Juss., Santalales Berchtold & J. Presl, and Gunneraceae Meisn. [95], but rhamnaceous

flowers can be distinguished from among these when they have the combination of keeled

sepals, clawed petals, filaments adnate to the petals, a hypanthium, or a fleshy floral disk.

As previously mentioned, there are eleven recognized tribes in Rhamnaceae, but several

genera remain unplaced [26,27]. Many of the characters that have been identified as useful for

distinguishing the tribes [21,27] are not preserved in the Patagonian fossils. The results of our

phylogenetic analysis indicate that the fossil flowers are most like members of the ziziphoid

clade, and the tribe Paliureae (Fig 4). The features supporting this relationship are the obconi-

cal floral cup, triangular to deltoid sepals each with a prominent keel, the floral disk adnate to

the ovary filling the floral tube, the presence of short-clawed, cucullate petals with an apical

notch, and a semi-inferior to superior ovary. By contrast, other tribes vary in the thickness and

position of the floral disks, the shape of the hypanthium, and/or shape of the sepals. Notiantha
differs from most extant members of Paliureae because the petals are apically emarginate and

the floral disk is unlobed. In extant Paliureae, notched petals are rare, and they also occur out-

side of Paliureae in Condalia Cav., Karwinskia Zucc., Sageratia Brongn., Scutia (DC) Brongn.,

and Rhamnus L. [21,96–99]. The floral disk is often strongly lobed in extant Paliureae, with the

sinuses associated with the insertion of the petal-stamen complex; however, it is possible that

the size of the lobes in the floral disk changes during development, and, therefore, the absence

of lobes in Notiantha may not be systematically informative. Based on the suite of characters in

the fossil and the various most-parsimonious positions found in the phylogenetic analysis, it is

likely that Notiantha belongs near the base of the ziziphoid clade.

Fossil flowers. The oldest known putative rhamnaceous flowers are the “Rose Creek flow-

ers” from the mid-Cretaceous of Nebraska described by Basinger and Dilcher [100]. Some

authors consider these fossils to be the earliest evidence of Rhamnaceae because of the pentam-

erous, obhaplostemonous arrangement of the floral organs, short-clawed petals, a circular to

pentagonal floral disk, a superior ovary, and distinctive pollen sculpture [100,101]. In contrast

to crown-group Rhamnaceae, however, the Rose Creek flowers are much larger (20–40 mm

Flowering after disaster

PLOS ONE | https://doi.org/10.1371/journal.pone.0176164 May 10, 2017 11 / 24

https://doi.org/10.1371/journal.pone.0176164


across), lack a keel on the sepals, and the stamens are unlike those of extant Rhamnaceae. In

the Rose Creek flowers, the filaments are stout, not adnate to the petals, and bear a large basi-

fixed anther, whereas in most extant Rhamnaceae the filaments are slender, adnate to the pet-

als, and bear minute, dorsifixed, and versatile anthers [21]. Burge and Manchester [38]

cautioned that petal-opposed stamens also occur in members of Vitales, the apparent sister to

all other rosids [102], indicating that this condition might be expected in other early arising

rosids. We further suggest, based on the presence of flowers with petal-opposed stamens and/

or floral disks in several other groups such as Quillaja Molina (Quillajaceae, Fabales), Dir-
achma Schweinf. ex Balf.f. (Dirachmaceae, Rosales) Lepidobotrys Engl. (Lepidobotryaceae;

Celastrales), and Santalales [95] that the condition of petal-opposed stamens only (obhaploste-

mony) has repeatedly derived from ancestors with two alternating whorls of stamens (obdi-

plostemony) in the Pentapetalae. Therefore, until the taxonomic position of the Rose Creek

flowers can be confirmed, their placement within crown-group Rhamnaceae is doubtful.

More recently, Late Cretaceous rhamnaceous fossils (flowers, leaves and seeds) were

described from the Cerro del Pueblo Formation in Mexico [31] and the Guaduas Formation in

Colombia [28]. Among these fossils are the flowers described as Coahuilanthus belindae Cal-

villo-Canadell et Cevallos-Ferriz from El Almácigo locality (Cerro del Pueblo Formation, late

Campanian) in General Cepeda County, Coahuila, Mexico (Table 2). Coahuilanthus are easily

distinguished from Notiantha by the petals, which are much shorter than the calyx, and spatu-

late rather than cucullate as in Notiantha. Furthermore, Coahuilanthus flowers have a campan-

ulate, rather than obconic, hypanthium and a 10-lobed floral disk. So far, Coahuilanthus is the

earliest reliable fossil evidence of Rhamnaceae.

Several genera have been established based on fossilized rhamnaceous flowers from Ceno-

zoic deposits as well, but Notiantha may be distinguished from each of these by features of the

corolla and the hypanthium (Table 2). The flowers described as “Solanites” pusillus Berry from

the Eocene of Tennessee, USA [103] were recently recognized as Rhamnaceae by Millán and

Crepet [30]. They have a campanulate floral cup and obovate petals each with a rounded apex,

features that distinguish “S.” pusillus from the Patagonian fossils. Comparison of Notiantha
with the flowers of Nahinda axamilpensis Calvillo-Canadell et Cevallos-Ferriz, from the Oligo-

cene of Mexico, reveals that the petals are much shorter in N. axamilpensis [31]. Chambers and

Poinar described two rhamnaceous flowers from Dominican Amber [104,105], Distigouania
irregularis Chambers et Poinar and Comopellis presbya Chambers et Poinar. They compared D.

irregularis with the extant Gouania Jacq. and noted the unusual combination of sepaloid petals

with a more typical cucullate petal in the same flower. Notiantha can easily be distinguished

from these two taxa. D. irregularis is considered a staminate flower, whereas Notiantha is per-

fect. C. presbya has a wider floral cup than N. grandensis, cucullate petals that tightly enfold the

stamens, and enlarged appendages that radiate from the floral disk. By contrast, the petals of

Notiantha are clearly short-clawed and do not enfold the anther, and there is no evidence of

any kind of enlarged appendages radiating from the floral disk. Clearly, the Patagonian fossil

flowers are different from previously described rhamnaceous fossil flowers, and consequently

the erection of a new genus and species is warranted.

Fossil leaves. Some members of Rhamnaceae produce morphologically distinctive leaves

sometimes referred to as rhamnoid- or ziziphoid-type foliage. Leaves of the rhamnoid type are

simple, entire, and pinnate, with eucamptodromous secondary veins and closely spaced oppo-

site-percurrent tertiary veins that are nearly perpendicular to the midvein [28,106]. By con-

trast, leaves of the ziziphoid-type are simple, and palmate with three acrodromous primary

veins, mixed alternate-percurrent epimedial tertiary veins, and usually a serrate margin with

apically oriented, glandular teeth. Major secondary veins, if present, occur in the distal portion

of the leaf blade [51,52]. The rhamnoid and ziziphoid leaf types are distinctive end-members
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of a range of leaf-types found in Rhamnaceae [28,106,107]. ‘Ziziphoid’ leaves are typical of the

Paliureae and some other genera in the ziziphoid clade (e.g. Ceanothus, Colubrina, Crumenaria
Mart.), as well as the ampelozizyphoid clade (e.g. Bathiorhamnus).

Many of the dispersed rhamnaceous fossil leaves have been assigned to the modern genera

Ziziphus, Paliurus, or Ceanothus; however, these extant genera cannot be reliably distinguished

based on leaf architecture alone [107], suggesting that the assignment of the fossils to them is

dubious. Dispersed leaves that have Rhamnaceae-like morphology but do not fit into the

rhamnoid or ziziphoid leaf types are common in the fossil record; however, they are not neces-

sarily identifiable as Rhamnaceae based on venation and margin type alone because genera of

other families converge on similar morphology [38,106,108–110]. Even in those cases where

an affinity with Rhamnaceae is or could be confirmed, previous assignments to extant genera

should be re-evaluated [38,106,107]. Some of the fossil species conforming to the ziziphoid leaf

type that should be re-described may be transferred to Suessenia.

A thorough review of all fossil “rhamnaceous” leaves is beyond the scope of this work; how-

ever, a detailed comparison of Sussenia with fossil rhamnaceous leaves reported from South

America was performed. The first report of fossil leaves attributed to Rhamnaceae from South

America include Rhamnidium patagonicum Berry and R. preglabrum Berry in the Eocene

Laguna del Hunco flora [111–113]. These are closer to the rhamnoid leaf type and are unlike

S. grandensis. Later, Ziziphus chubutensis Berry, was described based on material collected

from the Palacio de los Loros locality in the Salamanca Fm. [15,62,114]. Z. chubutensis leaves

are broadly consistent with those of Paliureae becuase they have three strong basal veins that

appear actinodromous (nearly acrodromous), a serrate margin, and glandular teeth. Later,

Iglesias et al. [15] suggested that Banarophyllum ovatum Berry, also from the Salamanca Fm.

and originally allied with Flacourtiaceae, may be a junior synonym of Z. chubutensis [15,62].

Troncoso [115] reported the occurrence of a single ziziphoid leaf from the Eocene of Chile

identified as Ziziphus sp.; unfortunately, the fossil is poorly preserved. The base and much of

the margin of this specimen are unknown, and therefore this occurrence should be treated

with caution. Finally, Correa et al. [28] reported the occurrence of Berhamniphyllum from the

Late Cretaceous of Colombia, but these also conform to the “rhamnoid” leaf type. Suessenia
leaves are readily distinguished from those of Ziziphus chubutensis because they consistently

lack major secondary veins in the distal portion of the blade and because the apex is very acute

to attenuate, rather than rounded and obtuse. They are also easily distinguished from the spec-

imen Berry identified as B. ovatum because they lack major secondary veins, and the tertiary

veins are often alternate percurrent, not opposite percurrent. Thus, we consider Suessenia dis-

tinct from previously reported rhamnaceous leaves from South America and the oldest reliable

occurrence of the ziziphoid leaf type.

Biogeography

Rhamnaceae are distributed throughout tropical and temperate environments worldwide

[21,116], but highest diversity is associated with seasonally dry Mediterranean-type environ-

ments [29,56]. The broad distribution of the family hindered early efforts to draw conclusions

about their biogeographic history [117]. Gentry [55] proposed a Laurasian origin for the family

and subsequent expansion into the Southern Hemisphere; however, recent work supports an

alternate hypothesis. Richardson et al. and Onstein et al. showed that many of the groups asso-

ciated with tropical and subtropical forests are early-divergent lineages within Rhamnaceae

[26,29,53,56]. Richardson et al. [53] suggested a Gondwanan origin for the family but did not

specify the forest type, and Onstein et al. [29,56] emphasized the tropical rainforest aspect of

the likely ancestral habitat. The occurrence of fossil Rhamnaceae in the Neotropics during the
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Late Cretaceous on either side of the Central American Seaway [28,31] is suggestive of an “out

of the tropics” scenario for the evolution of the crown-group Rhamnaceae rather than a tradi-

tional “Gondwanan” or “Laurasian” origin at mid- or high-latitudes. This hypothesis is consis-

tent with the distribution of several of the extant representatives of the ampelozizyphoids,

which are found in Cuba, northern tropical South America, east Africa, and Madagascar, and

the primarily Neogene radiations of more derived rhamnoid and ziziphoid lineages in Medi-

terranean habitats worldwide [23,29,56,87].

There are 16 extant genera of Rhamnaceae native to the southern cone of South America

(Chile, Argentina, Paraguay, Uruguay, and southern Brazil), and one of them is endemic to

Chile [118–120]. Much of the species richness in that region, particularly in the Colletieae

Reissek ex Endl. [86], is found in the Mediterranean-type climate of Chile and western Argen-

tina, whereas other lineages, including Sarcomphalus (formerly new-world Ziziphus), Hovenia
(introduced), Colubrina, and Gouania Jacq. are found in the subtropical forests of northern

Argentina [118,119].

Southern Chubut Province (Argentina), where the fossils were collected, has a semi-arid to

cold-steppe ecoregion [121]. Today, in the San Jorge Basin, the mean annual temperature is

11.5˚C and mean annual precipitation is 16.4 cm yr-1 [122]. Condalia, Colletia Comm. Ex

Juss., Discaria Hook., and Trevoa Miers can be found in the region today (pers. obs.). By con-

trast, paleoclimate estimates for the Salamanca Fm. biota suggest subtropical lowland environ-

ment with a mean annual temperature of ~13–14˚C, and mean annual rainfall of 115–124 cm

yr-1 based on foliar physiognomy [82] and the presence of thermophilic groups (palms, podo-

carps, and alligatorids) [123]. This reconstructed climate is similar to the subtropical forests of

northern Argentina where Sarcomphalus, Hovenia, and Colubrina grow today [29].

Most fossils assigned to Rhamnaceae have been collected from Eocene and younger

deposits across the Northern Hemisphere (Fig 1; Table 1). Although the fossils described by

Correa et al. [28] are from South America, they are not technically from the Southern Hemi-

sphere. The only previous reports of rhamnaceous fossils from the Southern Hemisphere

were based on dispersed leaves [62,111,115,124,125] or pollen [126–130]. Two of these pol-

len occurrences are from Antarctica, the only continent where Rhamnaceae does not grow

today (Fig 1). Fossil wood [131,132] and fruits [133,134] attributed to Rhamnacae have been

reported from the Deccan Intertrappean beds of India, which was in the Southern Hemi-

sphere or straddled the equator for much of the Late Cretaceous and Paleogene; however,

Guleria [135] and Prakash [136] found that these records are unreliable. The fossils either do

not preserve some of the features that are necessary to confirm or reject the rhamnaceous

affinities, or they show closer affinities with other families. The remarkably sparse fossil

record of Rhamnaceae from the Southern Hemisphere contrasts with the rich record in the

Northern Hemisphere. Traditionally, this has been thought to reflect a Laurasian origin for

the family and subsequent expansion into Gondwanan landmasses [137]; however, a simpler

explanation may be that geographical sampling bias drives this pattern. Recent work has

demonstrated the potential for new discoveries in the Southern Hemisphere to improve our

understanding of the history of various widespread (or formerly widespread) groups

[28,138–142].

Conclusion

The fossils described here are, to our knowledge, the first early Danian flowers known from

the Southern Hemisphere. They are also the southernmost fossil occurrence of Rhamnaceae

flowers and the only unequivocal megafossil occurrence of the family in the Southern Hemi-

sphere. Based on the results of our phylogenetic analyses together with all available evidence,
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we argue that the discovery of Notiantha provides a reliable minimum age of 66 Million years

for the node that unites the extant ziziphoids; the most conservative approach would be to

apply a minimum age of 66 Million years for the node that unites the ziziphoid and ampelozi-

ziphoid clade, i.e. the base of the crown-group. The Late Cretaceous occurrences of Rhamna-

ceae from the Neotropics and the tropical distribution of several extant, early-diverging

lineages of the family indicates that the initial diversification of the family took place in warm

and wet tropical to subtropical forests, and the family later spread to temperate and Mediterra-

nean biomes [56]. The discovery of Notiantha (flowers) together with Suessenia (ziziphoid

leaves) from the Salamanca Formation confirms that Rhamnaceae reached southern South

America by the early Paleocene and raises the possibility for southern dispersal routes via Ant-

arctica and subsequent vicariance [143–147] to help explain biogeographic patterns of Rham-

naceae [53].

Supporting information

S1 Table. Comparative material of extant Rhamnaceae. List of examined comparative mate-

rial of extant Rhamnaceae. US: United States National Herbarium; NCLC-H: National Cleared

Leaf Collection-Hickey; FLAS: University of Florida Herbarium; BH: Bailey Hortorium, Cor-

nell University.

(DOCX)

S1 Fig. Hauenschild et al. topology including floral and foliar characters. Phylogeny

including One of five equally most parsimonious trees based on floral and foliar characters

and the topology of Hauenschild et al. [23] showing the position of Notiantha sister to the

extant Paliureae [Hovenia+Sarcomphalus+Paliurus+Ziziphus] at arrow. The four alternate

most parsimonious positions for the fossil flowers in the ziziphoid clade are colored in dark

green. A = Ampelozizypheae, B = Bathiorhamneae, V = Ventilagineae, R = Rhamneae,

Po = Pomaderreae, C = Colletieae, Ph = Phyliceae, U = unplaced genera at tribal level,

G = Gouanieae, Pa = Paliureae.

(TIF)

S2 Fig. Onstein et al. topology including floral characters. One of eight equally most parsi-

monious trees based on floral characters the topology of Onstein et al. [29] showing the

position of Notiantha nested in Paliureae sister to [Hovenia+Paliurus+Ziz iphus] at arrow.

The seven alternate most parsimonious positions for the fossil flowers are colored in dark

green. A = Ampelozizypheae, B = Bathiorhamneae, V = Ventilagineae, R = Rhamneae,

Po = Pomaderreae, C = Colletieae, Ph = Phyliceae, U = unplaced genera at tribal level,

G = Gouanieae, Pa = Paliureae. This result was obtained using only the first 25 floral charac-

ters and is therefore conservative.

(TIF)

S3 Fig. Onstein et al. topology including floral and foliar characters. One of four equally

most parsimonious trees based on floral and foliar characters and the topology of Onstein

et al. [29] showing the position of Notiantha nested in Paliureae sister to [Hovenia+Paliurus
+Ziziphus] at arrow. The three alternate most parsimonious positions for the fossil flowers are

colored in dark green. A = Ampelozizypheae, B = Bathiorhamneae, V = Ventilagineae,

R = Rhamneae, Po = Pomaderreae, C = Colletieae, Ph = Phyliceae, U = unplaced genera at

tribal level, G = Gouanieae, Pa = Paliureae.

(TIF)
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74. Andreis RR. Geologı́a del área de Cañadón Hondo, Dpto Escalante, Provincia de Chubut, República

Argentina. Obra Centen Mus Plata. 1977; 4:77–102.

75. Parma SG, Casadı́o S. Upper Cretaceous–Paleocene echinoids from Northern Patagonia, Argentina.

J Paleontol. 2005 Nov 1; 79(6):1072–1087.

76. Bona P, De La Fuente MS. Phylogenetic and paleobiogeographic implications of Yaminuechelys

maior (Staesche, 1929) new comb., a large long-necked chelid turtle from the early Paleocene of Pata-

gonia, Argentina. J Vertebr Paleontol. 2005; 25(3):569–582.

77. Bona P. Una nueva especie de Eocaiman Simpson (Crocodylia, Alligatoridae) del Paleoceno Inferior

de Patagonia. Ameghiniana. 2012; 44(2):435–445.

78. Sterli J, de la Fuente MS. New evidence from the Palaeocene of Patagonia (Argentina) on the evolu-

tion and palaeo-biogeography of Meiolaniformes (Testudinata, new taxon name). J Syst Palaeontol.

2013; 11(7):835–852.

79. Gelfo JN, Ortiz-Jaureguizar E, Rougier GW. New remains and species of the “condylarth”genus Escri-

bania (Mammalia: Didolodontidae) from the Palaeocene of Patagonia, Argentina. Earth Environ Sci

Trans R Soc Edinb. 2007; 98(2):127–138.

80. Gradstein FM, Ogg JG, Schmitz M, Ogg G, editors. The Geologic Time Scale 2012. 1st ed. Elsevier;

2012. 1176 p.

81. Palazzesi L, Barreda V. Major vegetation trends in the Tertiary of Patagonia (Argentina): A qualitative

paleoclimatic approach based on palynological evidence. Flora—Morphol Distrib Funct Ecol Plants.

2007; 202(4):328–337.

Flowering after disaster

PLOS ONE | https://doi.org/10.1371/journal.pone.0176164 May 10, 2017 20 / 24

https://doi.org/10.1371/journal.pone.0052455
http://www.ncbi.nlm.nih.gov/pubmed/23285049
https://doi.org/10.1371/journal.pone.0176164


82. Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, et al. Sensitivity of leaf size and

shape to climate: global patterns and paleoclimatic applications. New Phytol. 2011 May; 190(3):724–

739. https://doi.org/10.1111/j.1469-8137.2010.03615.x PMID: 21294735
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